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a b s t r a c t

Background: This study aims to analyze the trend of Hepatitis B incidence in Xiamen City
from 2004 to 2022, and to select the best-performing model for predicting the number of
Hepatitis B cases from 2023 to 2027.
Methods: Data were obtained from the China Information System for Disease Control and
Prevention (CISDCP). The Joinpoint Regression Model analyzed temporal trends, while the
Age-Period-Cohort (APC) model assessed the effects of age, period, and cohort on hepatitis
B incidence rates. We also compared the predictive performance of the Neural Network
Autoregressive (NNAR) Model, Bayesian Structural Time Series (BSTS) Model, Prophet,
Exponential Smoothing (ETS) Model, Seasonal Autoregressive Integrated Moving Average
(SARIMA) Model, and Hybrid Model, selecting the model with the highest performance to
forecast the number of hepatitis B cases for the next five years.
Results: Hepatitis B incidence rates in Xiamen from 2004 to 2022 showed an overall
declining trend, with rates higher in men than in women. Higher incidence rates were
observed in adults, particularly in the 30e39 age group. Moreover, the period and cohort
effects on incidence showed a declining trend. Furthermore, in the best-performing
NNAR(10, 1, 6)[12] model, the number of new cases is predicted to be 4271 in 2023,
increasing to 5314 by 2027.
Conclusions: Hepatitis B remains a significant issue in Xiamen, necessitating further
optimization of hepatitis B prevention and control measures. Moreover, targeted in-
terventions are essential for adults with higher incidence rates.
men), Fudan University, No. 668, Jinhu Road, Huli District, Xiamen City, Fujian Province, China.
e Control and Prevention, No 681-685, Shengguang Road, Jimei District, Xiamen City, Fujian Province,

), mi.hongfei@zsxmhospital.com (H. Mi), he.tingjuan@zsxmhospital.com (T. He), 2417929104@qq.com
@163.com (L. Xu), xmcdcwmz@163.com (M. Wang), 13799752802@163.com (C. Su).
unications Co., Ltd.
ributed equally to this work.
.

by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
ses/by-nc-nd/4.0/).

mailto:zrxzrx1227@163.com
mailto:mi.hongfei@zsxmhospital.com
mailto:he.tingjuan@zsxmhospital.com
mailto:1348487646@qq.com
mailto:1348487646@qq.com
mailto:xlsxmcdc@163.com
mailto:xmcdcwmz@163.com
mailto:13799752802@163.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.idm.2024.08.001&domain=pdf
www.sciencedirect.com/science/journal/24680427
www.keaipublishing.com/idm
https://doi.org/10.1016/j.idm.2024.08.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.idm.2024.08.001
https://doi.org/10.1016/j.idm.2024.08.001


R. Zhang, H. Mi, T. He et al. Infectious Disease Modelling 9 (2024) 1276e1288
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hepatitis B is an infectious disease caused by the Hepatitis B virus (HBV), which can be transmitted through contact with
infected blood and semen (Tr�epo et al., 2014). In high-prevalence areas, mother-to-child transmission is the primary mode of
HBV spread, while in low-prevalence areas, sexual transmission predominates (Tr�epo et al., 2014). The World Health Orga-
nization (WHO) has set a goal to eliminate Hepatitis B by 2030; however, achieving this target still faces many challenges (Al-
Busafi & Alwassief, 2024). In 2019, approximately 296 million people worldwide were living with chronic HBV infection
(World Health Organization, 2021).

China is the country with the highest number of HBV infections, accounting for one-third of the global infected population
(Su et al., 2022). Comprehensive hepatitis B serological surveys conducted in 1979 and 2006 in China revealed national
positivity rates for Hepatitis B surface antigen (HBsAg) of 8.75% and 7.18%, respectively (Cui et al., 2017; Xu & Zhang, 2017). In
contrast, Xiamen, located in southeastern China, consistently exhibits higher prevalence rates than the national average.
Surveys conducted in Xiamen during the same years reported HBsAg positivity rates of 14.73% in 1979 and 13.79% in 2006
(Chenghao et al., 2007; Su, 2015).

To effectively prevent and control hepatitis B in Xiamen, understanding the temporal trends in the incidence rate of
hepatitis B and exploring the effects of age, period, and cohort on the incidence rate are crucial for developing public health
policies. Additionally, predicting future incidence aids in resource allocation planning. However, studies on the temporal
trends and the effects of age, period, and cohort on the incidence rates of hepatitis B in Xiamen remain insufficient. Although
there have been studies predicting future incidence of hepatitis B, these studies often use a single time series model and lack
verification of model performance (Wang et al., 2023; C. Zhang et al., 2022; Zhao et al., 2022).

