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Abstract: Parmigiano Reggiano cheese is one of the most appreciated and consumed foods worldwide,
especially in Italy, for its high content of nutrients and taste. However, these characteristics make
this product subject to counterfeiting in different forms. In this study, a novel method based on an
electronic nose has been developed to investigate the potentiality of this tool to distinguish rind
percentages in grated Parmigiano Reggiano packages that should be lower than 18%. Different
samples, in terms of percentage, seasoning and rind working process, were considered to tackle
the problem at 360◦. In parallel, GC-MS technique was used to give a name to the compounds
that characterize Parmigiano and to relate them to sensors responses. Data analysis consisted of
two stages: Multivariate analysis (PLS) and classification made in a hierarchical way with PLS-DA
ad ANNs. Results were promising, in terms of correct classification of the samples. The correct
classification rate (%) was higher for ANNs than PLS-DA, with correct identification approaching
100 percent.

Keywords: electronic nose; nanowire gas sensors; food quality control; Parmigiano Reggiano;
multivariate data analysis; artificial neural network

1. Introduction

Parmigiano Reggiano (PR) cheese is among the most typical Italian foods and one of the oldest
traditional cheeses produced in Europe. It is also the most important Protected Designation of
Origin (PDO) Italian cheese in terms of commercial importance [1]. Its production is regulated by
the Parmigiano Reggiano Cheese Consortium (CFPR). According to European Regulation 510/2006,
this designation can be exclusively assigned to the cheese only when it is made with a traditional
established production technology in a restricted area of Italy (provinces of Parma, Reggio Emilia,
Modena, Mantova and Bologna) from milk produced in the same area [2].

PR can be found on the market in different forms. It can be portioned or grated and cannot be
subjected to any treatment like lyophilization, drying and freezing [3]. All the procedures, which
must be followed to obtain the original PR, make this cheese a high-value product. This leads to
a final product that has various nutritional properties: its dry weight is mostly composed of proteins
and lipids, it is lactose- and galactose-free and it is rich in organic acids, such as lactic acid, acetic
acid, propionic and butyric acids [4]. The semi-fat composition, due to natural creaming of skimmed
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unpasteurized milk [5], is produced by cattle that consume only locally grown forage because supply
of silage and fermented feeds is not permitted [6].

For these reasons, PR has a high cost when compared to similar hard cheeses. This encourages the
appearance on the market of counterfeited products that bear the PR brand at a lower price. The rate
of fraud is estimated to be between 20% and 40%, the latter predominantly in the grated form [7].

As established in the procedural guideline, grated PR cheese must follow some technical and
technological parameters: moisture no less than 25% and no more than 35%, at least 12 months of
ripening, rind percentage compared to pulp not over 18% (by weight), typical amino-acid composition
of the cheese, absence of additives, not crumbly in aspect and with homogeneous particles that have
a diameter inferior to 0.5 mm and do not exceed 25% [8].

In order to determine if a PR cheese package conforms to the rules, the aromatic profile of grated
PR can be analyzed thanks to the volatile organic compounds (VOCs). VOCs of various dairy products
have received a great deal of attention in recent years. Until now, about 600 volatile compounds have
been identified for cheese [9]. However, only a small part of these compounds is responsible for cheese
flavor [10]. Cheese aroma is considered the result of the equilibrium between various VOCs that,
separately, do not reflect the overall odor [11]. Hydrocarbons, alcohols, aldehydes, ketones, esters and
lactones were the major classes of compounds found in the neutral fraction of cheese [12].

In this work, an electronic nose has been used in order to analyze rind percentage in grated PR
cheese through emitted VOCs. In recent years, this kind of device has received considerable attention
for its potentialities; it has been applied in various fields, such as environment [13–17], health [18–22]
and food, with excellent results [23–25]. Regarding food applications, some examples of electronic
nose applications are the detection of microorganisms in tomato sauce [26] and of different molds in
coffee [27], the determination of the shelf life of milk [28], the detection of additives in fruit juices [29],
the identification of fruit [30] and the discrimination of cheese varieties [31,32]. These few examples
show how e-noses have the potential to be used in different ways to assess food quality and identity.

