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Leptospirosis is considered one of the most important zoonosis worldwide. The

activation of the Complement System is important to control dissemination of several

pathogens in the host. Only a few studies have employed murine models to investigate

leptospiral infection and our aim in this work was to investigate the role of murine C5

during in vivo infection, comparing wild type C57BL/6 (B6 C5+/+) and congenic C57BL/6

(B6 C5−/−, C5 deficient) mice during the first days of infection. All animals from both

groups survived for at least 8 days post-infection with pathogenic Leptospira interrogans

serovar Kennewicki strain Fromm (LPF). At the third day of infection, we observed greater

numbers of LPF in the liver of B6 C5−/− mice when compared to B6 C5+/+ mice. Later,

on the sixth day of infection, the LPF population fell to undetectable levels in the livers

of both groups of mice. On the third day, the inflammatory score was higher in the liver

of B6 C5+/+ mice than in B6 C5−/− mice, and returned to normal on the sixth day

of infection in both groups. No significant histopathological differences were observed

in the lung, kidney and spleen from both infected B6 C5+/+ than B6 C5−/− mice.

Likewise, the total number of circulating leukocytes was not affected by the absence of

C5. The liver levels of IL-10 on the sixth day of infection was lower in the absence of C5

when compared to wild type mice. No significant differences were observed in the levels

of several inflammatory cytokines when B6 C5+/+ and B6 C5−/− were compared. In

conclusion, C5 may contribute to the direct killing of LPF in the first days of infection

in C57BL/6 mice. On the other hand, other effector immune mechanisms probably

compensate Complement impairment since the mice survival was not affected by the

absence of C5 and its activated fragments, at least in the early stage of this infection.
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INTRODUCTION

Leptospirosis is an emerging disease worldwide which affects
approximately one million patients each year (Costa et al., 2015),
mainly in developing countries with tropical and subtropical
climates and underdeveloped waste and sewage management
systems. For some patients, this disease can be asymptomatic,
while others may present symptoms ranging from a mild
infection to the development of fever, jaundice, liver and kidney
failure and lung hemorrhage, resulting in fatality rates higher
than 5–10% (Torgerson et al., 2015). Infection results from
the contact of injured skin or mucosa with soil and/or water
contaminated with leptospires released by the urine of infected
animals (Ko et al., 2009). Rodents are considered asymptomatic
to this pathogen and they represent the main transmission source
especially in urban centers (Adler, 2015).

Since Leptospira spp. is considered an extracellular pathogen,
the activation of the Complement System (CS), phagocytosis
and production of specific antibodies play an important role in
controlling this infection (reviewed by Fraga et al., 2016). The
CS is necessary to control proliferation and dissemination of
several microorganisms in the host which is clearly confirmed by
the higher susceptibility to infections observed in C5 deficient
patients (Aguilar-Ramirez et al., 2009) or in patients deficient
of other CS proteins (Macedo and Isaac, 2016). CS can be
activated by the Classic, Alternative and/or Lectin Pathways, and
all three converge to a common terminal activation pathway
which leads to lysis caused by the formation of the membrane
attack complex (MAC) on the microorganism surface. The
terminal pathway depends on the formation of C5 convertase
enzymes which cleave C5 in two fragments. C5a, the smaller
fragment, is an important anaphylatoxin involved in mast cell
and basophil degranulation which releases histamine and other
inflammatory mediators like prostaglandins and leukotrienes
(Guo andWard, 2005). C5a is also a well-known chemoattractant
factor for neutrophils, monocytes and eosinophils during acute
inflammation. C5b, the larger fragment, is the first to participate
in MAC (C5b6789n) formation (Podack et al., 1984; Serna et al.,
2016). Besides contributing to control systemic or local infection,
the inflammatory properties observed during C5 activation and
the participation of receptors such as C5aR1 may be responsible
for local tissue damage (Ward, 2010). The ability to induce
cellular lysis and the synergistic interactions with other immune

mechanisms highlight the importance of the CS in mounting a
robust immune response.

Nonpathogenic leptospires are rapidly killed in vitro after CS
activation while pathogenic species such as Leptospira interrogans
serovar Kennewicki strain Fromm (LPF) are resistant. LPF
immune evasion mechanisms include: (i) binding to host CS
regulatory proteins Factor H (Meri et al., 2005), C4b binding
protein (Barbosa et al., 2009, 2010; Breda et al., 2015) and
vitronectin (da Silva et al., 2015); (ii) binding to host proteases
such as plasminogen (Vieira et al., 2010, 2011; Castiblanco-
Valencia et al., 2016) which once converted to its active form,
plasmin, may cleave CS proteins; and (iii) secretion of leptospiral
proteases that cleave Complement proteins (Fraga et al., 2014;
Amamura et al., 2017).