Recent research has increasingly applied various time series models to predict infectious diseases. For example, the
Seasonal Autoregressive Integrated Moving Average (SARIMA) Model, an extension of the ARIMA model designed to capture
seasonal patterns in time series data, has been wildly applied to forecast the incidence of diseases such as mumps (Qiu et al.,
2021), tuberculosis (TB) (Azeez et al., 2016), and acquired immune deficiency syndrome (AIDS) (Luo et al., 2022). The
Exponential Smoothing (ETS) Model, which emphasizes level, trend, and seasonal components through exponential weights,
has been used to predict TB incidence rates (Kuan, 2022) and acute hemorrhagic conjunctivitis (AHC) cases (Liu et al., 2020).
The Prophet model, a forecasting tool created by Facebook that accounts for daily, weekly, and yearly seasonality, has been
effectively used in predicting the incidence of AIDS (Luo et al., 2022) as well as hand, foot, and mouth disease (HFMD) (Xie
et al., 2021). Additionally, the Bayesian Structural Time Series (BSTS) Model, which decomposes the time series into several
components such as trend, seasonality, cyclicality, and regression effects, has been utilized to anticipate malaria cases
(Vavilala et al., 2022) and varicella incidence (Bai et al., 2023).

Furthermore, many studies demonstrate that the Neural Network Autoregressive (NNAR) Model, which integrates neural
network capabilities with autoregressive techniques, and hybrid models that combine various approaches, outperform
traditional methods in forecasting certain infectious diseases. Specifically, NNARmodels have shown superior performance in
predicting cumulative confirmed daily cases and cumulative confirmed daily deaths of coronavirus disease 2019 (COVID-19)
(Daniyal et al., 2022). SARIMA-NNAR hybrid models have demonstrated better performance in forecasting TB incidence
(Azeez et al., 2016), HFMD cases (Yu et al., 2021), and human brucellosis cases (Akermi et al., 2022). Additionally, a SARIMA-
ETS hybrid model and a SARIMA-Prophet hybrid model have excelled in predicting the incidence of TB and AIDS, respectively
(Kuan, 2022; Luo et al., 2022).

However, research on predicting hepatitis B incidence using various time series models is currently limited. Most pre-
diction studies have utilized a single forecasting model for hepatitis B, such as the ARIMA model (Wang et al., 2020; C. Zhang
et al., 2022), SARIMA model (Zhao et al., 2022), and BSTS model (He et al., 2024). Considering that hepatitis B incidence may
exhibit unique short-term fluctuations, seasonality, and long-term trends in different regions, employing a wider variety of
time series models could better capture the characteristics of the data in Xiamen. Comparing these models would help
identify the model with the highest performance for more accurate predictions.

In this study, we utilized the Joinpoint Regression Model to analyze the temporal trends of hepatitis B incidence rates in
Xiamen from 2004 to 2022. Additionally, the Age-Period-Cohort (APC) Model was used to evaluate the effects of age, period,
and cohort on incidence rates. Moreover, the performance of six distinct time series models, including the NNARmodel, BSTS
model, Prophet, ETS model, SARIMA model, and Hybrid model, was assessed using Root Mean Square Error (RMSE), R-
squared, Mean Absolute Error (MAE), and the Z-normalized composite index. The model with the highest performance was
then used to forecast the number of hepatitis B cases from 2023 to 2027. These analyses aim to provide valuable information
to health management agencies for the prevention and control of hepatitis B.
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2. Materials and methods

2.1. Data source

We obtained the incidence data of hepatitis B and population statistics from the China Information System for Disease
Control and Prevention (CISDCP). This system, designed and constructed by the Chinese Center for Disease Control and
Prevention (CCDC), is an internet-based system for reporting 41 types of infectious diseases (Wang et al., 2008). The CISDCP,
which has been working since January 1, 2004, had covered over 90% of medical institutions at all levels by 2016 (Chinese
Center for Disease Control and Prevention, 2007).

Cases of hepatitis B with residential addresses in Xiamen City and onset dates between 2004 and 2022 were selected for
our study. Suspected cases (2592 cases), pathogen carriers (298 cases), and positive test cases (2 cases), which do not fall
within the mandated reporting criteria, were excluded. To enhance the accuracy of trend analysis, only clinically diagnosed
and confirmed cases were included.

