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ABSTRACT
Colorectal cancer lymph node metastasis, which is highly associated with the patient’s cancer 
recurrence and survival rate, has been the focus of many therapeutic strategies that are highly 
associated with the patient’s cancer recurrence and survival rate. The popular methods for 
classification of lymph node metastasis by neural networks, however, show limitations as the 
available low-level features are inadequate for classification, and the radiologists are unable to 
quickly review the images. Identifying lymph node metastasis in colorectal cancer is a key factor in 
the treatment of patients with colorectal cancer. In the present work, an automatic classification 
method based on deep transfer learning was proposed. Specifically, the method resolved the 
problem of repetition of low-level features and combined these features with high-level features 
into a new feature map for classification; and a merged layer which merges all transmitted 
features from previous layers into a map of the first full connection layer. With a dataset collected 
from Harbin Medical University Cancer Hospital, the experiment involved a sample of 3,364 
patients. Among these samples, 1,646 were positive, and 1,718 were negative. The experiment 
results showed the sensitivity, specificity, positive predictive value (PPV) and negative predictive 
value (NPV) were 0.8732, 0.8746, 0.8746 and 0.8728, respectively, and the accuracy and AUC were 
0.8358 and 0.8569, respectively. These demonstrated that our method significantly outperformed 
the previous classification methods for colorectal cancer lymph node metastasis without increas-
ing the depth and width of the model.
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1. Introduction

Colorectal cancer (CRC) is the second and third 
most common cancer diagnosed in men and 
women, respectively, and it is the second most 
deadly cancer of all types [1]. The incidence and 
mortality rates of CRC have been rapidly rising 
over the last two decades. There was 1,000,000 new 

cases of CRC and 529,000 CRC-caused deaths in 
2002, and the numbers rose to 1,800,000 and 
881,000 in 2018 [2–5]. It has become a heavy 
burden in global health [6]. In the Asia-Pacific 
region, CRC has clearly developed into a grave 
health threat [7]. CRC incidence has been rapidly 
rising among adults under the age of 50 [8], but 
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the outcomes of colorectal cancer treatment have 
remained unsatisfactory over the last decade [9]. 
Hence, it is necessary to make appropriate preven-
tion and treatment plans for CRC.

In clinical practice, the presence of CRC lymph 
node metastasis (LNM) is a significant factor con-
tributing to CRC prevalence [10], and it is impor-
tant to determine whether LNM is present in 
patients with CRC because therapeutic strategies 
differ for patients with and without metastasis 
[11]. For cases of CRC with LNM, surgical resec-
tion accompanied by lymph node (LN) dissection 
is necessary, whereas endoscopic resection is more 
appropriate for cases without LNM [11]. 
Therefore, accurate detection of LNM is critical 
for the selection of therapeutic plans for CRC 
patients [12]. In addition, LNM is one of the 
determinants of the patient survival rate and the 
primary reason for CRC recurrence [12,13]. CRC 
patients with LNM have a 5-year survival rate 
within 50–68%, with a higher risk of loco- 
regional recurrence. However, for patients without 
LNM, the 5-year survival rate increases to 95%, 
and the risk of loco-regional recurrence is rela-
tively lower [14,15]. As a result, the classification 
of CRC LNM is critical for the preoperative treat-
ment plan. To date, the tumor-node-metastasis 
(TNM) staging system is the most widely used 
system in the classification of CRC LNM [16]. 
The TNM staging system, devised by the 
American Joint Committee on Cancer (AJCC) 
[17], is currently the most widely accepted system 
of staging for CRC. This system comprises three 
main parameters: T, which reflects the depth of 
bowel wall infiltration by the primary tumor; N, 
which indicates the involvement of regional LNM; 
and M, which refers to distant metastasis spread. 
There are subsets in T, N and M staging, respec-
tively; T, N and M combined with integer or letter 
represent the condition of primary tumor, LN 
metastasis and distant metastasis spread, respec-
tively. N staging is the focus of the system. There 
are five stages in N staging system, including NX, 
N0, N1, N2 and N3. The suffix of N represents the 
extent of lymph node metastasis: NX denotes that 
the regional lymph nodes cannot be assessed; N0 
represents no regional lymph node metastasis, and 
N1~ N3 represents the increasing involvement of 
regional lymph nodes. However, the diagnostic 

