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The clinical application of immunotherapy is the milestone of cancer treatment. However,
some patients have bad reaction. Cyclooxygenase-2 (COX-2) is frequently expressed in
multiple cancer cells and is associated with poor prognosis. It is the key enzyme of
prostaglandin E2 (PGE2) that has been proved to promote the development, proliferation
and metastasis of tumor cells. Recent studies further find the PGE2 in tumor
microenvironment (TME) actively triggers tumor immune evasion via many ways, leading
to poor response of immunotherapy. COX-2 inhibitor is suggested to restrain the
immunosuppression of PGE2 and may enhance or reverse the response of immune
checkpoint inhibitors (ICIs). This review provides insight into the mechanism of COX-2/
PGE2 signal in immunosuppressive TME and summarizes the clinical application and trials
in cancer treatment.

Keywords: cyclooxygenase-2, immunotherapy, cancer, combination therapy, celecoxib
INTRODUCTION

Cancer is a global health problem. In recent years, immunotherapy has become a hot spot. ICIs, the most
popular kind of immunotherapy, for variety of cancers have shown better efficacy than conventional
chemotherapy. However, there are remaining questions needed to be resolved. The main two important
questions were: Why the response to ICIs are different in different patients? How to increase the
population benefiting from immunotherapy? Programmed death receptor-1 (PD-L1) expression, tumor
infiltration lymph cells (TILs) and tumor mutation burden (TMB) are considered to be associated with
ICIs efficacy (1). But even though the expression of PD-L1, the rate of TILs and the TMB are high in
some patients, the efficacy of ICIs is still limited, which points out a non-PD-1/PD-L1 axis mediated
immunosuppression (2). The leading theory explaining this phenomenon includes two aspects. One is
the intrinsic factors, such as cancer-driven signaling pathways, MHC downregulation, microsatellite
stability, etc. (3, 4). The another is extrinsic factors, known as TME. Cancer cells are closely related to
extracellular matrix, stromal cells, and immune cells, which together constitute TME (5) and these
components in TME impact the efficacy of ICIs, for example, the number of regulatory T cells (Tregs),
myeloid suppressor cells (MDSCs), dendritic cells (DCs) and the activity of indoleamine 2,3-dioxygenase
(IDO). TME is closely associated with inflammatory response and the inflammatory mediators in TME
can be produced by stroma, TILs or cancer cells themselves. Prostaglandin E2 (PGE2) is one of the most
important inflammatory factors in TME, which is related to the survival, growth, migration, invasion,
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angiogenesis and immune evasion of cancer cells (6).
Cyclooxygenase (COX) is the rate-limiting step enzyme that
produces PGE2. There are three isoforms: COX-1, COX-2, COX-
3 (7). COX-1, constitutively expressed in a wide range of normal
tissues, works as a housekeeping enzyme responsible for
maintaining tissue homeostasis. COX-3 is a splice variant of
COX-1, which is also called COX-1b or COX-1v. COX-2 barely
presents in most normal cells, but can be highly induced by
inflammation and cancer (8). Previous studies have shown that
COX-2 is overexpressed in most cancers and is associated with poor
prognosis (9, 10). With the rise of immunotherapy, more and more
studies have shown that COX-2 mediates immunosuppression via
multiple ways. This review summarizes the roles of COX-2 in the
resistance of ICIs and proposes a position and opportunity for
COX-2 inhibitors in combination with immunotherapy in cancers.
THE ACTIVATION OF COX-2/PGE2
PATHWAY IN CANCER

Gene encoding COX-2 is located on the chromosome 1q25.2‐
q25.3 in human, known as PTGS2. COX-2 is a membrane-bound
enzyme that plays a key role in synthesis of important biological
hormones-prostaglandins (PGs), such as PGE2, PGF2a and
thromboxane (11). COX-2 is usually negligible in normal cells
except basal expressed in a few organs, such as stomach, kidney,
central nervous and female reproduction. While it is frequently
expressed in most types of cancers, including lung cancer (12),
gastrointestinal cancer (13), breast cancer (14), head and neck
carcinoma (15), hepatocellular carcinoma, and etc (16). COX-2
overexpression is linked to many properties of malignant cells
including promoting carcinogenesis, increasing the rate of cancer
recurrence, reducing survival and mediating resistance of tumor
cells to treatment, through overproduction of PGs (17).

