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Abstract: Due to pandemic-imposed restrictions on lab-based research, we have recently witnessed a
flourishing of online studies in experimental psychology, based on the collection of fine behavioral
measures such as reaction times (RTs) and accuracy. However, it remains unclear whether participants’
alerting levels may have a different impact on behavioral performance in the online vs. lab setting.
In this work we administered online and in-lab the dynamic temporal prediction (DTP) task, which
requires an implicit modulation of participants’ alerting by alternating experimental conditions
implying either slower or faster response rates. We then compared data distribution, RTs, accuracy,
and time-on-task effects across the adult lifespan between the settings. We replicated online and
across the whole age range considered (19–69 y) all the task-specific effects already found in-lab (both
in terms of RTs and accuracy) beyond the overall RTs delay typical of the online setting. Moreover, we
found an interaction between the setting and task-specific features so that participants showed slower
RTs only in experimental conditions implying a less urgent response rate, while no RTs delay and a
slight accuracy increase emerged in faster conditions. Thus, the online setting has been shown to be
methodologically sound in eliciting comparable effects to those found in-lab. Moreover, behavioral
performance seems to be more sensitive to task-induced alerting shifts in the online as compared to
the lab setting, leading to either a heightened or reduced efficiency depending on a faster or slower
response rate of experimental conditions, respectively.

Keywords: experimental psychology; online data collection; dynamic temporal prediction task; alerting

1. Introduction

Experimental psychology has traditionally used a structured methodology for data
collection, based on a strict control of the laboratory setting [1]. This approach implied the
implementation of different phases, such as the conceptualization of the study, the formu-
lation of hypotheses, the participants’ recruitment procedures, the control of laboratory’s
environmental characteristics (e.g., brightness, temperature, humidity, quietness), and the
use of techniques and tools ensuring high-precision spatial and temporal control of stimuli
presentation [1]. Altogether, these procedures provided experimental psychology with a
sound epistemological foundation, making it a reliable scientific discipline [2]. With the
advent of computers and information technology, the degree of precision in behavioral data
collection advanced even further. In particular, thanks to software dedicated to behavioral
measures’ recording [3], it was possible to automate data collection procedures, reaching a
finer experimental control.

Crucially, although lab-based research has ensured for decades reliable data qual-
ity and the possibility to replicate results by sharing experimental protocols between
researchers and labs, it inevitably clashed with some practical aspects that can make its
implementation difficult. First, the need to have a physical laboratory facility equipped
with constantly updated devices and software for data collection and able to ensure stan-
dardized environmental conditions. This could imply logistical difficulties when large

Brain Sci. 2022, 12, 1061. https://doi.org/10.3390/brainsci12081061 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci12081061
https://doi.org/10.3390/brainsci12081061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-3963-0582
https://orcid.org/0000-0002-6286-6569
https://orcid.org/0000-0001-7209-0752
https://doi.org/10.3390/brainsci12081061
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci12081061?type=check_update&version=2


Brain Sci. 2022, 12, 1061 2 of 26

samples are required, and a prolonged use of the lab space, which is often shared between
several researchers, is needed. Second, a physical limit is necessarily imposed by sequential
data collection, i.e., when behavioral measures are collected from a single participant at
a time. Given the need to build large datasets to increase experiments’ reliability and
statistical power, in accordance with the guidelines recently proposed by the scientific
community (see Open Science Framework initiative, OSF https://osf.io, accessed on 7 July
2022), researchers are often called to make choices. On the one hand, the increasing pressure
to enlarge the number of publications per year pushes researchers to collect, analyze, and
publish results in the shortest time possible. On the other hand, large sample sizes are
increasingly required. Yet, a priori G*power calculations may be insufficient especially
when multiple-level interactions are analyzed. This implies the risk of negatively affecting
data quality in the attempt to reconcile speed of data collection with large sample sizes,
consequently threatening results’ replicability, especially for early-career researchers (i.e.,
who are pushed by the incentive system to the maximum quantitative productivity) [4].
Online data collection was proposed as a possible solution to address these issues [5,6], and
evidence on its advantages exponentially grew in recent years (for a discussion, see [6–10]).
Transferring the experimental setting to the web could allow researchers to effectively reach
and test large numbers of individuals from around the world [11]. The online setting offers
indeed both efficiency, given the ease, speed, and cost-effectiveness of collecting accurate
data [12,13], and accessibility, given the possibility of reaching samples otherwise difficult
to recruit [14–18]. Last but not least, the possibility to collect large amount of data through
online methods improves the generalizability of results.