Even though mice are considered asymptomatic to Leptospira
infection, the possibility of using congenic mouse models allows
researchers to investigate in more depth important questions
related to the pathophysiology of the immune responses. In
addition, mice are considered good models to study sub-
lethal infection and chronic colonization often observed in
leptospirosis patients (reviewed by Gomes-Solecki et al., 2017).
To date, only one study has investigated the importance of
the CS during infection by Leptospira spp. in a murine model.
Ferrer et al. (2014) studied the relevance of decay accelerating
factor (DAF, CD55) at 14 and 90 days after infection. DAF is
an important regulatory membrane protein that protects host
cells from autologous CS activation by binding to membrane-
bound C3b and inhibiting the formation and accelerating the
decay of C3-convertases and C5-convertases (Nicholson-Weller
et al., 1981, 1983). However, differently from other regulatory
proteins like Factor H and Factor I, DAF does not modulate
serum levels of C3 and is not related directly to the elimination
of microorganisms. Ferrer et al. (2014) observed that C57BL/6J
Daf l−/− mice infected with L. interrogans serovar Copenhageni
presented higher numbers of leptospires in the kidney 14 days
post-infection when compared to wild type mice and the lack
of DAF was associated with chronic nephritis and renal fibrosis.
These symptoms are probably related to persistent injury caused
by uncontrolled CS activation on proximal renal tubules.

To evaluate the importance of the component C5 in the
control of in vivo leptospiral infection, we infected C57BL/6 (B6)
wild type (B6 C5+/+) and congenic C57BL/6 C5 deficient mice
(B6 C5−/−) with pathogenic L. interrogans serovar Kennewick
type Pomona Fromm and analyzed several aspects of the immune
response during the first days of infection.

MATERIALS AND METHODS

Leptospira Cultures
Pathogenic L. interrogans serovar Kennewicki, strain Pomona
Fromm (LPF) and saprophytic L. biflexa strain Patoc I (Patoc)
were obtained from the Laboratory of Bacterial Zoonosis at
the Faculty of Veterinary Medicine and Animal Science of the
University of São Paulo. Leptospires were kept under aerobic
conditions at 29◦C for 5–7 days in Ellinghausen McCullough
Johnson and Harris culture medium (EMJH) supplemented with
10% inactivated rabbit serum, L-asparagine (0.015%), sodium
pyruvate (0.001%), calcium chloride (0.001%), magnesium
chloride (0.001%), peptone (0.03%), and meat extract (0.02%).

Mice Infection With LPF
We used C57BL/6 C5 normal (B6 C5+/+) mice and the
corresponding congenic C57BL/6 C5 deficient (B6 C5−/−)
strain, generated in our laboratory (Bavia et al., 2014). We
also included another C5 deficient (A/J) mouse strain to
evaluate the survival during LPF infection. All mice were 4–5
weeks old males obtained from the Animal Facility of the
Department of Immunology, Institute of Biomedical Sciences
from the University of São Paulo. Male mice were used to avoid
interference by sexual hormones and since they present higher
levels of Complement System activity and higher serum levels of
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C6 and C9 from the terminal pathway (Kotimaa et al., 2016).
Mice were intraperitoneally infected with 1.5 × 108 LPF in
phosphate buffered saline pH 7.4 (PBS) and euthanized on the
third or sixth days after infection. Control groups were inoculated
with sterile PBS and euthanized 6 days post inoculation. We
selected these days of infection based on previous work (da
Silva et al., 2012). Mice were previously anesthetized with
ketamine and xylazine (100 and 10 mg/kg, respectively) before
manipulation. Hamsters, a susceptible experimental animal, were
used to confirm the virulence by infecting them with LPF
culture. Three to five days post-inoculation of LPF, infected
hamster presented jaundice, photo sensibility, uveitis, weight
loss and prostration. This work was carried out as approved by
the Ethics Committee on Animal Experimentation (Certificate
061/10/CEEA). The number of mice used in each experiment is
indicated in each figure legend.