In addition, 6060 cases reported more than once were excluded from the dataset. To identify duplicate entries, for cases
reported from 2016 onwards, each entry had a unique and valid identification number. Entries with the same identification
number appearing two or more times were considered duplicates. For cases reported before 2016, where identification
numbers were unavailable, duplicates were identified by matching entries with the same name, birthdate, and gender. Only
the first report was retained, and subsequent duplicates were excluded. The workflow for data processing, model building,
and model performance evaluation is shown in Fig. 1.
2.2. Statistical analysis

2.2.1. Age-standardized incidence rate
The age-standardized incidence rate was calculated using the direct method, with the standard population structure

sourced from the World Health Organization's (WHO) new World Standard Population (https://seer.cancer.gov/
stdpopulations/world.who.html).
Fig. 1. The flowchart for data processing, model building, and model performance evaluation.
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2.2.2. Joinpoint Regression Model
The Joinpoint Regression Model was used to analyze the temporal trend of the hepatitis B incidence rate from 2004 to

2022 in Xiamen and identify optimal change points (joinpoints), where a significant change in the trend direction or slope
occurs (Kim et al., 2000). The Joinpoint Regression Model, designed to capture shifts in trends within observational data ðx1;
y1Þ;…; ðxn;ynÞ, consists of several continuous linear segments. This model can be expressed as (Kim et al., 2000):

E½yjx� ¼ b0 þb1xþ d1ðx� t1Þþ þ…þ dkðx� tkÞþ
In this formulation, E½yjx� represents the expected incidence rate of hepatitis B. The parameter b0 is the intercept and b1 is
the slope. The coefficient d1 and dk quantify the changes in the slope of the incidence rate at the joinpoints t1 and tk,
respectively. The function ðx� t1Þþ is a piecewise function that equals x� t1 if x> t1 and 0 otherwise.

In the Joinpoint Regression Model, the least squares method is employed to fit linear segments to the data, effectively
minimizing the sum of squared errors between observed values andmodeled values (Zhang et al., 2022). To optimally identify
joinpoints, a grid search algorithm is used (Kim et al., 2000). The significance of these joinpoints is then assessed using the
Monte Carlo permutation method (Kim et al., 2000).

In this model, the Annual Percent Change (APC) and Average Annual Percentage Change (AAPC) were calculated. APC and
AAPC are used to describe the trends in disease burden over specific time periods and across the entire observation period,
respectively (National Cancer Institute). Positive values of AAPC and APC indicate an increasing trend in the disease burden
indicators, while negative values indicate a decreasing trend (Huang et al., 2022).

2.2.3. Age-Period-Cohort model
The APC model was used to assess age, period, and cohort effects on the incidence rate of hepatitis B in Xiamen (Land,

2013). The APC model can be expressed as follows:

Yj ¼mþ aagej þ bperiodj þ gcohortj þ εj
In this formulation, Yj denotes the net effect on the incidence of hepatitis B for group j. The coefficients a; b and g quantify
the influence of age, period, and cohort, respectively. m serves as the model's intercept, and εj denotes the residuals of the
model. The significance of the parameters was assessed using Wald Chi-Square tests.

We primarily focus on three parameters in the APC model: the longitudinal age curve, the period rate ratios (RR), and the
cohort rate ratios. The longitudinal age curve reflects the impact of age on disease burden, while the period rate ratios
typically reflect the influence of policy changes, public health interventions, and advancements in medical technology on
disease burden. The cohort rate ratios reflect the impact of factors such as economic development and harmful exposures of
different birth cohorts on disease burden (Rosenberg et al., 2014).

We utilized the Age Period Cohort Analysis Web Tool developed by the National Cancer Institute of the United States
(https://analysistools.nci.nih.gov/apc/), which could address the issue of identifiability (Cao et al., 2021;Ma et al., 2022). In the
APC model, the number of cases and population data need to be arranged into 5-year periods from 2008 to 2022, and into 5-
year age intervals from 5 to 85þ years old.

The Joinpoint Regression Model and the APC Model both analyze time series data, but they differ significantly in their
analytical objectives, underlying formulas, and key parameters. A comparative table of these two models specific to the
context of this study is available in Appendix A, Table S1.

2.2.4. Time series models
To better grasp the data characteristics, we compared six different time series models: the NNAR model, BSTS model,

Prophet, ETS model, SARIMA model, and a Hybrid model combining the SARIMA model, ETS model, Seasonal and Trend
Decomposition using Loess (STL), and NNAR model. The specifics of each model are detailed below and summarized in a
comparative table (Appendix A, Table S2).

