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Abstract

In this article, we have studied the flow and heat transfer in Sisko fluid with convective boundary condition over a non-
isothermal stretching sheet. The flow is influenced by non-linearly stretching sheet in the presence of a uniform transverse
magnetic field. The partial differential equations governing the problem have been reduced by similarity transformations
into the ordinary differential equations. The transformed coupled ordinary differential equations are then solved analytically
by using the homotopy analysis method (HAM) and numerically by the shooting method. Effects of different parameters like
power-law index n, magnetic parameter M , stretching parameter s, generalized Prandtl number Pr and generalized Biot
number c are presented graphically. It is found that temperature profile increases with the increasing value of M and c
whereas it decreases for Pr. Numerical values of the skin-friction coefficient and local Nusselt number are tabulated at
various physical situations. In addition, a comparison between the HAM and exact solutions is also made as a special case
and excellent agreement between results enhance a confidence in the HAM results.
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Introduction

Because of the occurrence in a variety of engineering operations

the boundary layer flow and heat transfer over a stretching surface

has gained much importance. A few applications in the field of

chemical engineering and metallurgy include extrusion of poly-

mers, production of paper and so forth. The final product’s quality

massively depends on heat transfer rate between the fluid and

stretching surface during the operation of heating and/or cooling.

Consequently, most suitable heating and/or cooling fluid must be

chosen as it has immense influence on the heat transfer rate. The

physical importance of heat transfer over a moving surface has

compelled many researchers to report their findings on this topic

[1–10].

The convective heat transfer is of excessive significance in

procedures in which high temperatures are involved. For instance,

gas turbines, nuclear plants, storage of thermal energy etc.

Referring to numerous industrial and engineering processes the

convective boundary conditions are more practical including

material drying, transpiration cooling process etc. Due to the

practical importance of convective boundary conditions several

researchers have studied and reported results on this topic for

viscous fluid. Bataller [11] investigated the Blasius and Sakiadis

flows in a viscous fluid with convective boundary conditions. The

heat transfer of a viscous fluid over a stretching/shrinking sheet

with convective boundary conditions has been studied by Yao et
al. [12]. Hammad et al. [13] discussed the radiation effects and

effects of the thermal convective boundary condition, variable

viscosity and thermal conductivity on coupled heat and mass

transfer with mixed convection. Vajravelu et al. [14] presented

solution to the unsteady convective boundary layer flow of a

viscous fluid over a vertical stretching surface with thermal

radiation.

On the other hand, the study of non-Newtonian fluids including

Generalized Newtonian Liquid (abbreviated as GNL) with heat

transfer has gained extensive importance due to a number of

industrial applications such as molten plastic, polymer solutions,

pulp and foods etc. At the same time, heat transfer in non-

Newtonian fluids with convective boundary conditions has been

dealt by a few researchers. The three-dimensional flow of a Jeffrey

fluid over a stretching surface with convective boundary conditions

has been examined by Hayat et al. [15]. In another paper, the flow

and heat transfer in an upper-convected Maxwell fluid over a

moving surface in the presence of a free stream velocity with

convective boundary conditions is studied by Hayat et al. [16].

The steady flow and heat transfer in an Eyring Powell fluid over a

plate moving continuously concerning convective boundary

conditions is also examined by Hayat et al. [17]. Srinivas et al.
[18] examined the influence of chemical reaction and Soret effects

on hydromagnetic viscous pulsating flow in a porous channel with

convective boundary conditions. Makinde [19] analyzed the

thermal stability of viscous fluid flowing steadily through a channel

filled with the saturated porous medium. The Sisko model [20,21]

a special case of GNL which predicts dilatant and pseudoplastic

nature of fluid is not given due attention. It is worth pointing out

that a few recent investigations on flow of Sisko fluid with heat

transfer have been studied by Khan and Farooq [22] and Khan et
al. [23,24].

However we can notice that the Sisko fluid with heat transfer

analysis specially with an emphasis of convective boundary
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conditions is less explored. In the work under consideration we

explored the flow and heat transfer in Sisko fluid over a

nonlinearly stretching surface with convective boundary condition.