DNA Extraction From Liver and Leptospira

DNA Quantification by qPCR
Total DNA was extracted from 20 to 25mg of liver from
LPF-infected or control (PBS) mice using the Illustra Tissue
& Cells Genomic Prep Mini Spin kit (GE Healthcare, Little
Chalfont, Buckinghamshire, UK) following the manufacturer’s
instructions. DNA concentration and purity were measured
using a Nanodrop nd-1000 spectrophotometer (Thermo Fisher
Scientific).

To determine the leptospiral load in the liver from infected
mice, we employed quantitative PCR (qPCR) using 96 well
microtiter plates (Life Technologies). A concentration of liver
DNAwas adjusted to 50 ng/µL. The standard curve was prepared
using DNA extracted from 10-fold dilutions from 108 to 101

heat-killed L. interrogans. We used 1 µL for the standard
curve or of samples followed by 20 pmol/µL of both primers
complementary to the Leptospira 16S rRNA gene (forward
primer: 5′-TAGTGAACGGGATAGATAC-3′; reverse primer 5′-
GGTCTACTT AATCCGTTAGG-3′) and 10 µL SYBR Green
master mix (Life Technologies) in a final volume of 20 µL.
Samples were amplified in a thermocycler Step One Plus Real-
Time PCR System (Applied Biosystems, Foster City, CA, USA)
with the following program: initial denaturation at 95◦C for
10min, followed by 40 cycles of 95◦C for 15 s, 60◦C for 1min,
followed by two cycles of 95◦C for 15 s and 60◦C for 1min, and a
final step at from 0.5 to 95◦ C (ramp) for 15 s.

Histopathological and Immunochemical
Analyses
Liver, kidney, lung and spleen samples were fixed in formalin
solution (3.7% formaldehyde in PBS pH 7.4). Microscopic
slides were prepared with 5µm tissue sections stained with
hematoxylin-eosin (HE). To quantify the histopathological
alterations in the liver, we considered the following criteria: (a)
sinusoidal hypercellularity and presence of leucocyte infiltrates;
(b) presence of mitotic cells; (c) hepatocyte destrabecullation; and
(d) cell necrosis. Liver sections with only one of the above criteria
were classified with a score of 1; with two of above criteria, given
a score of 2; with three criteria, a score of 3 and with all the above

criteria, a score of 4. To quantify the histopathological alterations
in the lung, we considered the following criteria: (a) presence of
nodular interstitial pneumonitis (IP) was classified with a score
of 1; (b) presence of diffuse IP was classified with a score of 2.
To quantify the histopathological alterations in the spleen, we
considered the following criteria: (a) presence of perifollicular
hyperplasia was classified with a score of 1; (b) presence of
central follicular hyperplasia was classified with a score of 2; (c)
presence of both perifollicular and central follicular hyperplasia
was classified with a score of 3.

Immunohistochemistry analyses were performed to assess the
presence of leptospiral antigens in the organs. Liver, kidney, lung
and spleen sections were deparaffinized and rehydrated. Tissue
sections were then incubated with Target Retrieval solution
(DAKO S1699) heated using a steamer to unmask antigen(s). The
presence of endogenous peroxidase was blocked by incubation
with 3% H2O2 for 20min at room temperature. Preparations
were then incubated for 18 h at 4◦C with rabbit polyclonal anti-
Leptospira antibodies diluted at 1:19.000 in PBS supplemented
with 0.1% BSA. After several washes with PBS, the tissue sections
were incubated with secondary EnVision + System HRP labeled
polymer anti-rabbit IgG (DAKO K 4002) for 30min at room
temperature. The slides were washed again and incubated with
the chromogen Diamino-benzidine (DAB, Sigma Chemical Co.
USA) in the presence of 2% H2O2 (10 vol.) for 5min. After this
procedure, the tissue sections were stained with hematoxylin.

Biochemical Assays
Hepatic damage was indirectly evaluated by measuring alanine
transaminase and aspartate transaminase (AST) (Bioclin
Quibasa, Belo Horizonte, MG, Brazil) serum concentrations,
while kidney function was evaluated by urea) and uric acid
(Bioclin Quibasa, Belo Horizonte, MG, Brazil) serum levels as
described by Bavia et al. (2014).

Blood Leukocyte Counting
Fresh blood samples were obtained from orbital venous plexus
with heparinized glass capillary tubes from anesthetized mice.
Samples were diluted in Türk solution (4.76mM acetic acid,
6.25µM methylene blue) and total peripheral blood leukocytes
were counted in a Neubauer chamber.