efficiency by the TNM staging system remains 
insufficient [18] and could not support selection 
of a preoperative treatment plan [19]. Thanks to 
technological advances, deep learning has been 
applied to medical image analysis [20,21] for 
breast cancer [22], lung cancer [23], colorectal 
cancer [24], and cancer metastasis [25]. 
Nowadays, deep learning has become a powerful 
tool in cancer diagnosis. Creating a deep learning 
algorithm from scratch requires a large amount of 
data. Detection of CRC LNM by deep learning, 
therefore, also require many previously-verified 
images, but these images are hardly attainable 
because few relevant reports or literature about 
CRC LNM classification are currently available. 
Currently, different types of medical images have 
been used for detection of CRC LNM, including 
images from endorectal ultrasound (ERUS), com-
puted tomography (CT), and magnetic resonance 
imaging (MRI), and MRI images are preferred to 
the other two [26–28]. As radiologists could not 
rapidly review and classify a large number of 
images [29], the method of ‘clinical and engineer-
ing combination’ is employed. In recent years, 
radionics has been increasingly used in the evalua-
tion of tumors. An MRI-based radiomics model 
has been used to distinguish tumors from benign 
tissues and reflect the histological characteristics of 
rectal cancer [30,31]. Hence, the present study 
explores the method of CRC LNM classification 
using MRI.

Since the methods of transfer learning have 
been classified by Pan et al. [32], many researchers 
have been attracted to it. Compared with previous 
methods [33–38], transfer learning does not 
require a specific amount of labeled data, and it 
could automatically extract features from raw data. 
In recent years, transfer learning by utilizing deep 
learning has become an attractive and active topic 
in the field of image analysis [39]. Deep transfer 
learning directly uses a deep pre-trained model 
that has been trained by a large-scale dataset 
(e.g., ImageNet) to transfer the knowledge from 
the source domain to the target domain.

Deepak et al. presented a method for the classi-
fication of brain tumors on MRI images [40]. They 
modified and fine-tuned a GoogleNet pre-trained 
model to extract features, and the experiment 
result showed that classification accuracy was 
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98%. Cheng et al. proposed a method for the 
classification of abdominal ultrasound images 
using deep transfer learning with VGGNet [41]. 
In their method, the weights of the first 13 con-
volution layers of the model were frozen, and then 
used for feature extraction; their experimental 
results demonstrated that deep transfer learning 
was more effective for classification of abdominal 
ultrasound images than other methods. Ragab 
et al. [42] used the AlexNet pre-trained model 
for feature extraction, with the support vector 
machine (SVM) as a classifier. In these above- 
mentioned methods [40–42], the features of the 
final classification were extracted by fine-tuning 
the pre-trained model. The advantage of this 
extraction method is that features could be 
extracted and transferred layer by layer. The 
extracted features are transformed from low-level 
to high-level, and the high-level features are used 
for classification. However, this will lead to a lack 
of feature richness. Although the pre-trained 
model could extract high-level features, the fea-
tures are short of diversity and it is likely to lose 
many useful features. Furthermore, though fine- 
tuning of the pre-trained model is a simple and 
effective, numerous extraction attempts are made 
before suitable parameters are identified. Even 
though there is currently a grid search method 
[43], the parameters are related to the result of 
splitting the original dataset, and the grid search 
is time-consuming. More parameters indicate 
more candidate values and hence larger time 
consumption.

As more classification methods are developed, it 
turns out that the richness of features is essential 
to a medical image classification system [44]. In 
these classification systems, the features extracted 
from a deep model were combined with the tradi-
tional features, then the features were validated on 
some specific datasets and achieved productive 
results. The process of feature fusion contains 
handcrafted features, which may affect the accu-
racy of the method. Hence, we need a new auto-
mated approach to reuse the abandoned features 
(low-level features) and then combine them with 
high-level features for final classification. The fea-
tures extracted by a pre-trained model are divided 
into low-level and high-level features by nature 
[45]. The features extracted at the low level have 

higher resolution, as well as more information on 
the location and spatial detail, e.g., points, lines, or 
edges. The features extracted from the high level 
exhibit greater semantic information. If the low- 
level features are combined with high-level seman-
tic features, the classification effect can be 
improved. Similar methods have been used in the 
field of medical imaging [46,47].

