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Abstract
The intestinal microbiota is made up of billions of microorganisms that coexist in an organised ecosystem, where strict and facultative

anaerobic bacteria predominate. The alteration or imbalance of these microorganisms, known as dysbiosis, can be associated with both

gastrointestinal and extraintestinal diseases.

Based on a review of the literature, the intestinal microbiota is described in its state of health, the changes associated with some

gastrointestinal diseases and the potential role that faecal microbiota transplantation has in the reestablishment of an altered ecosystem.

Undoubtedly, the information revealed makes us reflect on the indication of faecal microbiota transplantation in various pathologies of

intestinal origin. However, to ensure the efficacy and safety of this therapy, more studies are needed to obtain more evidence.
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Introduction
The gut microbiota is made up of more than 100 trillion
different microorganisms, including bacteria, fungi,

viruses and protozoa [1]. It is a complex ecosystem that
varies in number, depending on the identification tools used;

therefore, both metagenomics and culturonomics ap-
proaches are required to better understand the diversity and

richness of bacteria present in the human gut microbiota [2].
In healthy individuals, it is dominated by strict anaerobes,
87% corresponding to the bacterial phyla Bacteroidetes and

Firmicutes. To a lesser extent, bacteria belonging to other
This is an open access arti
phyla such as Actinobacteria, Proteobacteria and Verrucomicro-

bia can be found [3,4].
The proportion of bacteria varies throughout the gastro-

intestinal tract. The colon contains the highest number and

diversity of species, compared with the stomach and small
intestine [3].

One of the main roles of the gut microbiota is to contribute
to the fermentation of various types of indigestible fibres by the

small intestine. This activity results in the release of short-chain
fatty acids (SCFAs), acetate, propionate and butyrate, which are

used as an energy source by the colonic epithelium [5,6]. These
molecules are essential for intestinal integrity, regulating luminal
pH and mucus production [7,8]. In addition, they directly

impact the development and activity of the immune system.
They regulate various inflammatory processes, considering that

the intestinal epithelium represents a stable barrier between
lymphoid tissue and the microbiome itself [9,10].

It has been observed that losses of microbiota homeostasis
or dysbiosis are associated with some diseases, which are

explained by the imbalance and loss some species, such as
Faecalobacterium prausnitzii, considered one intestinal health
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biomarker [11,12] (Fig. 1). Studies have shown that this dys-

biosis is involved in the development of a wide range of dis-
eases, both intestinal and extraintestinal [13].

However, it is not fully understood whether these changes in
the microbiota the cause of the disease or of it a consequence

are, except for Clostridioides difficile infection where there is a
clear causality [14]. Faecal microbiota transplantation (FMT)
represents a unique procedure, aimed at restoring the natural

diversity of the gastrointestinal microbiota and preventing the
recurrence of a nosocomial disease, by correcting these im-

balances with a healthy external microbiota [15].
The objective of this review was to describe the normal in-

testinal microbiota and the changes that occur in different
gastrointestinal pathologies, to understand the basis of FMT as a

therapy (going beyond Clostridioides diffficile). A systematised
search was carried out in Embase, Web of Science and PubMed.
Gut microbiota in gastrointestinal diseases
Inflammatory bowel disease (IBD)
IBD mainly encompasses Crohn’s disease (CD) and ulcerative
colitis, both of chronic course characterised by alternating periods

of relapse and remission. Their clinical symptoms that include
abdominal pain, diarrhoea, fatigue and extraintestinal manifesta-

tions that significantly affect patients’ quality of life [16,17].
The aetiology of this disease is known as multifactorial,

where there is interaction between the microbiome, genetic,
environmental and immunological factors [18,19]. To respect,
FIG. 1. Human microbiomes in gastrointestinal diseases.
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studies have shown that an alteration in the composition and

function of the microbiome [20].
Characteristic findings in IBD include a significant decrease in

bacterias of the phyla Firmicutes and Bacteroidetes, including spe-
cies such as Clostridium symbiosum and Bacteroides dorei. These

bacteria are SCFA producers, such as butyrate, propionate and
acetate [14,21]. The latter deliver energy to cells of the colonic
epithelium but can also induce the differentiation of regulatory T

cells of the immune response [22]. Furthermore, Brown et al.
add that the sphingolipids produced by Bacteroides also play an

important role in maintaining homeostasis, reducing inflamma-
tion of the intestine [23]. Other studies point out that both the

transfer of proinflammatory bacteria and the transplantation of
microbiota from sick to healthy mice can induce inflammation