Cytokine Measurements
Liver levels of tumor necrosis factor (TNF)-α, interleukin
(IL)-1β, IL-6, IL-10, IL-12p40, and IL-12p70 were determined
by ELISA as described in Bavia et al. (2015). Serum levels
of IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1),
interferon-γ (IFN-γ), TNF-α, and IL-12p70 were determined
using the Inflammation CBA kit (BD Bioscience, Franklin Lakes,
New Jersey, United States), according to the manufacturer’s
instructions. Data acquisition was performed using a FACSCanto
II flow cytometer and data analysis was performed using FCAP
ArrayTM v3.0.1 Software (both from BD Bioscience, Franklin
Lakes, New Jersey, United States).
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Leptospires Killing Assay
LPF and Patoc cultures were centrifuged at 2,800 × g at 21◦C
for 20min, resuspended in PBS and counted in a Petroff-Hausser
chamber. A total of 1 x 108 leptospires was incubated for 2 h at
37◦C with B6 C5+/+ or B6 C5−/− serum (40% serum and 60%
PBS, 200µL). Normal human serum (NHS) was used as a positive
control (Barbosa et al., 2009). Viable bacteria were counted using
dark-field microscopy. To inactivate the CS in mice or human
serum, they were previously heated at 56◦C/30min. The number
of viable leptospires incubated with heat-inactivated serum was
considered 100% survival.

Statistical Analysis
Leptospire killing assay was plotted considering the mean and
standard deviation and analyzed by Mann-Whitney test. The
other results were plotted with the mean and standard error for
each group and submitted to ANOVA two-way with Tukey post-
test. All analyses considered a significance level of at least 95%
(p < 0.05).

RESULTS

LPF Is Detected Mainly in the Liver in the
Early Days of Infection
On the third day post-infection, C5 deficient mice (B6
C5−/−) were observed to carry a higher number of LPF
in the liver when compared to C5-sufficient mice (B6
C5+/+). However, on the sixth day post-infection, the presence
of LPF was undetectable in both mice strains by qPCR
(Figure 1). The presence of LPF antigens in the liver was
also investigated by immunohistochemical analysis, but no
differences were observed between B6 C5+/+ or B6 C5−/− mice
(Supplementary Figure 1). The survival of LPF infected mice
was independent of C5 since all B6 C5+/+ and B6 C5−/− mice
survived when monitored up to eight days of infection with LPF.
In addition, we used another C5 deficient mouse strain (A/J) with
103, 105, 107, and 109 LPF (minimal of 5mice for each inoculum).
Again, all mice survived up to 21 days of infection.

C5 Triggers More Inflammation in the Liver
During Early Infection With LPF
Since C5a and its receptor C5aR1 are clearly associated with
liver inflammation, tissue injury and regeneration (Strey et al.,
2003; Markiewski et al., 2004, 2009), we compared livers from
LPF-infected B6 C5+/+ and B6 C5−/− mice. As illustrated
in Figure 2A, leukocyte infiltration was observed on the third
and sixth days of infection around the portal spaces and
within the hepatic sinusoids. This infiltration was composed
mainly of mononuclear cells and was more evident in the
presence of C5 on the third day of infection. Mitotic cells
were also present in B6 C5+/+ mice on the third and sixth
day, while in B6 C5−/− mitotic cells were found only on the
sixth day. These observations suggest an intense inflammatory
response accompanied by hepatocellular lesions by hepatocyte
proliferation primarily in B6 C5+/+ mice (Figure 2A). These
hepatic changes were significantly more intense in B6 C5+/+

mice than in B6 C5−/− on the third day of infection. On the sixth

FIGURE 1 | Acute infection with leptospires in C5 deficient mice. Relative

number of leptospires in mouse liver was quantified by qPCR. Infected B6

C5+/+ and B6 C5−/− mice were euthanized after 3 and 6 days post-infection.

Liver DNA was extracted and the relative number of leptospires was

determined by qPCR after amplification of 16S rRNA gene. un: undetectable.

day of infection, C5 deficient mice continued to present fewer
lesions than B6 C5+/+ mice but no significant differences in
the scores were observed between them (Figure 2B). To monitor
liver damage, levels of ALT and AST enzymes were determined
in the serum and no significant differences were observed in B6
C5−/− and B6 C5+/+ mice (Supplementary Figure 2).