Oncogenic viruses, inflammatory cytokines can elevate the
expression of COX-2. Tumor intrinsic factors also upregulate
COX-2/PGE2 axis. Markosyan and his colleagues identified
PTGS2 was upregulated by EPHA2, a candidate tumor intrinsic
driver of immunosuppression, through TGF-b pathway in
pancreatic cancer (18). The reduction of RIPK3 in colorectal
cancer cells and MDSCs elicited NF-kb-transcribed COX-2, thus
to exacerbate the immunosuppressive activity of MDSCs (19). In
breast cancer, HDAC6 was frequently upregulated in the cancer-
associated fibroblasts(CAFs) and increased the expression of COX-
2/PGE2 by regulating STAT3 activation (20), leading to poor
survival outcomes. In addition, the aberrant activation of EGF
(21), KRAS (22), p38MAPK (23, 24) signals, which frequently
present in cancers, also induce COX-2 expression, thus to
mediate immunosuppression.
THE MECHANISM OF
IMMUNOSUPPRESSION MEDIATED BY
COX-2

Malignant cells can escape immune-surveillance by exhaustion of
CD8+ T cells expressing programmed cell death protein 1 (PD-1)
Frontiers in Oncology | www.frontiersin.org 2
and cytotoxic T-lymphocyte-associated protein (CTLA-4). ICIs are
a class of inhibitors that targeted immune checkpoint proteins
marked on the surface of cancer cells, like CTLA-4 receptor and
programmed cell death protein ligand 1 (PD-L1), so that to remove
the inhibition of T cells by cancer cells. Previous evidences suggested
that the impact of COX-2/PGE2 signal pathway in TME plays an
important role in immunosuppression and further induces ICIs
resistance. Long before the advent of immunotherapy in clinic, the
role of COX-2/PGE2 in immunosuppression was deeply studied
in laboratory.

COX-2/PGE2 Signal Inhibits T Cell
Infiltration
T cells infiltrated to tumors recognize and fight against antigen-
targeted tumor cells. The non-T cell inflamed tumors are usually
difficult to treat with ICIs (25). Markosyan showed that
compared with wild-type, the onset of breast tumors in ErbB2
transgenic mice with mammary epithelial cell COX-2 deficiency
(COX-2MEKKO) was delayed. COX-2MEKKO TME contained
more CD4+ T helper cells and CD8+ cytotoxic T lymphocytes
(CTL). The Th1 marker Tbet and Th2 marker GATA3 were
overexpressed, while Retnla, the marker of M2 macrophage cell
was lower expressed in COX-2MEKKO tumor than the wild-type,
suggesting an enhanced immune-surveillance (26).

Analysis of samples from human and mouse cancer cells
with low or high TIL density again confirmed the association
between COX-2 expression and T cell exclusion. In pancreatic
cancer (18), the intrinsic TGF-b signaling of tumor cells drives
the upregulation of EPHA2 on cell surface, which promotes
the overexpression of PTGS2. In vivo study, researchers
inoculated control and Ptgs2-knockdown (Ptgs2-KD) cells into
immunocompetent mice, with or without CD4+ and CD8+ T cell
depletion, resulting in a higher rate of tumor formation in
control cells. T cell depletion abolished the tumor growth
suppression afforded by Ptgs2 KD or celecoxib, which indicates
that the tumor suppression of PTGS2 is T cell dependent. In
PTGS2 overexpression tumors, the proportion of CD4+ and
CD8+ T cells and the percentage of activated CD8+ T cells
were significantly reduced. In addition, PTGS2 overexpression
increased the proportion of infiltrated myeloid cells, especially
myeloid-derived suppressor cells (MDSCs), with a decrease in
the dendritic cells (DCs) population.