The NNAR model is a time series forecasting model that integrates autoregressive techniques with neural network
technology (Perone, 2022). The NNAR model is characterized by two principal parameters: p and k. The parameter p denotes
the number of input lags. Meanwhile, k signifies the count of hidden neurons. When addressing seasonal data, the model
evolves into the NNAR(p, P, k)[m] format, where P represents the seasonal lags and m indicates the seasonal cycle (Perone,
2022; Talkhi et al., 2021). The equation of the NNAR model is as follows (Yu et al., 2021):

yt ¼ f ðyt�1; yt�2;…; yt�nÞ þ εt
Where yt represents the predicted values at time t. ðyt�1; yt�2;…; yt�nÞ are the lagged observations used as input to the
neural network to forecast the value at time t. f denotes the neural network function. εt is the prediction error at time t.

The BSTS Model, a stochastic state space model, decomposes the time series into several components such as trend,
seasonality, cyclicality, and regression effects (Feroze, 2020). Integrating prior knowledge with original data updates the
Bayesian model to its final form, the posterior distribution, which is simulated using the Markov Chain Monte Carlo (MCMC)
algorithm (Katarina & Gunardi, 2023). This model is characterized by a pair of fundamental equations (Punyapornwithaya
1279
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et al., 2023).

Observation equation

yt ¼ Zut at þ εt
This equation links the observed data yt to the latent state vector at, with εt representing Gaussian observation noise.

State transition equation

atþ1 ¼ Ttat þ Rtht
This equation describes the evolution of the state vector, where Tt is the transition matrix and Rt is the control matrix. ht ,
the process noise, is also assumed to be Gaussian and independent of the observation noise.

Prophet is a predicting procedure based on an additive regression model. It can fit non-linear trends with yearly, weekly,
daily seasonality, and holiday effects (Ning et al., 2022). The key components of the Prophet model can be summarized as (Luo
et al., 2022):

yt ¼ gðtÞ þ sðtÞ þ hðtÞ þ εt
Where yt represents the predicted value at time, gðtÞ is the trend function, sðtÞ is the seasonal component and hðtÞ rep-
resents the effects of holidays or events.

The ETS model applies exponential weights to historical data, where more recent observations are given higher weights
(Yang et al., 2023). The model consists of Error (E), Trend (T), and Seasonal components (S), each of which can be added (A),
multiplied (M), or omitted (N), leading to different variations of the model such as ETS(A, A, A) and ETS(M, A, N) (Xian et al.,
2023). Taking ETS (M, A, N) as an example, its formula is as follows (Athanasopoulos, 2018):

yt ¼ðlt�1 þ bt�1Þ � ð1þ εtÞ
Where, yt denotes the forecasted value of the series at time t, lt�1 represents the level component at time t-1, bt�1 is the
trend component and εt is the error term.

The SARIMA Model, an advanced version of the ARIMA framework, integrates seasonal elements. Defined by the pa-
rameters (p, d, q) for the non-seasonal components and (P, D, Q)S for the seasonal aspects. In this context, 'p' and 'P' are the
autoregressive (AR) terms. 'd' and 'D' denote the differencing orders. 'q' and 'Q' correspond to themoving average (MA) terms.
Lastly, 's' signifies the seasonality period (Yang et al., 2023). This model requires data to be stationary, a condition confirmed in
our study through the Augmented Dickey-Fuller Test (Jalil & Rao, 2019). The overall formula for the SARIMA model can be
expressed as (Qiu et al., 2021):

DdDD
S xt ¼

QðBÞQSðBÞ
FðBÞFSðBÞ

et

where:
QðBÞ ¼ 1� q1B�…� qqBq is the non-seasonal moving average polynomial.
FðBÞ ¼ 1�∅1B�…�∅pBp is the non-seasonal autoregressive polynomial.
QSðBÞ ¼ 1� q1BS �…� qQBQS is the seasonal moving average polynomial.
FSðBÞ ¼ 1�∅1BS �…�FPBPS is the seasonal autoregressive polynomial.
Dd and DD

S are the non-seasonal and seasonal differencing operators, respectively. xt denotes the observed value at time t
and et represents the random error or residuals at time t.

Hybrid models in time series forecasting combine elements from different statistical and machine learning models to
leverage their individual strengths (Shaub, 2020). In this study, the hybrid model combines the SARIMA model, ETS model,
STL, and NNAR model. The simplified formula for the hybrid model can be expressed as:

byt ¼wSARIMA � bySARIMA
t þwETS � byETSt þwSTL � bySTLt þwNNAR � byNNARt

where byt is the combined predicted value at time t. bySARIMA
t ; byETSt ; bySTLt ; byNNARt represent the forecasts at time t from the

SARIMA, ETS, STL, and NNARmodels, respectively.wSARIMA;wETS;wSTL;wNNAR are the respectiveweights for thesemodels, with
the constraint that wSARIMA þ wETS þ wSTL þ wNNAR ¼ 1.