It is hoped that present work serves as stimulus for the shear

thinning and thickening fluid flows in the areas where high rate of

heat transfer or rate of cooling is required such as extrusion

processes, glass fiber and storage of thermal energy.

Mathematical Formulation

Flow equations
Let us consider steady, laminar and incompressible flow of Sisko

fluid over an isothermal flat sheet (as shown in figure 1). The sheet

is stretching with velocity U(x)~cxs, where c and s are non-

negative real numbers and the velocity for two-dimensional flow is

assumed of the form V~½u(x, y), v(x, y), 0�, where (x, y) denotes

the Cartesian coordinates. A uniform transverse magnetic field

B~½0, B0, 0� is applied under the assumption of very small

magnetic Reynolds number. The governing equations for two-

dimensional boundary layer flow are (see ref. [20] for details)

Lu

Lx
z

Lv

Ly
~0, ð1Þ

u
Lu

Lx
zv

Lu

Ly
~

a

r

L2u

Ly2
{

b

r

L
Ly

{
Lu

Ly

� �n

{
sB2

0

r
u, ð2Þ

where a, b and n (§0) are the material constants, s the electrical

conductivity of the fluid, r the fluid density, B0 the magnitude of

applied magnetic field.

The flow is subject to the following boundary conditions

u x, yð Þ~U~cxs, v(x, y)~0 at y~0, ð3Þ

u?0 as y??, ð4Þ

where u and v are the velocity components along x{ and y{

directions, respectively.

Introducing the transformations [20] as

g~
y

x
Re

1

nz1
b , y~UxRe

{
1

nz1
b f (g), ð5Þ

with

u x, yð Þ~Uf ’ gð Þ, ð6Þ

v x, yð Þ~{URe
{

1

nz1
b

1

nz1

s 2n{1ð Þz1f g f (g)z s 2{nð Þ{1f g gf 0 gð Þ½ �,

ð7Þ

where y is the Stokes stream function.

After simplification we reach at the following problem [20]

Af ’’’zn {f ’’ð Þn{1
f ’’’z

s 2n{1ð Þz1

nz1
ff ’’{s f ’ð Þ2{M2f ’~0, ð8Þ

Figure 1. Schematic diagram of the problem.
doi:10.1371/journal.pone.0107989.g001

Table 1. The convergence of the homotopy solutions when n~2, s~1=2, M~A~c~1 and Pr ~2 are fixed.

Order of approximation {
1

2
Re

1

nz1
b Cf {Re

{
1

nz1
b Nux

1 1.609750 0.463171

5 1.629799 0.448468

10 1.631518 0.451261

15 1.631523 0.450955

21 1.631523 0.450998

24 1.631523 0.450993

27 1.631523 0.450994

30 1.631523 0.450994

doi:10.1371/journal.pone.0107989.t001
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f 0ð Þ~0, f ’ 0ð Þ~1, f ’ ?ð Þ~0, ð9Þ

where

M2~
sB2

0

rU
x, A~

Re

2

nz1
b

Rea

, Rea~
rxU

a
andReb~

rxnU2{n

b
, ð10Þ

are the non-dimensional quantities.

The significant quantity of interest is the skin-friction Cf given

by [8]

1

2
Re

1

nz1
b Cf ~Af ’’ 0ð Þ{ {f ’’ 0ð Þ½ �n: ð11Þ

Figure 2. The velocity profiles f ’(g) for different values of the power-law index n when s~A~1=2, M~1 are fixed.
doi:10.1371/journal.pone.0107989.g002

Figure 3. The velocity profiles f ’(g) for different values of the magnetic parameter M when s~1=2 and A~1 are fixed.
doi:10.1371/journal.pone.0107989.g003
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Heat transfer analysis
The thermal energy equation after the application of usual

thermal boundary layer approximation in the absence of heat

source and dissipation with convective boundary condition at the

wall is given as

u
LT

Lx
zv

LT

Ly
~a

L2T

Ly2
, ð12Þ

k
LT(x, 0)