Lung and Kidney of LPF Infected Mice
During human leptospirosis, lung and kidney may also be
affected (Ko et al., 2009). Although LPF antigens were practically
undetectable by immunohistochemical analysis in lung and
kidney of both B6 C5−/− and B6 C5+/+ mice on the third
and sixth days post-infection (data not shown), in our model,
LPF provoked lesions in lung, characterized by thickening
of the alveolar septa accompanied by lymphocyte infiltration
(Supplementary Figure 3A).However, no significant differences
were observed between B6 C5+/+ and B6 C5−/− infected
mice (Supplementary Figure 3B). Moreover, no lesions were
observed in the kidneys of B6 C5+/+ and B6 C5−/− LPF
infected mice (Supplementary Figure 4A). In addition, the
serum concentrations of urea and uric acid were measured and
both were altered at the sixth day of infection. However, these
differences were not C5 dependent (Supplementary Figure 4B).

Blood Leukocyte Analysis
The total number of circulating leukocytes was determined in
the blood of both B6 C5+/+ and B6 C5−/− mice infected and
non-infected with LPF. This number significantly decreased on
the sixth day when compared to the third day of infection in
both mouse strains infected with LPF (Figure 3). No significant
difference could be attributed to the presence of C5 either on the
third or the sixth days of infection.
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FIGURE 2 | Liver histopathological analyses in LPF infected mice. Mice were inoculated i/p with 1.5 × 108 LPF or only PBS and then euthanized on the third or the

sixth day post-infection (n ≥ 5). (A) Liver sections (3–5µm) were stained with (HE) and evaluated at 200x magnification. Arrowheads indicate leukocyte infiltrates in the

portal space and in the hepatic sinusoids. Asterisks indicate mitotic cells. Inset: mitotic cells in larger magnification. (B) Total scores of hepatic lesions. The significant

difference (p < 0.05) is represented by *when B6 C5+/+ were compared to B6 C5−/− mice.
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FIGURE 3 | Circulating leukocytes in LPF infected mice. Mice were inoculated

i/p with 1.5 × 108 LPF (n ≥ 5) and the total number of leukocytes was

determined after 3 and 6 days post-infection using a hemocytometer chamber.

b represents significant difference between the third and sixth days of infection.

Spleen Modifications During LPF Infection
Both mouse strains developed similar splenomegaly during
infection by LPF (Figure 4A). Histopathological analysis
indicated that white pulp is expanded after inoculation of LPF,
followed by clonal expansion of lymphocytes (Figures 4B,C). On
the third day of infection, we observed increased perifolicular
activity, indicative of B lymphocyte proliferation. On the sixth
day of infection T cell expansion in the centrofolicular region
(periarteriolar lymphoid sheath) is more evident. However,
no significant differences in the spleen parenchyma could be
observed between B6 C5+/+ and B6 C5−/− infected mice
(Figures 4B,C). The presence of LPF antigens was observed
in the spleen of all infected mice (Figure 4D), however no
significant differences were observed in this organ at the third
and sixth days of infection when B6 C5+/+ and B6 C5−/− strains
were compared.

Liver and Blood Cytokine Levels
In spite of a more intense inflammatory response observed in
the presence of C5, no significant changes in the concentration
of cytokines in the liver of infected mice were observed
in B6 C5+/+ mice when compared to B6 C5−/− mice
(Supplementary Figure 5). The hepatic levels of TNF, IL-6, IL-
1β, and IL-12p70 did not change significantly upon infection
(Supplementary Figures 5A,B,D,F). B6 C5−/− mice inoculated
with PBS presented a higher concentration of liver IL-12p40 than
B6 C5+/+. On the other hand, B6 C5−/− mice presented a lower
concentration of liver IL-12p40 on the sixth day of infection when
compared with PBS-treatedmice (Supplementary Figure 5E). In
the absence of C5, a tendency to lower IL-10 levels were observed
on the sixth day of infection (p = 0.055) when compared to
B6 C5+/+ mice (Supplementary Figure 5C) at the same time.
Blood levels of TNF-α, IFN-γ, and IL-6 were not significantly
affected by LPF infection (Supplementary Figures 5G–I). The
concentrations of MCP-1 (CCL2), IL-10, and IL-12p70 in
the serum from both B6 C5+/+ and B6 C5+/+ mice were

below detectable levels on the third and the sixth days
post-infection.