Before constructing predictive models, we used the STL to examine the seasonality of incidence in Xiamen from 2004 to
2022 and discovered regular seasonal patterns in the data (Appendix A, Fig. S1). Subsequently, six time series models were
1280
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implemented using specific packages and functions in R. The configuration details of each model in R are outlined below and
presented in a summary table (Appendix A, Table S3).

Specifically, in the implementation of the NNAR model using the nnetar function from the forecast package in R, the
optimal number of non-seasonal lags p was determined based on the Akaike Information Criterion (AIC). To capture sea-
sonality, the number of seasonal lags Pwas set to 1 (Yu et al., 2021; Zenia et al., 2023). The optimal number of hidden neurons
kwas calculated using the formula k ¼ ðpþPþ1Þ

2 . In the training set, the NNAR(10,1, 6)[12] model provided themost efficient fit.
The BSTS was executed through the bsts package, employing functions including AddLocalLinearTrend, AddSeasonal and

bsts. Initially, themodel was specified by integrating a local linear trend through the AddLocalLinearTrend function to capture
the intrinsic trend of the time series. To account for regular seasonal fluctuations, a seasonal component of 12 periods was
incorporated using the AddSeasonal function. The model was then fitted using the bsts function, where 500 MCMC iterations
were performed to ensure the convergence of Bayesian inference.

For the Prophet model, the function prophet in the prophet packagewas used.Within the prophet function, themodel was
configured to capture yearly seasonality patterns, where seasonality effects were assumed to be additive. The seasonality
prior scale, holidays prior scale, and changepoint prior scale were set to 10, 10, and 0.05, respectively.

The ETSmodels were implemented using the ets function from the forecast package. In this function, the model parameter
was set to "ZZZ". This configuration automatically selected the optimal error type, trend type, and season type for the ETS
model. The selectionwas based on information criteria to identify the best-fitting model. In the training set, the ETS(M, N, M)
model provided the most efficient fit.

The SARIMA model was implemented using the auto.arima function from the forecast package. This function autono-
mously identified the optimal seasonal and non-seasonal differencing orders by conducting unit root tests. Furthermore, it
employed a stepwise search algorithm to systematically evaluate various combinations of the seasonal and non-seasonal AR
and MA parameters. The model that exhibited the highest performance was selected based on the lowest values of the in-
formation criteria (Kuan, 2022). In the training set, the SARIMA(1,0,0)(0,1,2)12 model exhibited the lowest information criteria.
The model passed the Ljung-Box Q test (P > 0.05).

Lastly, the hybrid model was implemented using the hybridModel function from the forecastHybrid package. The model
incorporated SARIMA, ETS, STL, and NNARmodels, specified by themodels parameter as "aesn", with the seasonal component
included as indicated by the a.args parameter. For weighting the forecasts from the various contributingmodels, we adopted a
more robust "equal weights" method.

In evaluating model performance, we used the monthly number of hepatitis B cases in Xiamen from 2004 to 2019 as the
training dataset, and the monthly number of cases from 2020 to 2022 as the test dataset. The models' predictive performance
was assessed using RMSE, R-squared, MAE, and Z-normalized composite index (Kuhn, 2019). RMSE measures the average
magnitude of the error, R-squared indicates the proportion of variance in the dependent variable that is predictable from the
independent variables, and MAE represents the average of absolute errors. The specific formulas and ranges of RMSE, R-
squared, and MAE are provided in Appendix A, Table S4.

Considering the different scales and ranges of thesemetrics, the Z-normalized composite indexwas calculated to achieve a
comparable and fair assessment by standardizing different assessment metrics (Andrade, 2021). On one hand, the index
rescales the data to have a mean of 0 and a standard deviation of 1, which helps to compare different datasets on a common
scale. On the other hand, it ensures that eachmetric contributes equally to the model evaluation, preventing any single metric
from disproportionately influencing the outcome. The formula for calculating the Z-normalized composite index is as follows:

Zm ¼ � xRMSE;m � mRMSE

sRMSE
þ xR2;m � mR2

sR2
� xMAE;m � mMAE

sMAE
Where x is the original value, m is the mean of the variable, and s is the standard deviation. m means a specific model.
The model with the highest Z-normalized composite index will be selected as the best-performing model to forecast the

number of new cases in Xiamen from 2023 to 2027 using data from 2004 to 2022.
The above analyses were realized by Joinpoint (version 4.9.1.0), Age Period Cohort Analysis Web Tool (Posted: November

10, 2014), and R (version 4.3.0). P values < 0.05 were considered statistically significant.