Ly
~{hf Tf {T(x, 0)

� �
, ð13Þ

T?T? as y??, ð14Þ

where T~T(x, y) is the temperature field, k the thermal

Figure 4. The temperature profiles h gð Þ for different values of the power-law index n when s~Pr~1=2, A~ª~1 and M~1 are fixed.
doi:10.1371/journal.pone.0107989.g004

Figure 5. The temperature profiles h gð Þ for different values of the magnetic parameter M when s~Pr~1=2, ª~1 and A~1 are fixed.
doi:10.1371/journal.pone.0107989.g005
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conductivity, a~
k

rcp

the thermal diffusivity, hf the heat transfer

parameter and T? the ambient temperature of the fluid.

We introduce the non-dimensional scaled temperature h as

h(g)~
T{T?

Tf {T?
: ð15Þ

Using Eqs. (5) and (15) Eq. (12) takes the form

h’’z
s 2n{1ð Þz1

nz1
Pr f h’~0, ð16Þ

and transformed boundary conditions are

h’(0)~{c 1{h 0ð Þ½ �, h(g)?0 as g??, ð17Þ

where prime denotes differentiation with respect to g,

Pr ~
xU

a
Re

{
2

nz1
b the generalized Prandtl number and

c~
hf

k
xRe

{
1

nz1
b the generalized Biot number.

The local Nusselt number Nux may be found in terms of the

dimensionless temperature at the wall surface, h’ 0ð Þ, that is

Re
{

1

nz1
b Nux~{h’ 0ð Þ, ð18Þ

with Nux~
xqw

k Tf {T?
� � with qw as the surface heat flux.

Solution Methodology

The homotopy analytic solution
The homotopy analysis method (HAM) is employed to solve

non-linear Eqs. (8) and (16) subject to the boundary conditions (9)

and (17) respectively. The analytic solutions are obtained for the

velocity and temperature fields. The convergence of these

solutions is ensured by taking the most suitable value of the

auxiliary parameter B which is calculated using the squared

residual error in each case of our calculations, where formula for

squared residual error is given by [25]

Ef , m~
1

Nz1

XN

j~0

Nf

Xm

i~0

fj iDgð Þ
 !" #2

: ð19Þ

Table 1 elucidates the convergence of series solution. It shows that

the convergence is achieved at 25th approximation in the

mentioned case. Further, the same criteria are adopted to achieve

the convergence in other cases.

Figure 6. The temperature profiles h gð Þ for different values of the stretching parameter s when M~ª~1, Pr~1=2 and A~1 are fixed.
doi:10.1371/journal.pone.0107989.g006
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Exact solutions for particular cases
Case (i). As a special case of the problem for n~0 and

s~1=2 Eqs. (8) and (16) reduce to

2Af ’’’zff ’’{ f ’ð Þ2{2M2f ’~0, ð20Þ

and

h’’z
Pr

2
f h’~0: ð21Þ

The exact solutions of the above equations satisfying the boundary

conditions (9) and (17) are (see ref. [20])

f (g)~
1

b
1{e{bg
� �

, ð22Þ

h(g)~

2

Pr

2b2
e

Pr

2b2
c C

Pr

2b2
, 0

� �
{C

Pr

2b2
,

Pr

2b2
e{bg

� �� 	

b
Pr

b2

� � Pr

2b2
z2

Pr

2b2
e

Pr

2b2
c C

Pr

2b2
, 0

� �
{C

Pr

2b2
,

Pr

2b2

� �� 	 ,ð23Þ

where b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z2M2

2A

r
and C(:) the incomplete Gamma function.

Case (ii). Now for n~1 and s~1, Eqs. (8) and (16) become

1zAð Þ f ’’’zff ’’{ f ’ð Þ2{M2f ’~0, ð24Þ

and

h’’z Pr f h’~0, ð25Þ

which possess the exact analytical solutions of the form (see ref.