Placed side by side with e-nose analysis, Gas Chromatography coupled with Solid Phase Micro
Extraction (SPME) was used. SPME has received a great deal of attention in the literature to find VOCs
that characterize food matrices. Many foods have been studied, including dairy products, such as
milk [33], butter [34] and cheese [35,36].

The aim of this preliminary research is to determine the rind percentage of the sample under
analysis with an innovative and rapid methodology, in order to identify frauds and therefore have
available an affordable and reliable instrument to reduce them, thanks to the different VOCs, in terms
of presence and amount, between products.

2. Materials and Methods

2.1. Samples Preparation and Experimental Design

Analyzed samples were packaged under vacuum at the headquarters of CFPR. They came from
two different ripening stages: 12 and 24 months. For each of these, five different combinations of
pulp-rind were prepared (expressed in rind percentage): 0%, 18%, 26%, 45% and 100%. In addition,
two kinds of rind working processes were considered: washed-rind (WR) and scraped-rind (SR).
The only exceptions are represented by 0% samples, for which only the 24-month ripening was taken
into account, and 100% samples, for which there is one for WR, and one for SR, that corresponds to
24-month and 12-month seasoning, respectively. For each sample, 14 replicas were arranged for a total
of 210 (14 replicas × 15 samples).

Samples were stored at 4 ◦C until the moment when they were prepared for the analysis.
The amount of 2 g of grated cheese was positioned in 20 mL glass headspace vials and sealed by
a metal cap with a PTFE-silicon membrane, crimped with an aluminum crimp.
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2.2. GC-MS Analysis

The Gas Chromatograph (GC) used during the analyses was a Shimadzu GC2010 PLUS (Kyoto,
KYT, Japan), equipped with a Shimadzu single quadrupole Mass Spectometer (MS) MS-QP2010 Ultra
(Kyoto, KYT, Japan) and an autosampler HT280T (HTA s.r.l., Brescia, Italy). The GC-MS analysis was
coupled with the Solid-Phase Micro Extraction (SPME) method in order to find the most significant
VOCs, which allows for recognition of the different kinds of cheeses.

The fiber used for the adsorption of volatiles was a DVB/CAR/PDMS-50/30 µm (Supelco Co.
Bellefonte, PA, USA). The fiber was exposed to the headspace of the vials after heating the samples
in the HT280T oven, thermostatically regulated at 50 ◦C for 15 min, with the aim of creating the
headspace equilibrium. The length of the fiber in the headspace was kept constant. Desorption of
volatiles took place in the injector of the GC-MS for 6 min at 250 ◦C.

The gas chromatograph was operated in the direct mode throughout the run, with the mass
spectrometer in electron ionization (EI) mode (70 eV). GC separation was performed on a MEGA-WAX
capillary column (30 m × 0.25 mm × 0.25 µm, Agilent Technologies, Santa Clara, CA, USA). Ultrapure
helium (99.99%) was used as the carrier gas, at the constant flow rate of 1.3 mL/min. The following
GC oven temperature programming was applied. At the beginning, the column was held at 40 ◦C for
8 min, and then raised from 40 to 190 ◦C at 4 ◦C/min; then, the temperature was maintained at 190 ◦C
for 5 min. Next, the temperature was raised from 190 ◦C to 210 ◦C, with a rate of 5 ◦C/min; finally,
210 ◦C was maintained for 5 min.

The GC-MS interface was kept at 200 ◦C. The mass spectra were collected over the range of 45
to 500 m/z in the Total Ion Current (TIC) mode, with scan intervals at 0.3 s. The identification of the
volatile compounds was carried out using the NIST11 and the FFNSC2 libraries of mass spectra.

The described parameters have been optimized for this specific application. Each sample was
analyzed one time.