3. Results

The number of hepatitis B cases in Xiamen has generally remained high and showed multiple fluctuations during the
period from 2004 to 2022 (Fig. 2). The number of reported cases rose from 1127 in 2004 to 4311 in 2005. In 2010, therewas an
increase to 7842 cases, which then declined to 4529 in 2011. There was also a noticeable increase in 2020 and 2021, rising to
6761 and 6397 respectively (Fig. 2A). Additionally, hepatitis B cases in Xiamen exhibited seasonal fluctuations, with a sig-
nificant increase in cases every January (Fig. 2B). The number of hepatitis B cases was significantly higher in males compared
to females (Fig. 2CeD). Additionally, the reported cases were highest in the 30e39 age group for both males and females.
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Fig. 2. Temporal variation in the number of hepatitis B cases in Xiamen from 2004 to 2022. (A) Annual number of Hepatitis B cases. (B) Monthly number of
Hepatitis B cases. (C) Monthly number of hepatitis B cases among male age groups. (D) Monthly number of hepatitis B cases among female age groups.
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3.1. Joinpoint regression model

From 2004 to 2022, the age-standardized incidence rate of hepatitis B in Xiamen generally decreased (AAPC ¼ �3.83%,
P ¼ 0.017) (Fig. 3A). In addition, the incidence rate for males averaged 198.26 per 100,000, whereas for females, it averaged
97.54 per 100,000. Moreover, the incidence rate among males exhibited a more pronounced downward trend
(AAPC ¼ �4.89%, P ¼ 0.004) (Fig. 3B). The AAPC value for females was 1.47, which did not show statistical significance
(P¼ 0.691) (Fig. 3C). Therewas a turning point for females in 2006. Prior to 2006, the incidence rate in females was increasing
(APC ¼ 66.39, P ¼ 0.126), and after 2006, it declined (APC ¼ �4.66, P ¼ 0.001). The specific AAPC values are available in
Appendix A (Table S5).

3.2. Age-period-cohort model

In the APC model, the longitudinal age curves of the HBV incidence are peaking in the 30e39 age group for both male and
female patients. Specifically, in the 30e39 age group, the incidence in males exceeded 600 per 100,000, while in females, it
surpassed 350 per 100,000 (Fig. 4A). Regarding the period effect, RR of the incidence among both men and women showed a
declining trend with the progression of periods. Prior to the reference period (2015.5), the RR was significant with values
greater than 1, while after this period, the RRwas not statistically significant, with values less than 1 (Fig. 4B). As for the cohort
effect, RR of the incidence also showed a downward trend, with the cohort RR for both males and females being higher before
the reference cohort (1968) and lower after it (Fig. 4C). TheWald c2 test results indicated that the period and cohort effects on
the incidence rates of hepatitis B in males and females were statistically significant (Appendix A, Table S6).
Fig. 3. Joinpoint regression model of hepatitis B incidence rates in Xiamen from 2004 to 2022. (A) Joinpoint regression model of the total population. (B) Joinpoint
regression model of males. (C) Joinpoint regression model of females.
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Fig. 4. Age-period-cohort model of hepatitis B incidence in Xiamen from 2008 to 2022. (A) Longitudinal age curve of the incidence. (B) Period rate ratios of the
incidence. (C) Cohort rate ratios of the incidence.
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3.3. Time series models

After training the NNAR model, Prophet, ETS model, SARIMA model, hybrid model, and BSTS model using the monthly
number of hepatitis B cases in Xiamen from 2004 to 2019 and testing them on data from 2020 to 2022 (Fig. 5AeF), their
performance was evaluated using RMSE, MAE, R-squared, and the Z-normalized composite index (Fig. 5GeJ). The NNAR(10, 1,
6)[12] model achieved the highest Z-normalized composite index of 4.01 (Fig. 5J). The Hybrid model also performed well,
with an index of 1.57, followed by the BSTS model with a score of 0.82. In contrast, the SARIMA(1,0,0)(0,1,2)12, ETS(M, N, M),
and Prophet models exhibited poorer performance, with indexes of �0.38, �2.63, and �3.38, respectively.