A series of human cancer cells constitutively express
indoleamine 2,3-dioxygenase 1 (IDO1) that degrades tryptophan
and produces equimolar amounts of kynurenine, also mediates
immunosuppression. Marc Hennequart’s study indicated that
COX-2 expression drives the constitutive expression of IDO1. In
human tumor cell lines, constitutive IDO1 expression depends on
COX-2 and PGE2 via EP receptor through PKC and PI3K
pathways. Celecoxib treatment decreased IDO1 expression and
increased CD3+ and CD8+ cells infiltration in ovarian SKOV3
tumors (27).

COX-2/PGE2 Signal in NK-DC Crosstalk
Nature kill (NK) cell as a part of innate immunity plays an
important role in tumor immune surveillance. NK cells not only
directly recognize and kill tumor cells, but also release cytokines that
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promote CTL activation and proliferation. Park. A and his
colleagues showed thyroid cancer-derived PGE2 represses NK
maturation and the expression of NK receptors, such as NK44,
NK30, TRAIL and NKG2D (28). Inhibition of COX-2/PGE2 signal
pathway can recover the activation of NK cells in tumor-bearing
mice (29). Besides, Böttcher revealed the intercommunication
between NK cell and dendritic cells (DCs) (30). NK cells recruit
conventional type 1 DCs (cDC1) by release of CCL5 and XCL1.
Tumor-derived PGE2 impairs NK cell viability and chemokine
production, then decreases the recruitment of cDC1s to TME. DCs,
especially Batf3+ CD103+ cDC1, are essential in presenting tumor
antigen and secreting cytokines, such as CXCL9, CXCL10, that
regulate T cell function (31). CD103+ DCs were selectively absent in
tumor expressing COX-2. In an obesity-associated hepatocellular
carcinomamice model, the daily systemic therapy of PGE2 receptor
inhibitor for 3 weeks showed significant induction of cDC1
(CD103+ DC) frequency (32).

COX-2/PGE2 Signal Induces MDSCs
MDSCs can inhibit CTL activation by overexpression of
argininase 1 (ARG-1), inducing nitric oxide synthase (iNOS or
NOS2) and reactivating oxygen species (ROS), thus inducing
immune escape. COX-2/PGE2 signal pathway is associated with
the accumulation of MDSCs. In colorectal cancer, the reduction
of PIRK3 elicited NF-kb transcribed COX-2 expression and
boosted the synthesis of PGE2. Inhibition of COX-2 or PGE2
receptors reversed the immunosuppressive activity of MDSCs
and dampened tumorigenesis (19). Porta et al. (33) also
demonstrated tumor-derived PGE2 mediated induction of
nuclear p50 NF-kB epigenetically reprograms the response of
monocytic cells to IFN-g toward an immunosuppressive
phenotype, thus retrieving the anticancer properties of IFN-g.
Inhibition of the PGE2 axis can prevents MDSC suppressive
functions and restores the efficacy of anticancer immunotherapy.

Multiple tumor cell lines, like Braf V600E melanoma, 4T1 breast
cancer, CT26 colorectal cancer,NrasG12D-drivemousemelanoma,
methylcholine-induced fibrosarcoma (34, 35) aberrant expressed
COX-2/PGE2. The conditional medium of Braf V600E melanoma
cells regulated the function of myeloid cells by expressing COX-2
and PGE2. COX-2 deficiency resulted in low expression of
immunosuppression factors like IL-6, IL-10, and CXCL1, while
the mRNA of anti-tumor immune mediators are significantly
increased, such as IFN-g, T-bet, CXCL10, and IL-12 (36).

MDSCs can also negatively regulate NK function. MDSCs
from patients with advanced melanoma inhibited the activity of
co-cultured NK cells. PGE2 binding to EP2 and EP4 receptors on
MDSC activates p38MAPK/ERK pathway, leading to TGF
secretion and thereby inhibiting NK cells (37).