2.3. S3 Analysis

The innovative Small Sensors System S3 device used in the present work has been completely
designed and constructed at SENSOR Laboratory (University of Brescia, Italy) in collaboration with
NASYS S.r.l., a spin-off of the University of Brescia. The tool comprises a metal oxide (MOX) gas
sensors array, flow sensors, temperature and humidity sensors, fluidodinamic system, electronic
control system. In particular, the sensors used in this study are 8 MOX gas sensors. Three of them
are nanowires of MOX, as presented in References [37,38]. Two of them are tin oxides nanowires
sensors, both grown by means of the Vapor Liquid Solid technique [39], using a gold catalyst on the
alumina substrate and functionalizing one of them with gold clusters; the third sensor has an active
layer of copper oxide nanowires. The working temperature is 350 ◦C, 350 ◦C and 400 ◦C, respectively.
The other three sensors are prepared with Rheotaxial Growth and Thermal Oxidation (RGTO) thin
film technology; one is tin oxide functionalized with gold clusters (working at 400 ◦C), while the other
two are pure tin oxide (working at 300 ◦C and at 400 ◦C, respectively).

The last two are commercial MOX sensors produced by Figaro Engineering Inc. (Osaka, Japan).
In particular, they are the TGS2611 and TGS2602, which are sensitive to natural gases and odorous
gases like ammonia, respectively, according to the datasheet of the company. Commercial sensors have
been mounted on our e-nose in order to evaluate the performances of nanowire sensors. Details of
S3 sensors made at SENSOR Laboratory are summarized in Table 1. Response to 5 ppm of ethanol,
selectivity (response ethanol/response carbon monoxide) and limit of detection (LOD) of ethanol are
also included.

The MOX nanowires are gas sensors with a high sensitivity to a broad range of chemicals;
they exhibit physical properties that are significantly different from their polycrystalline counterpart.
The nanowires have a high degree of crystallinity, atomically-sharp terminations and an extraordinary
length-to-width ratio, resulting in enhanced sensing capability as well as long-term material stability
for prolonged operation. In addition, the three-dimensional network formed by the nanowires
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increases the adsorption surface and the catalytic activity, improving the response and decreasing
the instrument threshold [40]. SnO2 and CuO nanowires structures obtained from SEM are shown in
Figure 1A,B, respectively.

S3 analyzes the head space (HS), i.e., the volatile fraction of the samples formed when the
equilibrium of the solid–liquid phase and the vapor phase of all volatile compounds is reached.
The creation of the HS depends on the test substance (vapor pressure) and the conditioning temperature
of the sample. The compounds are extracted at the equilibrium point between the solid phase and
the vapor in a dynamic head space. This characteristic allows for a non-destructive samples analysis.
In this case, the sensor base line is obtained from the air of the surrounding environment; no gas
cylinder of chromatographic air is required (an essential feature that makes it a portable instrument).
The environmental air was filtered using a small metal cylinder (21.5 cm in length, 5 cm in diameter)
filled with activated carbons.

Table 1. Type, composition, morphology, operating temperature, response (∆R/R), selectivity (response
ethanol/response carbon monoxide) and limit of detection (LOD) of ethanol for S3 sensors made at the
SENSOR Laboratory.

Materials
(Type) Composition Morphology Operating

Temperature (◦C)
Response to 5

ppm of Ethanol Selectivity Limit of Detection
(LOD) of Ethanol (ppm)

SnO2Au (n) SnO2 functionalized
with Au clusters RGTO 400 ◦C 6.5 3 0.5

SnO2 (n) SnO2 RGTO 300 ◦C 3.5 2.5 1

SnO2 (n) SnO2 RGTO 400 ◦C 4 2 0.8

SnO2Au+Au (n)
SnO2 grown with Au

and functionalized
with gold clusters

Nanowire 350 ◦C 7 2.5 0.5

SnO2Au (n) SnO2 grown with Au Nanowire 350 ◦C 5 2.1 1

CuO (p) CuO Nanowire 400 ◦C 1.5 1.5 1

The volatile fraction is then aspirated and transported to the sensor chamber to be analyzed.
In order to avoid any influence of the surrounding environment to the sensor response, the chamber
has been thermostated and isolated. To prevent the absorption of volatile substances that could be
released during subsequent analysis, the chamber and the connection between the elements’ tires are
made using steel. The air is flown into the sensor chamber using a pump through a needle valve.
This is used to adjust the total airflow, which is measured by a flowmeter downstream from the pump.