LPF Is Resistant to CS Mediated Killing by
Murine Serum
To investigate the possible role of C5 in murine resistance to LPF
infection, cultures of this pathogenic leptospire were incubated
in vitro with 40% serum from B6 C5+/+, B6 C5−/− mice, or 40%
NHS. Since non-pathogenic L. biflexa sorovar Patoc strain Patoc
is CS-sensitive and is rapidly killed in vitro in the presence of
NHS (Barbosa et al., 2009), it was included as a positive control.
As a negative control, leptospires were also incubated with heat-
inactivated serum from B6 C5+/+ mice for 2 h before counting
the number of viable cells. The number of viable leptospires
in the presence of heat-inactivated serum from B6 C5+/+ mice
was considered 100%. Figure 5 shows that while non-pathogenic
leptospires L. biflexa survives only in C5 deficient mouse serum,
LPF is resistant to in vitro lysis mediated by MAC formed in the
presence of NHS or serum from both B6 C5+/+ and B6 C5−/−

mice strains.

DISCUSSION

One of the first studies of the innate immune response against
leptospires pointed to the importance of Toll like receptors (TLR)
TLR-2 and TLR-4 to recognize leptospiral pathogen patterns
when it was observed that TLR-2 and TLR-4 knockouts rapidly
die when infected with this bacterium (Werts et al., 2001). In
addition, the role of specific antibodies to control this infection
has been studied by several groups (Adler and Faine, 1976;
Chassin et al., 2009). (Kobayashi, 2001) observed that guinea pigs,
highly susceptible to Leptospira, are protected by administering
immune serum from convalescent leptospirosis patients. This
pointed to the importance of B lymphocytes and antibodies to
the acquired immune response in this case.

Since rodents are in general considered resistant to Leptospira,
we decided to use a murine model to explore the in vivo
importance of C5 in the first days of infection comparing
several parameters in B6 C5+/+ and B6 C5−/− mice. All
animals (male; 4–6 weeks old) survived at least up to 8 days
of infection with 1.5 × 108 LPF. Similar results were observed
when we infected another C5 deficient (A/J) mouse strain with
the same inoculum. Different results were observed by Ratet
et al. (2014) when they infected 7–10 weeks old female wild
type C57BL/6J mice with 108 pathogenic L. interrogans serovar
Manilae. They reported that all animals developed septicemia
which led to death on the third day of infection, indicating that
even though mice are considered resistant to leptospires, they
can be more or less vulnerable to this infection depending on
the combination of Leptospira serovar pathogenicity and animal
characteristics.

In our model, on the third day of infection we detected a
higher LPF number in the liver of infected B6 C5−/− mice
when compared to the wild type group, indicating that the CS
is important to limit bacterial proliferation during the early
days of infection. Since the LPF load in liver is controlled on
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FIGURE 4 | Spleen alterations during LPF infection. Mice were inoculated i/p with 1.5 × 108 LPF or only PBS and then euthanized on the third or sixth day

post-infection (n ≥ 5). (A) Splenomegaly was expressed as percentage of spleen mass to the total body mass. (B) Score of morphological alterations. (C) Spleen

sections stained with HE. (D) Immunochemical analysis using anti-leptospiral antibodies. Arrows indicate the presence of LPF antigen.

the sixth day in both B6 C5−/− and B6 C5+/+ mice, other
participants of the innate immune response are acting together.
Phagocytic cells such as Kupffer cells could limit the spread
of this pathogen in this organ, through Complement receptors
(CR) such as CR1, CR3, CR4 (Hinglais et al., 1989), and CRIg
(Helmy et al., 2006). It is likely that the release of activated
fragments C3b and iC3b, the most important CS opsonins,

are generated equally by B6 C5+/+ and B6 C5−/− mice after
activation of the Alternative or Lectin Pathways. This result
could also suggest that LPF could be somehow refractory to
lysis by MAC. In agreement with this hypothesis, da Silva
et al. (2015) demonstrated that LPF is able to bind to human
vitronectin, a soluble regulatory protein that binds to C5b67
(Podack et al., 1984; Singh et al., 2010), and consequently
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FIGURE 5 | Percentage of viable LPF after in vitro incubation with mouse or

human serum. 1 × 108 LPF (pathogenic) or non-pathogenic L. biflexa sorovar

Patoc strain Patoc were incubated for 2 h in 40% of B6 C5+/+, B6

C5−/−mice serum or normal human serum (NHS) used here as positive

control. The number of viable leptospires was counted using dark-field

microscopy. The percentage of viable leptospires in the presence of serum

was calculated considering respectively heat-inactivated B6 C5+/+ mice

serum, heat-inactivated B6 C5−/− mice serum or heat-inactivated NHS

considered 100% survival (negative controls). *indicates p < 0.05.