The monthly hepatitis B case data from 2004 to 2022 in Xiamen were used as the training dataset for the NNAR model,
Prophet, ETS model, SARIMA model, hybrid model, and BSTS model to forecast new cases from 2023 to 2027 (Appendix A,
Fig. S2). The NNAR(10, 1, 6)[12] Model, which exhibited the highest performance, predicts that the number of cases for 2023
will be 4271, with an expected increase to 5314 by 2027 (Fig. 6A). Forecasts fromothermodels suggest that the number of new
hepatitis B cases in Xiamen will remain high over the next five years, except for the BSTS model, which predicts a declining
trend in the number of cases (Fig. 6B).

4. Discussion

This research for the first time analyzed the temporal trends of hepatitis B incidence in Xiamen from 2004 to 2022, and
assessed the impact of age, period and cohort effects on the incidence rates. Additionally, we trained six time series models
and utilized a multi-metric evaluation approach, including a Z-normalized composite index to select the model with the best
performance to forecast the number of hepatitis B cases in Xiamen from2023 to 2027. Thesemethods enhance the accuracy of
prediction. Our analysis of temporal trends, effects of age, period and cohort, along with multi-model forecasting, provides
vital support for developing public health measures and optimizing resource allocation.

4.1. Joinpoint regression model

The Joinpoint regression analysis revealed that, from 2004 to 2022, the reported incidence of hepatitis B in Xiamen
generally showed a downward trend. This could be attributed to the implementation of free hepatitis B vaccination for
newborns since 2003 and the catch-up vaccination campaign for children under 15 from 2007 to 2010 in Xiamen, which
effectively interrupted the virus transmission pathway. Moreover, the government and relevant health organizations have
improvedmedical and health conditions and organized educational programs regarding hepatitis B, which are also associated
with a decline in incidence rates (Ji et al., 2019; Qin et al., 2022).

We also observed that the incidence rate among men was significantly higher than that in women, aligning with the
conclusions of existing research (Hogan et al., 2023; Qian et al., 2023;Wang et al., 2019). The gender disparity can be related to
biological characteristics. Research shows that the HBV X protein enhances the transcriptional activity of androgen receptors
(ARs) in a manner dependent on androgen concentration (Yang et al., 2009). Another study suggests higher HBV replication
and expression in male livers than in female ones (Lee et al., 2018). Furthermore, males may be more inclined to engage in
high-risk behaviors, such as having multiple sexual partners, homosexual intercourse, and sharing injection needles, so they
may face higher infection risks (Fang et al., 2023; Wang et al., 2019). Emphasizing health education tailored for men may
reduce these risks.

4.2. Age-period-cohort model

The APC model analysis shows that the adult population in Xiamen has higher hepatitis B incidence rates. This may be
related to the late implementation of the vaccination policy and the declining antibody levels with increasing age (Poorolajal
& Hooshmand, 2016). The free hepatitis B vaccination policy for newborns began in Xiamen in 2003. Consequently, people
born before 2003 may not have been protected by the vaccine and thus have a higher risk of infection. Notably, the incidence
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Fig. 5. Models training and performance comparison of six time series models. (A) NNAR Model. (B) Prophet. (C) ETS Model. (D) SARIMA Model. (E) Hybrid
Model. (F) BSTS Model. (G) RMSE. (H) MAE. (I) R-squared. (J) Z-normalized composite index.
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rate in the 30e39 age group is significantly higher than in other age groups. As this age group forms a vital part of the
workforce for families and society, it is essential to guide them through health education to undertake vaccine catch-up, early
screening, or treatment, thereby reducing the disease burden effectively.

The period RRs of the incidence showed a declining trend over time. This decline suggests improvements in public health
policies, such as widespread vaccination and the prevention of mother-to-child transmission, have been effective (Fang, Cao,
et al., 2023; Ji et al., 2019). Additionally, health education and public health promotion may have enhanced public under-
standing of hepatitis B transmission routes, contributing to the reduction in the risk of hepatitis B incidence (Qin et al., 2022).
It's worth noting that although the period RR was less than 1 after mid-2015, it is not significant, indicating substantial room
for improvement in optimizing prevention and control measures.