The instrument was also provided with the auto-sampler head space system HT2010H, supporting
a 42-loading-sites carousel and a shaking oven to equilibrate the sample head space. The vials were
placed in a randomized mode into the carousel. Each vial was incubated at 50 ◦C for 5 min in the
auto-sampler oven and shaken for 1 min during the incubation. The sample head space was then
extracted from the vial in the dynamic head space path and released into the carried flow (80 sccm).
Figure 1C shows the experimental setup (S3 and auto-sampler with its carousel filled with vials).

The analysis timeline can be divided into three different steps for a duration of 420 s (7 min) per
sample, which are preceded by a warm-up step that allows for the achievement of the base line for the
entire system:

• Injection: the sample HS is flowed in the sensor chamber for 60 s (actual analysis time); then, for
30 s, environmental air flows through the same tube to clean it from any residual VOCs;

• Restore: when the injection period is finished, the filtered air is flowed into the sensors camber.
During this time (330 s), the sensors restore the original condition of the base line.

Thanks to the processor integrated in the S3 instrument, the frequency at which the equipment
works is equal to 1 Hz.
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Figure 1. (A) SEM image of SnO2 nanowires. (B) SEM image of CuO nanowires. (C) Experimental
setup formed by S3 and autosampler.

2.4. Data Analysis

Data analysis was performed using MATLAB® R2015a software (MathWorks, USA). First of all,
sensors responses in terms of resistance (Ω) were normalized when compared to the first value of the
acquisition (R0). For all the sensors, the difference between the first value and the minimum value
during the analysis time was calculated. Hence, the dataset was composed of ∆R/R0 parameters.

In the second step, the normal distribution of the variables was checked using the Jarque-Bera (JB)
test, with a significance level equal to 0.05 chosen. This test is a goodness-of-fit test of whether sample
data have the skewness and kurtosis matching a normal distribution. The null hypothesis is a joint
hypothesis from both the skewness and the excess kurtosis being zero.

Based on the test result, Partial Least Squares (PLS) method was used both to view how the
groups of samples were represented thanks to sensors responses and to build the model that was used
to classify the samples themselves.

Finally, classification was performed, comparing two different classifiers: Partial Least Squares
Discriminant Analysis (PLS-DA) and Artificial Neural Networks (ANNs). PLS-DA was successfully
applied in different fields where products had to be recognized according to their place of origin or
the presence of contamination, such as in milk [41], honey [42], wine [43] and cheese [44]. ANNs are
complex structures that try to mimic what the human brain does. They are formed by elemental
units called neurons that work like real neurons: once information arrives, they elaborate it and give
an output. Each neuron is characterized by an activation function and coefficients of connectivity
called weights. The overall structure is mainly composed of an input layer, hidden layers and
an output layer [45]. ANNs can be used to resolve regression and classification problems, and function
approximation. They found a lot of space in food applications for the analysis of data collected with
electronic noses [46–49]. In this work, a feed-forward ANN trained with the Levenberg-Marquardt
algorithm is used.

For PLS, dataset was split in two parts—a training set and test set—using Venetian Blinds (VB) as
the cross-validation procedure. This method divides the whole dataset in j cross-validation groups;
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in each one, one sample is put in the test set and the others in the training set on the first step.
Subsequently, in every group the sample after the previous one is taken into the test set, and the others
into the training set, and so on. In this work, the number of cross-validation groups chosen was equal
to 10.

For classification with PLS-DA, a toolbox made for MATLAB® and released by Milano
Chemometrics was used [50]. Instead, ANNs were created using the function nntool of the same
software. This tool allows for the random splitting of the dataset in test and training sets by default.

3. Results and Discussion

3.1. GC-MS Analysis Results

From the comparison between samples chromatograms, substantial differences were found.
The main difference between 12-months and 24-months ripened grated PR lies in the amount of fatty
acids that characterize this product. They are acetic acid, butanoic acid, hexanoic acid, octanoic acid,
n-decanoic acid, and their presence is much greater in 24-months PR. In Figure 2, histograms for each
of the aforementioned compounds are shown: results are presented in terms of mean ± standard
deviation of the mean with an arbitrary unit. This result is widely confirmed in the literature. Indeed,
it is well known that these fatty acids are the results of fermentation processes, especially in butter and
seasoned cheese. Some studies revealed that the amount of acetic acid and butanoic acid doubles in
the period between 12 and 24 months [51,52]. The same trend was observed in the other compounds,
since biochemical processes that lead to their formation are very similar.