COX-2/PGE2 Signal Induced M2
Macrophages are the most plastic cells in the hematopoietic system,
which are found in all tissues, and they also have strong functional
diversity. There are at least two subtypes of macrophages, namely
M1 and M2. M1 macrophages are involved in the pro-
inflammatory response and play a central role in the host’s
defense against bacterial and viral infections. M2 macrophages are
Frontiers in Oncology | www.frontiersin.org 3
associated with resolution of inflammatory response, parasite
infection, tissue remodeling, fibrosis, and tumor disease
development. Previous studies had pointed out an important role
of PGE2 in the polarization of macrophage to M2, leading to an
immunosuppression TME. In vitro experiments, a human
peripheral blood mononuclear cell primary culture in the
presence of GM-CSF plus IL-4 promoted differentiation to DCs.
An addition of PGE2 in this culture suppressed the formation of
DCs and skewed the differentiation into the M2-like macrophage
(38, 39). PGE2 also induces the differentiation from MDSC to M2
macrophage. The cross-talk between miR-21 and PGE2 may be a
determining factor in macrophage polarization. PGE2 and its
downstream effectors PKA and Epac inhibited mRNA-21 and
enhance the expression of M2 gene (40).

Based on previous studies, COX-2 derived PGE2 helps TME
transformed from an anti-tumor response to an immunosuppressive
response in a variety of ways, becoming an accomplice of cancer cell
immune escape (Figure 1).
CLINICAL APPLICATION OF COX-2
INHIBITORS IN CANCER TREATMENT

The current focus of immunotherapy is to improve the
therapeutic response of ICIs by simultaneously stimulating
immune function and targeting immunoregulatory factors in
TME. A variety of combinations are in clinical trials, such as ICIs
combined with GM-CSF, targeted drugs, oncolytic virus,
chemotherapy, radiotherapy, IDO inhibitor, etc. (41, 42).

Researchers have long noticed the important role of COX-2 in the
occurrence and development of cancer. Once upon a time, the clinical
trials of COX-2 inhibitor combination therapy in cancers were
popular. However, no satisfactory results were obtained in such
combinations. A phase II clinical trial of COX-2 inhibitor
combined with erlotinib, one of the epidermal growth factor
receptor tyrosine kinase inhibitor (EGFR TKI), seemed to have an
increase trend in time to progression (TTP) and overall survival (OS)
in non-small cell lung cancer (NSCLC) (43). While compared with
conventional chemotherapy regiments, combined with COX-2
inhibitor did not achieve survival improvement (44, 45). The
conclusion was controversial. Csiki et al. (46) performed a stratified
analysis of the decreased levels of urine PGE-M (the main urinary
metabolite of PGE2) after using celecoxib, and showed that patients
with a large decline rate obtained a longer survival (14.8 months, 6.3
months, 5.0 months, respectively). Are COX-2 inhibitors really useful
in cancer treatment? COX-2 expression level, metabolites or COX-2-
dependent inflammatory mediators may be useful biomarkers for
predicting prognosis and outcomes of combination therapy. Based on
the mechanism of COX-2 and PGE2 in TME described above, the
combination of COX-2 inhibitor and ICI is a potential choice. This
idea has been further verified in animal experiments (36). The
combination of COX inhibitors (including aspirin and celecoxib)
with anti-PD-1 antibodies can promote tumor regression more than
the single use of anti-PD-1 antibodies. What’s more, it has been
known that ICI combined with chemotherapy would increase disease
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control, because of the antigen release induced by chemotherapy. So
the benefit of COX-2 inhibitor might be based on the immune
activation combined with ICI and chemotherapy plays a supporting
role in it, which need to be further study in clinical practice.

In order to further find patients who may benefit from this
combination, the relationship between COX-2 and cancers in
previous studies were also reviewed. An analysis of 170 cases of
surgically resected lung adenocarcinoma showed that high COX-
2 expression accounted for 46%, and the number of CD8+ T
lymphocytes in tumors with high COX-2 expression was
significantly less than that in the low expression group, while
the Treg count was in the opposite (47). Shimizu et al. reported
correlations between COX-2 and immune checkpoint proteins.
Double fluorescence staining showed co-localization of PD-L1
and COX-2 expression in resected lung cancer specimens (48).
Besides, Kim’s study analyzed the relationship between PD-L1
RNA and COX-2 expression in 60 human melanoma cell lines in
CCLE database and also showed a significant correlation
(r=0.312, P=0.014). But in vitro, COX-2 inhibitor, celecoxib
did not affect the expression of PD-L1 induced by IFN-g in
melanoma cell lines, A375, SB2 and LOX-IMVI (49). So, COX-2
might be an intrinsic characteristic of certain cancer cells, and
mediates immunosuppression via not only PD-1/PD-L1 axis.