Inspired by these successful studies, we pro-
posed a classification method that combines low- 
level and high-level features to classify the CRC 
LNM. This study demonstrated a method for clas-
sification of CRC LNM medical images. The 
method is known as feature multi connection 
(FMC), which resolves the problem of reusing of 
low-level features, and combines low-level features 
with high-level features into a new feature map for 
the final classification. All features are extracted 
automatically by the pre-trained model. 
Automation avoids manual handling that can 
affect feature classification results. The method 
had a larger number of transfer features so that it 
could improve the features to be reused. Besides, 
in the proposed method, a merged layer was cre-
ated to merge all transmitted features, and the 
dimension of the merged layer was determined 
by five comparative experiments. The major 
advantage of this method is that it does not require 
fine-tuning of all parameters of the pre-trained 
model. Moreover, the interpretability of the 
method is important in medicine for proper ana-
lysis and diagnosis. The convolutional neural net-
work (CNN) is the core of many pre-trained 
models, but the CNN remains a black box difficult 
to interpret. Therefore, in the present work, the 
lesions’ heat-map was utilized to solve the problem 
of interpretability.

First, the FMC method based on the structure of 
AlexNet was presented, and real data were used to 
build a dataset; then, the results of seven automatic 
classification methods and four radiologists were 
obtained; through experiments, these results com-
pared with the result achieved by the FMC method 
from six aspects: sensitivity, specificity, positive 
predictive value (PPV), negative predictive value 
(NPV), accuracy, and AUC. The experiment 
showed that the method proposed in this study 
significantly outperformed the previous classifica-
tion methods in CRC LNM classification without 
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increasing the depth and width of the model. In 
the present work, it was assumed that improving 
the number of transferred features could increase 
the performance of the method in CRC LNM 
classification. Hence, the way of feature transmis-
sion was changed based on the AlexNet network 
structure, and a merged layer was added to com-
bine low-level features with high-level features for 
final classification so as to achieve a better method 
for CRC LNM classification.

2. Data and methods

2.1. Data

The data were collected from Harbin Medical 
University Cancer Hospital between April 2018 
and March 2019. The criteria of data were as 
follows: (I) patients diagnosed with colorectal can-
cer by endoscopic biopsy and scheduled to 
undergo surgery within 2 weeks after MRI; (II) 
patients with no history of treatment before the 
MRI; (III) patients who had no contraindications 
and could undergo high-resolution MRI; (IV) 
patients with at least one mesorectal (peritumoral) 
or superior mesenteric LNs on MRI; and (V) the 
standard of all samples was a LN diameter of the 
lymph node greater than 3 mm. Finally, the data-
set contained a sample of 3,364 patients. Among 
these samples, 1,646 were positive, and 1,718 were 
negative. All patients underwent 3.0 T magnetic 
resonance imaging (MRI) scans before surgery 
using Philips Achieva, with a 16-channel torso 

array coil. Then, the objective lymph node (LN) 
in the sagittal, transverse, and coronal images was 
located. All images used in the present study had 
been marked as CRC LNs and classified as nega-
tive or positive by experienced radiologists. All 
patches were manually segmented by experienced 
radiologists, and the image size was based on the 
lesion to be intercepted. Figure 1 presents the CRC 
lymph node.

2.2. Methods

Figure 2 shows the architecture of our method. 
The foundation of our method is AlexNet CNN 
[48]. AlexNet is the initial landmark breakthrough 
for image classification. It has significantly out-
performed the second runner-up in the ImageNet 
ILSVRC challenge. Furthermore, AlexNet has dis-
played strong adaptability to a variety of medical 
image classification scenarios [49,50]. It has been 
chosen as the foundation of many medical meth-
ods [51–53].