1 

 

 

 

Figure 2. Cont.
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Figure 2. Comparison of acetic acid, butanoic acid, hexanoic acid, octanoic acid and n-decanoic acid
amount between 12-months and 24-months samples. Results are presented in terms of mean ± standard
deviation of the mean.

Differences were also found in comparing samples with different percentages of rind and the
same rind working process; the same trend is valid both for 12-months and 24-months ripened PR.
It turned out that in increasing the quantity of rind, the presence of three compounds increases. Besides
butanoic and hexanoic acid, 2-nonanone has the same behavior. It is a member of the class of methyl
ketones and it can be found in several foods, such as milk and cheese [53]. It is produced by the
oxidative degradation of fatty acids [54]. These results suggest that both the fermentation and the
degradation happen closer to the rind than in the central part of the cheese.

3.2. S3 Analysis Results

Once data were acquired, sensors responses were checked first. Since the first measures of each
session were very different from the others, they were discarded. Consequently, there is a different
number of replicas for each sample. Most likely, experimental conditions of first acquisitions were not
the same as the following measures in terms of the temperature of the auto-sampler oven that the vials
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were put in, as explained in Section 2.3. S3 Analysis. In Table 2, a detailed description of the number of
samples that were considered for the following analysis is shown.

Table 2. Considered samples divided for ripening stage, rind percentage and rind working processes
(WR = washed-rind, SR = scraped-rind).

SeasoningPercentage 0% 18% 26% 45% 100%

WR SR WR SR WR SR WR SR

12 months - 11 12 13 11 12 14 - 14
24 months 12 14 14 13 13 11 13 13 -

The choice to extract ∆R/R0 as a feature was made after viewing the sensors responses. In Figure 3,
the resistance value, as a function of time during the injection phase, is presented for four sensors that
represent the four types of MOX in the S3. They are CuO, SnO2Au-RGTO, SnO2Au+Au-Nanowire and
TGS2602. Since the starting point is equal for all the measures, the variation of normalized resistance
exhibit that all the sensors are capable of distinguishing samples with different concentrations of
rind (samples colors: red for 100% rind, green for 0%, blue for 18%, cyan for 26% and black for 45%).
In addition, they show also the ability to recognize the two ripening degrees, characterized with a solid
line for 24-months samples and with a dotted line for the others. Finally, responses to the working
processes are highlighted using a thicker line for WR samples as compared to SR ones.

TSG2602 and SnO2Au+Au nanowires seem to be the best MOX to identify ripening and rind
working process at fixed concentration, since minimum resistance varies mostly for samples with the
same rind percentage. Conversely, CuO and SnO2Au (RGTO) responses are more useful to recognize
“pure” samples (0% and 100% of rind) from mixtures, since in the first case ∆R is bigger.
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In Figure 4, boxplots of TGS2602 response that include ∆R/R0 for each sample are shown.
This sensor represents the general trend that can be observed in all the sensors. Obviously, since
different sensing materials are used, there are differences in the highlighted groups that overlap.
On the left part of the figure, there are 24-months seasoned samples, in the upper part, grated cheese
with SR, while in the lower, PR with WR. In the right part, there are 12-months ripened samples,
and they follow the same trend. The first boxplot is relative to samples of 0% rind; its ∆R/R0 is
different with respect to all the other groups, but it is more similar to WR grated PR, both at seasoning
stage. This result reflects the fact that they are characterized by a greater amount of humidity.
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After checking the general sensors performances, JB-test was applied to the dataset. Only 4 of the
eight parameters followed a normal distribution (p < 0.05); they correspond to the features extracted by
the two tin oxide nanowires and RGTO sensors. This was the main reason for choosing PLS. In Figure 5,
PLS score plot was made, considering the first two latent variables (LV) for a total explained variance
equal to 99.95% (99.87% for LV1 and 0.08% for LV2). The plot measures are divided by seasoning
degree. It can be observed that the 24-months class is in the central part of the graph, while the other
one is divided in the left and right part.