[24]. Based on these findings, FMT has been evaluated as a
possible therapy for IBD through the restoration of the micro-
biome. It has demonstrated a clinical response in 53.8%, with a

clinical and endoscopic remission in 37% [25]. Recently a meta-
analysis that included 28 articles containing 976 IBD patients

showed that responses and remission rated were more favour-
able for patients receiving repeated FMT regimens and antibiotic

pretreatment strategies. However, the heterogeneity for all
pooled analyses was high. Fifteen of the 18 studies (83%) that

evaluated for shifts in specific gut microbial taxa reported in-
creases in the abundance of anaerobes purported to produce

health promoting anti-inflammatory SCFAs, such as Bifidobacte-
rium, Roseburia, Lachnospiraceae, Prevotella, Ruminococcus and
Clostridioides related species. Overall, FMT in patients with IBD

was shown to be safe and well tolerated [26]. Others have also
nses/by-nc-nd/4.0/).
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confirmed that FMT could be an effective and safe therapy for

CD. Interestingly, subanalyses suggested the rate of clinical
remission with fresh stool FMT was higher than with frozen stool

FMT (73% vs 43%; p < 0.05) [27]. A systematic review that
included nine studies containing 69 patients with chronic

pouchitis showed that FMT has promising results and could be a
useful and secure strategy in this scenario [28]. However, more
studies are still needed to provide categorical evidence. Thus, the

Third European consensus on Ulcerative Colitis of the European
Crohn’s and Colitis Organization highlights the need for addi-

tional studies to identify the best strategy, considering the route
of administration, type of donor and security profile [29].

Irritable bowel syndrome
Irritable bowel syndrome is a functional gastrointestinal disor-
der with symptoms including abdominal pain associated with a

change in the shape or frequency of stool and colonic disten-
tion. The pathophysiology is not fully understood, but an

altered connection between the gut and the brain is well
established, leading to motility disturbances, visceral hyper-

sensitivity [30].
The intestinal bacterial profile in patients with irritable bowel

syndrome (IBS) differs from that in healthy subjects. The in-
testine of IBS patients has a lower abundance of butyrate-
producing bacteria (Erysipelotrichaceae and Ruminococcaceae

spp.) and a higher abundance of methane-producing bacteria
(Methanobacteriales spp.) [31]. Also, the production of bile acids

(BAs) has been investigated due to its ability to modulate in-
testinal function and its close connection with the intestinal

microbiome and its relationship with irritable bowel syndrome.
The study establishes an association between the presence of

diarrhoea and visceral hypersensitivity and alteration of the
metabolism of BAs in the intestine of patients with IBS,

attributing this to an intestinal dysbiosis with a special reduction
in genera of the Ruminococcaceae family [32], known for its high
production of SCFAs [33].

A study carried out from the faeces of individuals with this
syndrome identified lower levels of Lactobacillus, Bifidobacterium,

Eubacterium rectale and Faecalibacterium prausnitzii [34], all of
which are SCFA producers. Particularly, F. prausnitzii is one of

the major producers of butyrate, which is why it is considered
an indicator or biomarker of intestinal health [12,13]. On the

contrary, low levels of these microorganisms could be predic-
tive of CD [35].

Clearly, there are differences between the microbiota of IBS

patients and the one of healthy patients. Despite this back-
ground, a single bacterial species has not been identified as a

causative agent. Several authors agree that patients with IBS
have an increase in microorganisms with proinflammatory

properties, like some belonging to the Veillonellaceae,
This is an open access artic
Pasteurellacaea and Fusobacteriaceae families. Species such as

enteroinvasive and adherent Escherichia coli and Ruminococcus
gnavus have also been identified [36,37].

Other authors have also reported a decrease in the Clos-
tridiales-Prevotella enterotype in individuals with IBS [38]. Un-

doubtedly, one of the strongest links between IBS and the
intestinal microbiota is pointed out by a report in which FMT
was performed. Faeces from IBS patients was transferred to

healthy mice, which was associated with IBS phenotype char-
acteristics, such as intestinal dysmotility, increased intestinal

permeability and visceral hypersensitivity [39].
El-Salhy et al. analysed the potential role of FMT in patients

with IBS and their results showed that this therapeutic strategy
would be an effective treatment in this scenario. The response

to FMT increased with the dose (76.9% and 89.1% of the pa-
tients who received 30 g FMT and 60 g FMT, respectively). The
intestinal bacterial profiles changed also significantly in the