In terms of the safety of ICI combined with COX-2 inhibitor,
several aspects should be taken into consideration. First of all, ICIs
are a kind of monoclonal antibody. Their metabolic pathways are
similar to that of endogenous IgG, not go through the cytochrome
P450 enzyme metabolic pathway. While celecoxib is mainly
metabolized by CYP2C9 (50), so there might be no drug
interaction between them theoretically. Secondly, we take
Frontiers in Oncology | www.frontiersin.org 4
Celecoxib, the most representative selective COX-2 inhibitor, as
an example, to illustrate the side-effects of COX-2 inhibitor. The
most common side-effects of Celecoxib at a dose of 400–800mg/day
for 3 years are diarrhea (10.5% in Celecoxib group vs. 7.0% in
placebo), Gastroesophageal reflux (4.7% in Celecoxib group vs. 3.1%
in placebo), nausea (6.8% in Celecoxib group vs. 5.3% in placebo),
vomit (3.2% in Celecoxib group vs. 2.1% in placebo), dyspnea (2.8%
in Celecoxib group vs. 1.6% in placebo), hypertension (12.5% in
Celecoxib group vs. 9.8% in placebo). The occurrence of heart
abnormalities and thrombotic event were between 0.1% and 1%.
The previous trials of celecoxib combined chemotherapy regimens
were well tolerated and did not show an increase in serious adverse
events (45, 51). Especially when compared with the placebo group,
there was no increase in cardiovascular events in celecoxib group
(45). Finally, it is very likely that the main risks of the combination
therapy of COX-2 inhibitor and ICI come from their own
separately. According to the dose of celecoxib used in CLASS
study, the incidence of complicated and symptomatic ulcers was
only 0.78% and the incidence of severe cardiovascular
thromboembolic events was only 1.2% continuously taking 400
mg twice daily for 9 months (52). And Csiki et al. (46) have also
shown that at this dose intensity, urine PGE-M is significantly
reduced, indicating that COX-2 and its derived PGE2 are
significantly restrained.

Some clinical trials about COX-2 inhibitor combination
therapies are ongoing (Table 1). In colorectal cancer, trials to
evaluate PD-1 inhibitors with celecoxib as neoadjuvant therapy
are recruiting (NCT03026140, NCT03926338). In breast cancer,
NCT04188119 and NCT04348747 are registered. There are also
some other combined treatments in progress. For example,
FIGURE 1 | Extrinsic or intrinsic factors lead to COX-2 overexpression and PGE2 over production in tumor cells, formatting an immunosuppressive tumor
microenvironment through multiple ways.
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RACIN (NCT03728179) is designed to explore the combination
of PD-1 inhibitor with or without CTLA-4 inhibitor, aspirin
(non-selective COX inhibitor) or celecoxib (selective COX-2
inhibitor) and low-dose radiotherapy in TIL negative solid
tumors, which might answer the immunomodulation effect of
aspirin or celecoxib. Selective COX-2 inhibitor induces less
gastrointestinal reaction, one of the most common side-effects
of COX inhibitors, like gastric ulcer. What’s more, a large clinical
study in 2017 showed that compared with the COX-2 selective
inhibitor Celecoxib, the non-selective COX inhibitors ibuprofen
and naproxen significantly increased the systolic blood pressure,
and the occurrence of new hypertension was higher (53). In fact,
taking Celecoxib or non-selective ones (such as ibuprofen) for up
to three years have shown that the risk of cardiovascular events
increases. So, theoretically, selective or non-selective COX
inhibitor, as long as drugs targeting COX2/PGE2 signal
pathway, could be further studied in clinical practices, but
selective one at least reduces gastrointestinal reaction. Thus the
side effect of COX-2 inhibitor should be taken into consideration
carefully and exclude patients that have contraindications. The
appropriate dose of these drugs is uncertain by now. Some
scientists considered that whether PGE2 receptor inhibitor,
instead of COX-2 inhibitor, could also combined with
immunotherapy. The COX-2 product PGE2 binds to four G-
protein-coupled EP receptors designated EP1-EP4. Recent
drugs7nbsp;only designed to block EP4. EP4 is commonly
upregulated in cancers, while MDSCs are induced by PGE2
acting on myeloid-expressed EP2 and EP4 (54). So, the effect
of EP4 inhibitor combined with ICI remains to be seen. Anyway,
the COX-2/PGE2 signal is a promising target in combination
with immunotherapy.
Frontiers in Oncology | www.frontiersin.org 5
CONCLUSION