As for the cohort effect, the RR was higher before 1968 and lower after it. The higher RR before 1968 might be associated
with Xiamen's economic backwardness, social unrest, poor public health conditions, and inadequate public awareness of
hepatitis B during that time (Fang et al., 2023). Subsequently, China's societal development after the reform and opening-up
in 1978, the implementation of the Technical Operation Procedures in 1997 and the enhancement of educational level and
health awareness contributed to the decline in the cohort RR (Gao et al., 2020; Liu et al., 2019; Lu et al., 2019).
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Fig. 6. Historical and projected monthly hepatitis B cases in Xiamen. (A) Historical trends from 2004 to 2022 and forecasts using the NNAR model from 2023 to
2027. (B) Comparative forecasts from the BSTS, Hybrid, Prophet, ETS, NNAR, and SARIMA models.
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4.3. Time series models

Through the comparison of six time series forecasting models, we found that the NNAR(10, 1, 6)[12] model excelled in
predicting the hepatitis B cases in Xiamen. The good performance of the NNAR model in predicting other infectious diseases,
such as Foot and Mouth Disease and Tuberculosis, has also been corroborated in existing research (Punyapornwithaya et al.,
2022; Yadav et al., 2023). Our study applied the NNAR model to predict hepatitis B cases for the first time, revealing its
superior performance over other selected models in handling monthly hepatitis B case data characterized by seasonality and
non-linearity. Given this finding, the NNARmodel may be considered a viable option for forecasting the number of hepatitis B
cases in future studies.

In addition, we found that the Hybrid model's performance was second only to the NNAR model. The Hybrid model, by
combining the SARIMA model, ETS model, STL, and NNAR model, allows for improved forecast accuracy by effectively
managing linear and nonlinear elements, as well as different components like errors, trends, and seasonal variations (Perone,
2022). Although the Hybrid model includes the NNAR model, during the modeling process, we employed a more robust and
computationally efficient "equal weights" method, which may have weakened the overall performance of the Hybrid model
compared to the standalone NNAR model. Furthermore, the BSTS model also demonstrated good predictive performance,
which is related to its effectiveness in handling uncertainty and stochastic behavior in the data (Almarashi & Khan, 2020).

As one of the most frequently utilized predictive models in hepatitis B forecasting research, the SARIMAmodel effectively
captures seasonal fluctuations (Fang, Cao, et al., 2023; Zhao et al., 2022). However, we found that the SARIMA model per-
formed slightly below the average when compared to all other models considered in the study. This suggests that we should
be cautious when using the SARIMA model for forecasting monthly hepatitis B cases, as it may not effectively handle
nonlinear data and is more suitable for short-term forecasting (Zhao et al., 2022). In past research, the ETS and Prophet
models have not been used for forecasting hepatitis B data. However, our findings indicate that both the ETS and Prophet
models performed poorly in this context. This may be related to the Prophet model's emphasis on ease of use and tuning at
the expense of model performance, and the ETS model's inadequacy in handling nonlinear data (Adeyinka & Muhajarine,
2020; Ogallo et al., 2023).

The NNAR(10, 1, 6)[12] model, which has demonstrated the highest performance, predicts that the number of hepatitis B
cases in Xiamenwill remain high from 2023 to 2027. This finding highlights the continued severity of hepatitis B incidence in
Xiamen, underscoring the need for timely intervention measures. Therefore, it is crucial to strengthen vaccination among
high-risk adult populations (such as family members living with hepatitis B patients, healthcare workers, sex workers, in-
dividuals with multiple sexual partners, and men who have same-sex sexual behavior) (WorldHealthOrganization, 2016).
Additionally, increasing the accessibility of hepatitis B testing and expanding treatment accessibility through the community
are essential to reduce transmission and control the burden of hepatitis B. Furthermore, enhancing public knowledge about
the prevention and control of hepatitis B through public health education is imperative to strengthen individuals' health
management awareness.

Our studies had some limitations. Firstly, due to the APC model's requirement for the period interval to match the 5-year
age interval, data from 2004 to 2007were not included in the APCmodel analysis, potentially limiting our full use of this four-
year dataset. Secondly, although the study attempted to explore the age, cohort, and period effects on hepatitis B incidence in
Xiamen using the APC model, it was unable to quantify specific risk or protective factors, such as the impact of vaccination
programs. Thirdly, in our predictivemodels, we primarily based our forecasts on incidence datawithout incorporating related
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external factors, such as public health policies or socio-economic developments. Future research could benefit from including
more external variables and exploring more complex models that can handle multiple inputs and interactions. Lastly, the
inherent uncertainty of long-term forecasts, due to potential shifts in epidemiological patterns and public health in-
terventions, poses a challenge. To ensure accuracy and relevance, it is essential to monitor epidemiological patterns regularly
and update the model with new data.

5. Conclusion

Although the incidence rate of hepatitis B in Xiamen has generally shown a declining trend over the past 19 years, the best-
performing model, the NNAR model, predicts that the number of hepatitis B cases will remain high in the next five years.
Therefore, it is necessary to maintain ongoing efforts in the prevention and control of hepatitis B, particularly by imple-
menting targeted interventions among adults with higher incidence rates.
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