groups received FMT (higher signals for Eubacterium biforme,
Lactobacillus spp. and Alistipes spp. after transplantation, and

lower signals for Bacteroides spp.). The FMT adverse events
were mild self-limiting gastrointestinal symptoms [40]. FMT

increases the faecal SCFA and butyric levels in IBS patients. The
increase in the butyric acid level was inversely correlated with

abdominal symptoms and fatigue in IBS patients following FMT.
These results suggest that SCFAs and the butyric acid play a

role in the pathophysiology of IBS [41]. However, a systematic
review and metanalysis that included 4 studies showed not an
overall clinical benefit from FMT for IBS patients. A discrepancy

in efficacy of FMT for IBS may be related to the differences in
route of administration, placebo treatment, FMT frequency and

IBS subtype included among the studies [42].

Steatosis/non-alcoholic fatty liver disease
In recent years, a direct relationship between obesity and
metabolic disorders related to changes in the intestinal micro-
biota has been described [43,44]. In general, obese people have

a higher concentration of bacteria of the phylum Firmicutes and
less Bacteroidetes. Other studies have reported a decrease in

Bifidobacterium concentrations in overweight subjects [45].
Metabolic syndrome, which includes insulin resistance, dyslipi-

demia, high blood pressure and increased abdominal circum-
ference, is strongly associated with long-term development of

type 2 diabetes and cardiovascular disease. The hepatic mani-
festation of this syndrome, although not part of its criteria, is
non-alcoholic fatty liver disease. In this regard, metagenomic

studies in humans have identified specific changes in the gut
microbiota [46], including an increase in bacteria that

contribute to insulin resistance, such as Prevotella copri and
Bacteroides vulgatus [47]. Another study in obese mice, to which

metformin was administered, described an increase in
© 2021 The Authors. Published by Elsevier Ltd, NMNI, 42, 100898
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Akkermansia municiphila, which has been associated to glucose

homeostasis [48,49].
Likewise, it has been described that signalling molecules pro-

duced by intestinal bacteria can affect the intestinal integrity, the
sensation of satiety and the metabolic phenotype of the host.

SCFAs are the best-studied example; in this regard, butyrate
exerts a positive regulation of tight-junction proteins such as
claudin-1, induces apoptosis of T cells to eliminate the source of

inflammation [50], while suppressing inflammation mediated by
IFN-γ in colon epithelial cells [51] and induces intestinal gluco-

neogenesis by different pathways [52]. For its part, acetate
generates an increase in plasma incretin hormones, reduces

TNFα and indirectly generates changes in the metabolism of
lipids and glucose [53]. Bile acids are another class of molecules

that play a role in microbiome-host communication, mediated by
the nuclear farnesoid X receptor, which has been related to the
regulation of glucose in obese mice [54].

Liver cirrhosis and its complications
Changes in the gut microbiome play a role in the progression of

cirrhosis and its complications. On the one hand, inflammatory
mediators, endotoxemia and haemodynamic alterations lead to

complications such as spontaneous bacterial peritonitis and
hepatic encephalopathy (HE) [55]. The latter is the most
studied in relation to the gut-brain axis [56]. Hepatic enceph-

alopathy begins with cognitive changes or psychomotor deficits
that can only be detected with psychometric or neurophysio-

logical tests. This entity called minimal HE already presents al-
terations in the intestinal microbiota. Thus, Zhang et al.

observed an increase in urease-producing bacteria such as
Streptococcus salivarius in cirrhotic patients. This finding was

significantly higher in patients with minimal HE than in those
without HE (p = 0.03) and was associated with a greater

accumulation of ammonia in those with HE (R = 0.58,
p = 0.003) than in the other group [57].

In turn, a change in the microbiota has been observed

depending on the stage of progression of cirrhosis. There are
two scoring systems, the Child-Turcotte-Pugh (includes albu-

min, bilirubin, prothrombin time, degree of encephalopathy and
ascites) and MELD Model for end-stage liver disease (logarith-

mic score that includes bilirubin, creatinine and INR of pro-
thrombin time). The higher the score, the worse the prognosis.