inhibits surface MAC formation. It is worth remembering
that leptospiral ligands such as LigA, LigB, and LcpA, present
exclusively on the surface of pathogenic leptospires, are capable
of binding to host Factor H and C4BP to control CS activation
on their surface (Castiblanco-Valencia et al., 2012; da Silva
et al., 2015). Considering that non-pathogenic leptospires
L. biflexa survived when incubated in vitro with serum from
C5 deficient mice, they could possibly survive during infection
in vivo in these animals. However, this question remains to
be investigated, since other components of innate immunity
should contribute to the elimination of this spirochete in the
host.

Although the survival of mice was independent of the
presence of C5, hepatic lesions were observed on the third and
sixth days of infection in higher score in the liver of wild type
mice, suggesting that the presence of C5 and its fragments leads
to a local inflammatory response. Likewise, an increase in the
number of Kupffer cells in the sinusoids and leukocyte infiltrates
in the liver was observed as previously reported (Chassin et al.,
2009; da Silva et al., 2012). In addition, other lesions such as areas
of hepatocyte necrosis and destrabecullation were also observed,
although at a lower frequency.

Using C3H/HeJ mice, Chen et al. (2017) concluded that
macrophages are the main phagocytic cells (predominating over
neutrophils) during infection with L. interrogans strain Lai.
However, neutrophils may also help to control this infection
by releasing extracellular traps (NETs) when in contact with
L. interrogans serovar Copenhageni strain Fiocruz L1-130
leading to leptospiral killing (Scharrig et al., 2015). When
neutrophils were depleted in vivo after use of monoclonal
antibody mAb1A8, the number of L. interrogans increased
in the liver on the third day of infection and in the kidney
after 14 days of infection, indicating that neutrophils are
important in the early days of infection to control leptospirosis.
Neutropenia was observed in other study by Stefos et al. (2005)

during murine infections with L. interrogans. In contrast, in
human leptospirosis, the total number of polymorphonuclear
neutrophils increases in the first days post-infection
(Raffray et al., 2016).

Increased numbers of circulating monocytes have been
observed in cases of sepsis in hospitalized leptospirosis patients
(Hoser et al., 2012). Leptospires are able to infect human and
murine macrophages (Merien et al., 1997) and once internalized,
the bacteria may trigger changes in host cell gene expression,
leading to apoptosis (Merien et al., 1997; Hu et al., 2013;
Xue et al., 2013). The gene expression alterations observed
in macrophages from leptospires-infected organisms might
also occur in monocytes present in the peripheral circulation,
suggesting that programmed cell death may also be occurring in
this cell type (Jin et al., 2009; Xue et al., 2013).

C5 protein is important for the activity of different cell types,
including lymphocytes, and its absence is responsible for lower
lytic activity of T CD8+ lymphocytes and reduced cytokine
synthesis by T CD4+ lymphocytes in different experimental
models (Kim et al., 2004; Moulton et al., 2007; Strainic et al.,
2008). The interaction of C5a with its receptors present on
T CD4+ lymphocytes provides the survival stimuli for these
cells in vitro (Strainic et al., 2008). Although there are no
studies that show the participation of C5 in the viability of T
CD8+ lymphocytes, the activation of these cells is facilitated
in the presence of C5a (Strainic et al., 2008). In the case
of C5 deficient mice, the lack of C5 may have reduced the
stimulation that T CD8+ lymphocytes receive to survive and
proliferate, resulting in fewer cells in the circulation (Strainic
et al., 2008). It has also been shown that the stimulation of T
lymphocytes in the presence of C5a reduces the percentage of
apoptotic cells and the C5a-C5aR axis stimulates cell expansion
(Lalli et al., 2008). The spleen of both C5-deficient and wild-
type mouse strains were shown to be a site of much cellular
activity during infection. The spleen acts as an active organ
in the elimination of circulating leptospires and traces of LPF
antigen were found mainly in the red pulp, where macrophages
reside.