The method proposed in this study was moti-
vated by previous studies [54,55]. The purpose of 
this method was to increase the flow of features. 
Traditional deep learning models use the output of 
the previous layer as the input of the latter layer. 
This type of connectivity pattern limits the fea-
tures transfer and results in loss of some useful 
features. In the present work, a new connectivity 
pattern was designed and a merged layer was built 
to merge features of all previous convolutional 

Figure 1. CRC LN. The top row are negative, the bottom row is positive.
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layers, as shown in Figure 2. Consequently, the 
formula is as follows:

xl ¼ Hl xn þ xnþ1 þ . . .þ xl� 1ð Þ (1) 

where x is the input, l is the location of a layer, n is 
the position of the starting layer, n < l, 
xn þ xnþ1 þ . . .þ xl� 1ð Þ is the adding of features 

from n to l-1.
Retraining is the process of iterating. The aim of 

the process is to explore weight w, which could 
minimize the loss of the model:

L w;Xð Þ ¼
1
n

Xn

i¼1
l f xi;wð Þ; ĉið Þ (2) 

where X is a training dataset that contains n images, 
xi is the i � th image of X, f xi;wð Þ is the CNN 
function that predicts the class ci of xi given w, ĉi 
is the ground-truth class of the i � th image, and 
l ci; ĉið Þ is a penalty function for predicting ci instead 
of ĉi . And l was set to the logistic loss function.

The initial weights are from the pre-trained 
model. In adaptation to CRC LNM medical images 
dataset, we used SGD to retrain and back- 
propagation to update weights. The method of 
updating the weight is as follows:

viþ1 ¼ 0:9 � vi � 0:0005�

2 �wi� 2 �h
@L
@w
jwi
iDi

(3)  

wiþ1 ¼ wi þ viþ1 (4) 

where v is variable of momentum, and the 
momentum is 0.95, weight decay is 1e-6, learning 
rate (LR) is 1e-4. The iteration index is i, 2 is the 
learning rate, and @L

@w jwi Di 
is the average over the 

i � th batch Di of the derivative of the objective 
with respect to w, evaluated at wi .

During model retraining, local response nor-
malization (LRN) was used to improve general-
ization. The normalized value bi

x;ywas provided as:

bi
x;y ¼

ai
x;y

kþ α
Pmin N� 1;iþn=2ð Þ

j¼max 0;i� n=2ð Þ
aj

x;y

� �2
� �β (5) 

where ai
x;yis the value of i � th kernel output at 

position x; yð Þ, N is the total number of kernels in 
the current layer. Other hyper-parameters were set 
as follows: k = 2, n = 5, alpha = 0.0004, beta = 0.75.

According to [56], features of the first three 
convolutional layers in a CNN were general. 
Hence, the proposed method started from the 
third convolutional layer. The output from the 
current convolutional layer (the third convolu-
tional layer) was taken as the input of all subse-
quent convolutional layers until reaching the 
merged layer. The next convolution layers 
repeated the operation of the previous ones. All 
outputs of previous convolutional layers were 
merged into a feature map, which would be con-
sidered as the final input. The merged layer 
reduced the dimension of the final feature map 
and extracted the most useful features for classifi-
cation. Then it was transmitted to the dense layer 
until the classification layer. The proposed method 
could improve the performance of classification by 
reusing features in a better way and avoiding loss 
of useful features. Table 1 shows the pseudo-code 
of the merged layer algorithm, where h;w; c repre-
sent the height, width, and channels of the input 
image, respectively; f denotes the features of the 

Figure 2. Architecture of our method.
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convolutional layer and the footnote of f indicates 
the number of the convolutional layer.

To improve the interpretability, the lesions’ 
heat-map was used to visualize the region of fea-
tures that were extracted by the method. The heat- 
map was drawn from the outputs of the final 
convolutional layer. Formally,

Mc ¼
X

k
wc;kfk (6) 

where Mc is the sum of classification feature 
weights, fk is the kth feature map, wc;k is the weight 
of the final convolutional layer for feature map k 
leading to lesions c.

3. Experiment

All experiments of the present study used the same 
dataset. The dataset was randomly spilt into 
a training set (80%), a validation set (10%) and 
a test set (10%). The correct width of the merged 
layer could improve the ability of representation. 
Therefore, the width of the merged layer was mea-
sured. Classification accuracy was used as 
a determination metric. We used different widths 

varying from 32 to 4,096 of the merged layer on 
the CRC LNM dataset, increasing with a power of 
2 each time. Then, the dimension with the highest 
classification accuracy was selected. Then, based 
on the previous experiment, the effects of different 
connection patterns on the classification results 
were tested. There were five styles, as shown in 
Figures 3–7. In Figures 3 and 4, additional input of 
the conv5 layer and merged layer were taken from 
the output of the conv3 layer, named AlexNet-A 
and AlexNet-B, respectively. In Figure 5, the out-
put of the conv4 layer and the conv5 layer was 
used as the input of the merged layer, named 
AlexNet-C. We defined Figure 6 as AlexNet-D. 
The output of the conv3 layer was seen as an 
additional input of the conv4 layer, then the out-
put of conv4 and conv5 as the last input to the 
merged layer. The last structure was AlexNet-E, as 
shown in Figure 7, the input of the merged layer 
from the output of conv3, conv4, and conv5, 
respectively.