[20])

f (g)~
1

b
1{e{bg
� �

, ð26Þ

h(g)~

e

Pr

b2
c C

Pr

b2
, 0

� �
{C

Pr

b2
,
Pr

b2
e{bg

� �� 	

b
Pr

b2

� �Pr

b2
ze

Pr

b2
c C

Pr

b2
, 0

� �
{C

Pr

b2
,
Pr

b2

� �� 	 , ð27Þ

with b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zM2

1zA

r
.

Figure 7. The temperature profiles h gð Þ for different values of the generalized Prandtl number Pr when s~1=2, M~ª~1 and A~1
are fixed.
doi:10.1371/journal.pone.0107989.g007
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Numerical Results and Discussion

In order to get definite perception of the physical problem,

velocity profile f ’(g) and temperature profile h gð Þ are displayed

graphically for different values of the power-law index n,magnetic

parameter M, stretching parameter s, generalized Prandtl number

Pr and generalized Biot number c appearing in the problem. The

coupled set of Eqs. (8) and (16) with the boundary conditions (9)

and (17) are solved analytically by means of the HAM and

numerical solutions are obtained using the shooting method.

Further, it is possible in some special cases to compare the results

obtained by the HAM with exact solutions. Moreover, represen-

tative results for the skin-friction coefficient and local Nusselt

number illustrating the influence of various physical parameters of

the flow are recorded through tables.

Taking into account the obtained numerical solutions, figur-

es 2(a, b) delineate the influence of the non-integer power-law

index n on velocity profile f ’(g). From these figures, it is observed

Figure 8. The temperature profiles h gð Þ for different values of the generalized Biot number ª when s~Pr~1=2, M~1 and A~1:
doi:10.1371/journal.pone.0107989.g008

Figure 9. The comparison of the HAM solution with exact solution for the temperature profile h gð Þ when M~A~1=2 and ª~1 are
fixed.
doi:10.1371/journal.pone.0107989.g009
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that an increase in the values of n decreases the velocity profile and

hence the boundary layer thickness for power index n§1 whereas

for nv1 we notice two different behaviors, i.e., close to the sheet

the velocity profile increases while it decreases away from the sheet

with the increase of the power-law index n:
In order to illustrate the influence of the magnetic parameter M

on velocity profile f ’(g) we have plotted figures 3(a-d) for the

power-law index n~0, 1, 2 and 3. It appears from these figures

that an increase in value of the magnetic parameter M decreases

the velocity profile due to resistance force generated by the

magnetic field. Also, we can notice that effect of the magnetic

parameter M becomes less dominating as we increase value of the

power-law index n and boundary layer thickness decreases with

the increase of M too. Further, these figures portray that the

boundary layer thickness becomes thin as we decrease the power-

law index n. Moreover, these figures provide a comparison that the

magnitude of velocity is larger for hydrodynamic case (M~0)

when compared with hydromagnetic case (M=0).

Figures 4(a, b) correspond to the numerical solution obtained

for the non-integer power-law index nv1 and n§1, respectively.

From these figures, it is obvious that the temperature profile

decreases with increase in the power-law index n. Further, these

figures indicate that for a given location g, h gð Þ decreases as the

power-law index n increases, resulting in a decrease of the thermal

boundary layer thickness. We can also observe that more

significant effects can be seen for values of the power-law index

nv1, while it has small effects for the power-law index n§1.

Figures 5(a–d) portray the effects of the magnetic parameter M

on temperature profile h gð Þ. It is clear from these figures that the

temperature profile increases with an increase of M. However, we

can observe that the temperature profile is not very much sensitive

to the magnetic parameter M.

Figures 6(a–d) present the temperature profile h gð Þ for different

values of the stretching parameter s. We can notice from these

figures that the stretching parameter has quite opposite effect on

the temperature profile for n~0 and n~1, 2, 3. We can see that

with an increase in the stretching parameter s the temperature

Figure 10. The comparison of the HAM solution with numerical solution for the temperature profile h gð Þ when M~A~1=2 and ª~1
are fixed.
doi:10.1371/journal.pone.0107989.g010

Table 2. Numerical values of the skin friction coefficient
1

2
Re

1

nz1
b Cf for different values of physical parameters.