Thus, a higher Child score has been associated with an increase
of Streptococcaceae, Veillonellaceae and Enterobacteriaceae bac-
terial families, and a decrease in Lachnospiraceae [58]. Another

study reported a higher MELD was associated with a micro-
biota with a higher number of Enterobacteriaceae and a lower

proportion of Lachnospiraceae and Ruminococcaceae [59].
Current evidence, despite being scarce, points towards FMT

could be an effective, safe and tolerable strategy in some liver
© 2021 The Authors. Published by Elsevier Ltd, NMNI, 42, 100898
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diseases. However, some unanswered questions remain about

the optimal dose, the administration route, the long-term
effects and the selection of the optimal donor. The gut micro-

biota appears to play a critical role in age-related immune
clearance of hepatitis B virus [60]. An open-label pilot trial of

FMT for chronic hepatitis B patients showed that this therapeutic
strategy could induce HBeAg clearance in patients who have
persistent positive HBeAg even after long-term antiviral treat-

ment [61]. Given the current evidence of the paramount role of
intestinal microbiota in HE and the limited therapeutic options,

some studies have evaluated the efficacy and safety of FMT in this
scenario [62]. An open-label randomised clinical trial included 20

cirrhotic patients with recurrent HE who were randomised 1:1
into FMT following 5 days of antibiotic pretreatment or standard

of care. The study showed that FMT was safe, tolerated and
effective with lower hospitalisations and improved cognitive
tests. A relative increase in Lachnospiraceae and Ruminococcaceae

was observed in the FMT arm compared with the SOC arm [63].
The same group, in a randomised and placebo-controlled trial

(phase 1), showed that encapsulated FMT did not reduce the rate
of HE episodes compared with standard of care, despite

improved cognitive functioning and increased duodenal microbial
diversity [64]. Nevertheless, this study has some limitations that

limited the conclusions about the efficacy of the oral route for
FMT: the small sample size included in the study (20 patients),

rifaximin and was not proton-pump inhibitors discontinued,
scenarios that can modify intestinal microbiota.

Primary sclerosing cholangitis
BAs, which participate in the emulsification and absorption of
fats from the diet, are actively reabsorbed in the terminal ileum

in a percentage close to 95%. The rest is unconjugated and
transformed by the colonic microbiota, then passively passing

to the portal circulation. BAs play a role in the control of
bacterial overgrowth by binding to FXR (Farnesoid X recep-
tor), which allows the production of antimicrobial peptides

[24]. In primary sclerosing cholangitis (PSC), secondary to
cholestasis there is an alteration of these BAs, leading to an

alteration of the microbiota [65,66]. There is a decrease in the
abundance and diversity of bacterial species [67,68]. Some

subtypes such as Veillonella genus has been described up to 4.8
times more frequent in individuals with PSC versus healthy

individuals and 7.8 times compared to ulcerative colitis, so this
change is thought to be related to a liver disease rather than
IBD [69].

Necrotising enterocolitis
Necrotising enterocolitis (NEC) is a life-catastrophic disease

almost exclusively affecting in preterm infants. NEC has a mor-
tality rate as high as 20-30% [70]. The aetiology of NEC is
nses/by-nc-nd/4.0/).
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multifactorial with prematurity, low birth weight, administration

of enteral feeds and antibiotic exposure associated with devel-
opment of the disease. The inflammation of the intestine leading

to bacterial invasion causing cellular damage and death which
causes necrosis of the colon and intestine [62,71]. Compared

with term infants, the intestinal microbiota of preterm infants has
fewer bacterial species, less diversity, smaller proportions of
beneficial bacteria including Lactobacillus and Bifidobacterium

species and increased levels of bacteria that can become patho-
genic Gammaproteobacteria (i.e. E. coli, Klebsiella pneumoniae)

[72,73]. Since then, numerous trials evaluating the efficacy of
probiotics in preventing NEC have been conducted, with some

demonstrating efficacy [66,74]. Oral administration of Lactoba-
cillus and Bifidobacterium was shown to prevent NEC in pre-

term infants [75], and when administered in combination with
breast milk, there was significant reduction in the incidence of
NEC compared with infants receiving breast milk alone [76].
Conclusion
At present, FMT is recommended in patients with recurrent
disease caused by Clostridioides difficile. However, owing to the

association that exists between the alteration of some species
of the intestinal microbiota and the presentation of pathologies

such as IBD, IBS, steatosis/non-alcoholic fatty liver disease, PSC
and others, a few studies carried out in animal models and

others in humans, have shown that this procedure could be
used as a therapeutic alternative in other intestinal diseases.

Some bacterial species present in the gut microbiota have
been identified as healthy biomarkers, being associated with a

high production of SCFAs. Butyrate is an energy source of the
colonic epithelium and can modulate various inflammatory
processes that directly impact the development and activity of

the immune system.
These findings give continuity to the idea of using faecal

transplantation in other pathologies. Further research in this
area is needed to consider this therapy as effective and safe in

human patients.
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