To measure the performance of the proposed 
method for CRC LN metastasis classification, it 
was compared with the AlexNet model, AlexNet 
pre-trained model, CNN-AlexNet pre-trained 
model with SVM, deep domain confusion (DDC) 
[57], deep adaptation networks (DAN) [58], 
Resnet152 [59] and Densenet161 [55] for classify-
ing CRC LN metastasis.

In our method, the first step was to load the 
AlexNet pre-trained model to initialize the weight 
of all parameters. As previously described [60], the 
weights represented the extracted features, and 
according to previous research [56], features 
extracted by the first three convolutional layers 
were general features, and their transferability 
was proved to be better. Hence, the weights of 
the first three convolutional layers were frozen 

Table 1. Pseudo-code of the method algorithm.
Algorithm: Method algorithm
1 : Input(h, w, c); 
2 : F output, F total, f 1, f 2 . . . . . . f n ; 
3 : f 1 (Input(h, w, c)) ; 
4 : f 2 ; (f1) ; 
5 : f 3 (f1 + f2); 
. . . . . . 
6 : f n (f 1 + f 2 + . . . . . . +f n-1) ;
7 : F total (f 1 + f 2 + . . . . . . + f n) ; 
8 : Δ ‘+’ indicates concatenate operation 
9: Δ ‘’ indicates convolution operation
10: F output [∑ (F total) 

p] 1/p ;
11 : return F output

Figure 3. Structure of AlexNet-A.
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(fixed), followed by back-propagation to retrain 
other convolutional layers, as well as fully con-
nected and classifier layers. The method was run-
ning on the GPU (NVIDIA, GTX1080Ti). The 
stochastic gradient descent (SGD) [61] was used 

as the optimizer. The learning-rate (LR) was set at 
1e-4, decay was 1e-6, momentum was 0.95, and 
the epoch was 200. As CRC LNM classification is 
a binary classification, the binary_crossentropy 
was used as the loss function. Other methods for 

Figure 4. Structure of AlexNet-B.

Figure 5. Structure of AlexNet-C.

Figure 6. Structure of AlexNet-D.

Figure 7. Structure of AlexNet-E.
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comparison were implemented as specified in lit-
erature. In DDC [57] and DAN [58], we selected 
ImageNet as a source domain and then completed 
domain adaptation with the target domain (CRC 
LN dataset).

To explain the internal relationship between 
input data and the predicted label has been 
a vital and constant problem in the CNN-based 
classification models [62]. In the present study, 
a classification heat-map was employed to 
improve the interpretability of the model [63]. 
This experiment contained three steps. First, 
a model was used to display the last convolu-
tional layer feature-map; second, the feature- 
map was converted into a heat map.; last, the 
raw data and heat maps were superimposed into 
a new image.

In the present work, all methods were imple-
mented by Keras [64], with the backend of 
TensorFlow [65]. This high-level neural network 
API written in Python is capable of running on 
top of TensorFlow, CNTK, or Theano. 
Furthermore, it can also run seamlessly on the 
CPU and graphics processing unit (GPU), while 
TensorFlow is selected as the backend. 
TensorFlow was created by the Google Brain 
team for machine learning applications and sup-
ports the running the training operation of net-
works on GPU.

Furthermore, four radiologists with 5-plus 
years’ clinical experience reviewed the images of 
CRC LNM, and they independently determined 
the status of LN. The criteria included irregular 
borders, heterogeneous signal intensity, and round 
shape: LN with two or all of them are suspicious. 

Then, the diagnosis results by the radiologists were 
compared with our method.

4. Results

In this study, a method for CRC LNM classifica-
tion was proposed. The main idea of this classifi-
cation method was to improve the number of 
transferred features, combine low level features 
with high level features to form a richer new 
feature map for final classification.