A M s {
1

2
Re

1

nz1
b Cf

n = 0 n = 1 n = 2 n = 3

0.0 1.0 0.5 1.000000 1.259683 1.168175 1.121380

1.0 2.224745 1.781461 1.631523 1.558845

2.0 2.732051 2.181835 2.024553 1.954535

3.0 3.121320 2.519366 2.366378 2.304718

1.0 0.0 1.707107 1.089465 0.962186 0.908237

0.5 1.866025 1.296307 1.153318 1.090619

1.0 2.224745 1.781461 1.631523 1.558845

2.0 3.121320 3.028033 2.999168 2.981083

1.0 0.5 2.224745 1.781461 1.631523 1.558845

1.0 2.290994 2.00000 1.914495 1.875081

2.0 2.431934 2.376857 2.412204 2.446648

3.0 2.573536 2.701216 2.851608 2.965925

doi:10.1371/journal.pone.0107989.t002
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profile increases for n~0, while for n~1, 2, 3 it decreases. Further,

with the increase in s the thermal boundary layer thickness

increases for n~0 and decreases for n~1, 2, 3.

The variation of the generalized Prandtl number Pr on the

temperature profile h gð Þ is shown in Figures 7(a–d). It is worth

noting that with the increase of Pr the temperature profile

decreases. That is, an increase in generalized Prandtl number Pr
results in a decrease in the thermal conductivity which as a result

reduces the thermal boundary layer thickness. Additionally, it can

be observed that the power-law index n plays a significant role. An

increase in the power-law index n results in thinning of the thermal

boundary layer.

Figures 8(a–d) show the effect of the generalized Biot number c
on the temperature profile h gð Þ. These figures put in evidence that

the effect of increasing the generalized Biot number c is to enhance

both the temperature and thermal boundary layer thickness

significantly. It is due to the fact increasing values of c shows the

decreasing thermal resistance of the wall and hence convective

heat transfer to the fluid increases.

Figures 9(a, b) and 10(a, b) present a comparison between the

exact, numerical and HAM solutions. These figures show that

excellent agreement between the results exists. This leads

confidence in the HAM results reported in this section.

The numerical values of the skin friction coefficient
1

2
Re

1

nz1
b Cf

and local Nusselt number Re
{

1

nz1
b Nux for different values of A,

M, s, Pr and c are listed in tables 2 and 3. Table 2 shows that

magnitude of the skin friction coefficient increases for larger values

of A, M and s. Table 3 depicts that the local Nusselt number

increases for larger values of A, Pr, c while it has opposite behavior

for M for different values of the power-law index n. By increasing

the stretching parameter s we observe that for n~0, the local

Nusselt number decreases while for n~1, 2 and 3 it increases.

Conclusions

In this study, we have investigated the heat transfer with

convective boundary condition at the wall for Sisko fluid flow over

a non-linearly stretching sheet in the presence of a transverse

uniform magnetic field. The governing non-linear equations were

formulated and solved analytically by the HAM and numerically

by shooting method. Additionally, the exact analytical solutions

have been determined for the power-law index n~0 and n~1.

The obtained results imply the following pronouncements.

N For the power-law index n~1, 2, 3 the velocity profile as well

as boundary layer thickness was decreased for stretching

parameter s whereas, for n~0 boundary layer thickness was

increased.

N Behavior of the material parameter A and magnetic parameter

M on velocity profile were quite opposite.

N Behavior of stretching parameter s for the temperature profile

was similar to that of velocity profile qualitatively.

N The influence of Pr , and n was to decrease the temperature

field h(g) and hence decreased the thermal boundary layer

while it increased for M and c.

N For the increasing power-law index n velocity profile as well as

temperature profile was decreased and these effects were more

noticeable when considering nv1 as compared to n§1

It is expected that the present analysis serves as stimulus for the

shear thinning and thickening fluid flows in the areas where high

rate of heat transfer or rate of cooling is required such as extrusion

processes, glass fiber and storage of thermal energy.
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