Finally, it was not possible to observe renal lesions or detect
leptospires in the kidneys of the mice in our experimental model
through histological and imunochemical analysis. Although the
immunohistochemical analysis did not indicate the presence of
LPF in the kidneys, the use of more sensitive methods like
qPCR would have been better indicated to compare if this
leptospiral load would be significantly higher in the absence of
C5. Even so, the bacterial load would have been much lower
than that observed in the liver. The pathogenesis of acute
kidney injury in leptospirosis is the direct nephrotoxic action
of the leptospira infection and toxins release, but hemodynamic
alteration, jaundice, and rhabdomyolysis (a disruption of skeletal
muscle integrity) are also associated (Daher Ede et al., 2010;
Abreu et al., 2017). Taking together the biochemical assay results
regarding the elevation of AST only in C5−/− mice on the
third day post infection and uric acid in both mice on the
sixth day post infection, we can suggest that the infection may
be inducing rhabdomyolysis in a manner independent of C5.
Although the kidney is an important organ for infection because
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it is a site where leptospires are fixed and later eliminated
with the urine, apparently LPF was not able to colonize this
organ in the first week of infection. It is possible that the
serovar used in our laboratory requires longer periods of time to
reach the kidney. Chassin et al. (2009) also observed relatively
low leptospiral load on the third day of infection in the
kidney and lung from wild type C57Bl/6J mice infected with
pathogenic L. interrogans serovar Copenhageni strain Fiocruz
LI-130.

Our results suggest that C5 may play a role in the direct
killing of LPF only up to the third day of infection in vivo.
Considering the inflammatory properties of the C5a fragment,
the presence of C5 is associated with tissue lesions observed
in the liver of mice infected with L. interrogans. However, this
variation did not significantly alter the ability of mice to control
infection caused by LPF, suggesting a minor role for C5 in this
infection model. The possibility that C3b/iC3b opsonins play a
more important role than the MAC (C5b-9n) or the fragment
C5a to control leptospiral murine infection remains to be further
investigated.
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Supplementary Figure 1 | Immunohistochemical analysis of liver from infected

mice. Mice were inoculated i/p with 1.5 × 108 LPF or PBS and then euthanized

on the third or the sixth day, when the liver was collected for LPF antigen analysis

(n ≥ 5). The arrows indicate the presence of labeled LPF antigens.

Supplementary Figure 2 | Serum concentrations of hepatic ALT (A) and AST (B)

enzymes in infected mice. Mice were inoculated i/p with 1.5 × 108 LPF or PBS

and then euthanized on the third or the sixth day, when the blood was collected

for analysis (n ≥ 5). ALT and AST were used as indicators of liver damage. The

significant differences (p < 0.05) are represented as follows: bvs. third day and
cvs. B6 C5+/+.

Supplementary Figure 3 | Histopathological analysis of lung from infected mice.

Mice were inoculated i/p with 1.5 × 108 LPF or PBS and then euthanized on the

third or the sixth day, when the lung was collected for histopathological analysis

(n ≥ 5). (A) The liver sections (3–5 micrometers) were stained with HE and

evaluated at 200x magnification. (B) Scores of histopathological alterations.

Supplementary Figure 4 | Histopathological analysis of kidney from LPF infected

mice. Mice were inoculated i/p with 1.5 × 108 LPF or PBS and then euthanized

on the third or the sixth days, when the kidney was collected for histopathological

analysis (n ≥ 5). (A) The kidney sections (3–5 micrometers) were stained with HE,

200x magnification. (B) Serum levels of urea and uric acid. The significant

differences (p < 0.05) are represented as follows: avs. PBS; bvs.

third day.

Supplementary Figure 5 | Concentrations of pro- and anti-inflammatory

cytokines during infection by LPF. B6 C5+/+ and B6 C5−/− mice were inoculated

i/p with 1.5 × 108 LPF or PBS and then euthanized on the third or the sixth day,

when the liver was collected and prepared for cytokine concentration

determination (n ≥ 5). Liver cells were disrupted and treated with protease

inhibitors. The concentration of several cytokines (A–F) was analyzed in the liver

extracts by ELISA (normalized with respect to total protein) or in the serum of

infected mice (n ≥ 3) by CBA (G–I). un: undetected. The significant differences

(p < 0.05) are represented as follows: avs. PBS; cB6 C5+/+vs. B6 C5−/−.
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