The relationship between the accuracy of classi-
fication and dimension of the merged layer is 
shown in Figure 8. The result displayed in 1024 
was the most optimal dimension for the merged 
layer. The results of different connection patterns 
were shown in Table 2. The classification accuracy 
from AlexNet-A to AlexNet-E were 0.7598, 0.7725, 
0.7968, 0.8088 and 0.8156, respectively.

The final results of all the methods were shown 
in Table 3, with the accuracy curve shown in 
Figure 9 and the receiver operating character 
curve (ROC curve) in Figure 10. The method 
proposed in this study achieved a classification of 
0.8358, and an AUC of 0.8569. The experiment 
results showed that our method performed better 
than other methods on CRC LNM classification. 
Therefore, the MC method could effectively boost 
the performance of the AlexNet pre-trained model 
on the CRC LNM classification.

Although CNN had made an unprecedented 
breakthrough in a variety of computer imaging 
techniques, clear interpretation was still needed. 
Heat-maps improved the interpretability of the 
CNN model by identifying discriminative regions. 

Figure 8. Relationship between accuracy and dimension.
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As shown in Figure 11, the last convolution layer 
features a heat-map superimposed on the original 
MRI image so that the location of the actual lymph 
node and the region highlighted by the model 
could be compared. Red regions represent class 
information, while others correspond to class 
evidence.

The experimental results diagnosed by four 
radiologists are shown in Table 4. The sensitivity, 
specificity, PPV, and NPV from Radiologist 1 were 

0.5443, 0.7091, 0.6467, and 0.6142, respectively, 
while the accuracy and AUC were 0.6279 and 
6263, respectively. The sensitivity, specificity, 
PPV, and NPV from Radiologist 2 were 0.6283, 
0.6047, 0.6278, and 0.6616, respectively, while the 
accuracy and AUC were 0.6432 and 6433, respec-
tively. The sensitivity, specificity, PPV, and NPV 
from Radiologist 3 were 0.6986, 0.6445, 0.6573, 
and 0.6613, respectively, while the accuracy and 
AUC were 0.6717 and 6711, respectively. The sen-
sitivity, specificity, PPV, and NPV from 
Radiologist 4 were 0.7239, 0.6174, 0.6481, and 
0.6896, respectively, while the accuracy and AUC 
were 0.6694 and 6699, respectively.

Table 2. Accuracy of five structure.
Name AlexNet-A AlexNet-B AlexNet-C AlexNet-D AlexNet-E

Accuracy 0.7598 0.7725 0.7968 0.8088 0.8156

Table 3. Classification result on crc lnm metastasis classification.
Method Sensitivity Specificity PPV NPV Accuracy AUC

AlexNet model 0.6708 0.6711 0.6714 0.6706 0.6716 0.7696
AlexNet-pretrained model 0.8004 0.7997 0.7992 0.8009 0.7583 0.7941
CNN-AlexNet with SVM 0.7015 0.7015 0.7015 0.7015 0.6920 0.7702
DDC 0.5 0.3478 0.7196 0.1720 0.4670 –
DAN 0.4393 0.4815 0.8444 0.1182 0.4834 –
ResNet152 0.6801 0.6801 0.6801 0.6801 0.6801 0.7327
DenseNet161 0.625 0.625 0.625 0.625 0.625 0.6281
Ours 0.8732 0.8741 0.8746 0.8728 0.8358 0.8569

‘ – ’ indicates the value of AUC less than 0.5 

Figure 9. Accuracy curve of six methods on CRC LNM classification.

Figure 10. ROC curve of six methods on CRC LNM classification.
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5. Discussion

Based on the results of the experiment, 1024 is the 
optimal dimension of the merged layer for CRC 
LNM classification, as shown in Figure 8. Hence, 
1024 dimensions were adopted for the merged 
layer in our method. The merged layer likes reg-
ularization, and all features from previous convo-
lutional layers are regularized in this layer and 
merged with a large feature-map. Then, the fea-
tures most useful for classification were selected. It 
was infeasible to select the whole feature-map as 
the first dense layer input since it would be harm-
ful for classification. The dense layer will connect 
all parameters for classification, which means that 
more feature dimensions will result in more com-
putation. Therefore, selecting an appropriate 
dimension can improve the performance of classi-
fication. Figures 3–7 and Table 2 reveal the follow-
ing findings. First of all, the output of the 
convolutional layer in the same position was trans-
ferred to different positions, which exerted an 
impact on the classification result, such as 
AlexNet-A and AlexNet-B. Although there were 
additional inputs in both structures, the classifica-
tion accuracy of AlexNet-B was higher than 
AlexNet-A. Since the output of the conv3 layer 
had been transferred to the merged layer as the 
additional input in AlexNet-B, it directly increased 
the richness of the input for the merged layer. 