Given that COX-2/PGE2 axis promotes immunosuppression, it
is conceivable that COX inhibitors have a role in anti-tumor
therapy. Unfortunately, former clinical attempt of combination
COX inhibitor with chemotherapy or targeted therapy failed. But
COX inhibitor might enhance or expand the response of
immunotherapy in consideration of its mechanism. Several
clinical trials are ongoing. They will provide us a new thought
of therapeutic approach in cancer immunotherapy.
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B, et al. Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer:
Tumor-Intrinsic and -Extrinsic Factors. Immunity (2016) 44(6):1255–69.
doi: 10.1016/j.immuni.2016.06.001
3. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy.
Nat Rev Cancer (2012) 12(4):252–64. doi: 10.1038/nrc3239

4. Topalian SL, Wolchok JD, Chan TA, Mellman I, Palucka K, Banchereau J,
et al. Immunotherapy: The path to win the war on cancer? Cell (2015) 161
(2):185–6. doi: 10.1016/j.cell.2015.03.045

5. Hanahan D, Coussens Lisa M. Accessories to the Crime: Functions of Cells
Recruited to the Tumor Microenvironment. Cancer Cell (2012) 21(3):309–22.
doi: 10.1016/j.ccr.2012.02.022
TABLE 1 | The clinical trials that study the COX inhibitor and immunotherapy registered in clinicaltrial.gov.

Clinical Trial Cancer Therapy Phase Status

NCT03026140 Colon carcinoma Ipilimumab, Nivolumab;
Ipilimumab, Nivolumab, Celecoxib

II Recruiting

NCT04188119 Breast cancer Avelumab, PPI;
Avelumab, Aspirin, PPI

II Not yet
recruiting

NCT03926338 Colorectal cancer PD-1 inhibitor, Celecoxib;
PD-1 inhibitor

I, II Recruiting

NCT04348747 Breast cancer DC vaccine, pembrolizumab, celecoxib, IFNa-2b,rintatolimod II Not yet
recruiting

NCT03728179 TIL-negative solid tumors Low dose irradiation+Nivolumab+Ipilimumab or Cyclophosphamide + Aspirin/
Celecoxib

I Recruiting

NCT03245489 Squamous Cell Carcinoma of the Head and
Neck

Pembrolizumab, Clopidogrel, Aspirin;
Pembrolizumab

I Recruiting
February 2021 | Vol
ume 11
TIL, Tumor Infiltrating Lymphocytes; PPI, Proton Pump Inhibitor.
| Article 637504

https://doi.org/10.1186/s12943-018-0864-3
https://doi.org/10.1016/j.immuni.2016.06.001
https://doi.org/10.1038/nrc3239
https://doi.org/10.1016/j.cell.2015.03.045
https://doi.org/10.1016/j.ccr.2012.02.022
https://clinicaltrial.gov
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pu et al. COX-2 Inhibitor in Cancer Therapy
6. Wang D, DuBois RN. Eicosanoids and cancer. Nat Rev Cancer (2010) 10
(3):181–93. doi: 10.1038/nrc2809

7. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K.
Cyclooxygenase-2 in cancer: A review. J Cell Physiol (2019) 234(5):5683–
99. doi: 10.1002/jcp.27411

8. Ferrer MD, Busquets-Cortés C, Capó X, Tejada S, Tur JA, Pons A, et al.
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