For this reason, classification techniques were used in a hierarchical way. In addition, another
motive for this choice was to simplify classification models, since this is a 15-class problem. Hence,
in the first step, classifiers were used to distinguish the seasoning degree; in a second step, for each
ripening state the different working processes were discriminated; finally, ring percentage was taken
into account. In Figure 6, a scheme of the steps is shown.

Regarding ANNs structures, three different ones were considered, one for each step. In the
first case, a two-layers architecture with 3 neurons in the input layer and 1 in the output layer was
considered. For the second stage, the same number of layers was used, but two neurons were put in
the first one. Finally, the third ANN had the same structure as the previous ones, but with 6 neurons in
the input layer. For all the neurons, hyperbolic tangent sigmoid transfer function was chosen.
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In Table 3, overall classification rate of the two classifiers is put side by side. In general, ANN
classification rates are better than those of PLS-DA. Indeed, ANN is able to recognize correctly all the
samples based on seasoning and rind working processes. PLS-DA performances are lower, although it
can reach good classification rates. The distinction between rind percentage shows that both classifiers
can classify samples with SR better than those with WR. A possible explanation for this result could be
the different amount of humidity: WR samples have a higher content of humidity because of water
treatment and this could cause the occupation of the adsorption sites by water molecules instead of
the ones that characterize the volatile fingerprint of the samples.
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Table 3. Classification rates of Partial Least Squares Discriminant Analysis (PLS-DA) and Artificial
Neural Networks (ANNs) divided per steps.

First Step Ripening Stage Second Step Working Processes Third Step Rind Percentage

PLD-DA 94.7%
12 months: 100%

WR: 61.1%
SR: 90.2%

24 months: 79%
WR:90.2%
SR: 95%

ANN 100%
12 months: 100%

WR: 63.8%
SR: 96.1%

24 months: 100%
WR: 58.8%
SR: 100%

To the author’s knowledge, only few researches have been carried out regarding rind composition
of grated cheeses. The preparation of the samples in some works was carried out through the grating
process, although the aim was to classify the different varieties of cheeses, like Swiss [55] or Emmental
cheese [56]. For the latter, it has been tried unsuccessfully to find the “rind-taste” off-flavor [57]; in
this case, the lack of positive results could be due to non-volatile compounds that change only the
taste but not the aroma. As regards PR, cheese aroma authenticity and rind percentage recognition
have been achieved with an electronic nose equipped with SnO2 and ZnO sensors made at SENSOR
Laboratory of University of Brescia [58]. In this case, the tool was also able to distinguish samples with
little differences in terms of rind percentage, such as 18% and 19%. However, unlike this study, only
one type of ripening was considered (12-months) and the different working processes were not taken
into consideration. Finally, the comparison with this study allows for the assessment of the utility of
S3 for fraud detection, since the results point in the same direction.

4. Conclusions

This study aimed at verifying the possible distinction between grated PR with different rind
percentages with an electronic nose, taking into account two other variables: seasoning degree and
working processes of rind. In parallel, a consolidated technique, i.e., SPME GC-MS, has been used
to understand which VOCs characterized analyzed samples. This combined analysis has produced
promising results that pave the way to assess cheese quality and avoid frauds.

First of all, with GC-MS, the VOCs that characterize grated cheeses have been individuated.
The results concerning PR are compliant with those found in the literature. Indeed, fatty acids that
describe the aroma and taste profile of PR have been found in greater quantity for 24-months seasoned
samples as compared to 12-months ones. In addition, VOCs, whose amount is bigger in rind compared
to pulp, were found and they are acquiescent with chemical reactions that take place in this product.

The multivariate statistical analysis made with PLS indicated how to proceed during the classification
stage. A hierarchical approach was used, both for PLS-DA and ANNs. ANNs classification rates are
the highest, suggesting that in future they could be improved to increase their performances. These first
results are encouraging, and further research is in progress to add more samples and to acquire greater
statistical significance for the achieved results.
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