Therefore, it could effectively improve the dimen-
sions of classification features. Moreover, compar-
ing AlexNet-B with AlexNet-C revealed that the 
additional input of the merged layer from the out-
put of conv4 was more useful than that of the 
conv3 layer. The features extracted by the convo-
lutional layer at different locations have different 
effects on the results, with features extracted at the 
back more specific and useful for CRC LNM clas-
sification. This finding was verified by the experi-
mental results of the two structures. In the end, it 
was also found that the classification accuracy is 
related to the number of transfer features. As the 
number of transfer features increased, the classifi-
cation accuracy improved. In AlexNet-D and 
AlexNet-E, we increased the number of transfer 
features and found that the classification accuracy 
improved. Furthermore, the classification accuracy 
of AlexNet-E was better than the other four 
structures.

The method proposed in this study is feasible, 
considering it is a combination of AlexNet-A to E, 
and our idea has been validated by CRC LN.

Deep transfer learning could be applied in CRC 
LNM classification, and the classification result was 
better than deep learning. Additionally, classification 
accuracy is related to the number of features on CRC 
LNM classification. As shown in Table 3 and Figure 
9, our method has the highest accuracy among all 
classification methods. Since the CRC LN data could 

Figure 11. CRC LN classification heat-map. Left is the original image; the middle is the feature heat-map; right is the superimposed 
image.

Table 4. Classification result of four radiologists and our method.
Method Sensitivity Specificity PPV NPV Accuracy AUC

Radiologist1 0.5443 0.7091 0.6467 0.6142 0.6279 0.6263
Radiologist2 0.6823 0.6047 0.6278 0.6616 0.6432 0.6433
Radiologist3 0.6986 0.6445 0.6573 0.6613 0.6717 0.6711
Radiologist4 0.7239 0.6174 0.6481 0.6896 0.6694 0.6699
Ours 0.8732 0.8741 0.8746 0.8728 0.8358 0.85697
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not be used in AlexNet trained from scratch, the 
AlexNet model performed worse than others in the 
classification task. The parameters of AlexNet could 
not be fitted by the limited CRC LN data. The 
AlexNet pre-trained model and CNN-AlexNet with 
SVM utilized different classifiers to classify features 
that were extracted by pre-trained AlexNet CNN. 
Therefore, the final classification results were distinct. 
Our method changed the connection mode and 
increased the number of feature transfers so that the 
final feature map contained rich classification infor-
mation, which was helpful in improving the classifi-
cation performance.

Domain adaptation was proved useless for CRC 
LNM classification. In previous years, domain 
adaptation was the main idea of transfer learning 
or deep transfer learning [66–68]. The method of 
domain adaptation involves mapping the source 
domain (lots of labeled data) and the target 
domain (little or no label data) to a high dimen-
sion space (e.g., reproducing kernel Hilbert space 
(RKHS) [69]) so that the distribution of data from 
the two domains is consistent, and then the max-
imum mean discrepancy (MMD) [69] is used to 
measure the discrepancy between datasets. 
However, the method is not easy to understand, 
and additional calculation was required, posing 
obstacles to medical technicians. Although Tzeng 
et al. [57] and Long et al. [58] performed well in 
Office31 [70], they still could not outperform our 
method in CRC LNM classification. Classification 
features are the same in the three datasets of 
Office31. Therefore, the features extracted from 
one dataset could be transmitted to the other 
two. Additionally, domain adaptation could 
improve the performance of transfer; however, 
there are some differences between our dataset 
and ImageNet, such as data distribution, channels, 
and classification features. Experimental results 
showed the domain adaptation underperformed 
on CRC LNM classification. Therefore, the fea-
tures from the source domain could not be trans-
mitted to our dataset by domain adaptation.

The method proposed in this study is effective 
in CRC LNM classification and better than other 
methods, as shown in Table 3. By changing the 
convolutional layers connection, acquiring more 
input (features) for the next layer than tradi-
tional connection, our method could improve 

feature reuse and prevent loss of classification 
information. All features of the previous convo-
lutional layers are transmitted to the merged 
layer before being merged into the feature map 
to support classification. In addition to this, the 
width and depth of deep model architecture did 
not change, and the parameters of the model did 
not increase. Therefore, more classification fea-
tures could be acquired by retraining a small 
number of parameters, and the deep model 
could be applied to a small dataset of medical 
images. Finally, the experimental result con-
firmed that our method could improve the clas-
sification accuracy and is easy to comprehend. 
Weights of convolutional layers of the general 
features were frozen, and the rest parameters 
were retrained so that the final features could 
be useful for the classification, thereby improving 
the number of acquired features and merging all 
features except frozen convolutional layers to 
improve classification performance.

As shown in Figure 11, the visualization 
experiment could show the model-focusing 
region of the input image. The classification 
heat-map represents evidence of the CNN 
model-based classification and could assist in 
clinical decision-making by directly identifying 
the region of interest.

To the best of the authors’ knowledge, accurate 
detection of CRC LNM could provide reference 
indicators for design of treatment strategies and 
prognosis evaluation. In this study, the experimen-
tal data were checked in a node-by-node manner 
by the radiologists and pathologists to ensure that 
all data were properly classified, and to guarantee 
high reliability for data analysis. As shown in 
Table 4, Radiologist1’s sensitivity, specificity, 
PPV, NPV, accuracy and AUC were 0.5443, 
0.7091, 0.6467, 0.6142, 0.6279 and 0.6263, respec-
tively. Radiologist2’s were 0.6823, 0.6047, 0.6278, 
0.6616, 0.6432 and 0.6433, respectively. 
Radiologist3’s were 0.6986, 0.6445, 0.6573, 0.6613, 
0.6717 and 0.6711, respectively. Radiologist4’s 
were 0.7239, 0.6714, 0.6481, 0.6896, 0.6694 and 
0.6699, respectively. The status of LN was 
a major basis for later treatment, but the results 
of the current preoperative evaluation were not 
satisfactory. There were two reasons for this: first, 
as the histopathological nodes were not matched, 
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the result of imaging nodes was unreliable; second, 
LN of extremely small sizes could not be distin-
guished. Therefore, the proposed method could 
provide an alternative solution to observation by 
radiologists in identification of CRC LNM.

Finally, the classification performance of our 
method was assessed by four radiologists, as shown 
in Table 4 and Figure 12. The method proposed in 
this study reached a satisfying outcome. The sensi-
tivity, specificity, PPV, NPV, accuracy, and AUC 
were 0.8732, 0.8741, 0.8746, 0.8728, 0.8358 and 
0.8569, respectively. Compared with the diagnostic 
accuracy of radiologists (0.6279–0.6717), the accu-
racy achieved by our proposed method was higher. 
Hence, the presented method could improve the 
accuracy of CRC LNM detection and is more cred-
ible in the guidance of treatment and prognosis.

Despite the findings, there are limitations in the 
present work. First, the size of the LNM was lim-
ited. In the dataset, in the observation by radiolo-
gists, the diameter of the LN must be greater than 
3 mm, while LN smaller than 3 mm did not enroll. 
Second, a benchmark was lacking in this study. 
Though real data were collected from 
a cooperative hospital, the data were inadequate 
to support further research attempts, e.g., training 
a model from scratch.

6. Conclusion

In the present work, a novel feature multi- 
connection (FMC) architecture was proposed, 
and the features-merged layer based on AlexNet’s 
pre-trained model was used to increase CRC LNM 
classification accuracy. Experimental results 

showed that this novel method significantly out-
performed other existing methods, and improved 
the accuracy of CRC LNM detection without 
increasing the depth and width of the model. 
Therefore, this new method was proved useful 
for CRC LNM classification and can provide 
objective second opinions for clinical treatment.

More research efforts will be made in the future 
to address the current deficiencies of the structure 
and improve the classification performance of 
CRC LNM.

Highlights

(1) The number of transferred features was 
increased.

(2) A merged layer was created to form a new 
feature map;

(3) Low-level features were combined with 
high-level features for classification;

(4) Experiment data were real data and prepro-
cessed by radiologists.
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