While running online experiments has long represented a valuable possibility for
psychologists interested in collecting large datasets in a short time, the last years of the
COVID-19 pandemic and the resulting lockdown of lab facilities forced the researchers
carrying lab-based research to adapt their experimental protocols to the online setting,
moving de facto from seeing this methodology as an opportunity to seeing it as a neces-
sity [19]. Consequently, we have recently witnessed a flourishing of online studies based
not only on the collection of questionnaires and surveys but also on finer measures such
as reaction times (RTs) and accuracy of behavioral responses. In this rapidly evolving
scenario, experimental studies investigating the comparability between the online and lab
settings become particularly interesting for the scientific community, especially in view of
the considerable variability derived by the use of different hardware and software com-
ponents between participants in the online setting. Hardware components include, for
example, computer devices (e.g., PC, Mac, Linux, tablet, cellphones, etc.) with different
data processing capabilities (e.g., CPU, RAM, audio-video card, etc.), which may lead to
non-standardized physical features (e.g., brightness, contrast, loudness, screen size) and
thus to a huge variability in stimuli presentation and variations in timing of stimuli and
response. As software components, different platforms for the creation of experimental
protocols (e.g., experiment builders such as OSWeb, Pavlovia), for participants’ recruitment
(e.g., Prolific, Amazon’s MTurk), and for experiments’ hosting (e.g., JATOS, Gorilla) may
add up with human factors (e.g., instructions delivering and comprehension, performance
feedback or control, etc.) in increasing researchers’ degrees of freedom when designing
online experiments [20].

Despite the potentially biasing factors of the online setting (thoroughly reviewed
in a recent paper by [20]), carefully developed online studies still have a huge potential
for methodological soundness. Specifically, experimental protocols requiring a not ex-
cessively tight temporal resolution of stimulus delivering and response collection appear
particularly suitable for online studies [20]. In contrast, experimental paradigms extremely
sensitive to the temporal sequencing of stimuli (i.e., with less than 50 ms of Stimulus
Onset Asynchrony—SOA), such as attentional blink or masked-priming tasks, are not
ideally suited for online data collection [21,22]. Nonetheless, several time-sensitive exper-
imental effects, such as the Stroop effect or the above-mentioned attentional blink and
masked-priming effects, have been replicated online [23].

https://osf.io
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Besides the peculiarities of the single tasks, studies comparing the lab setting with
the online one consistently found that mean response speed is systematically delayed in
online experiments, with a reported delay range between 25 and 60 ms [22,24–26]. This
systematic delay is an intrinsic, unavoidable technical limit of online research most likely
due to the variability in browsers/operating systems of participants’ personal comput-
ers [3,22]. Nevertheless, online tools show a reasonable overall temporal accuracy since
the delay is reflected in the absolute RTs measures, and it appears constant within the
same software–browser–operating system combination [3]. Most importantly, regardless
of the absolute RTs delay, the magnitude of experimental effects within several cognitive
tasks (e.g., decision-making tasks, double tasks, facial expression recognition tasks, lexical
decision tasks, natural language generation) seems to be comparable between the online
and laboratory settings [27–30]. In sum, although an online implementation may lead
to potential noise factors, there is consensus that online research provides researchers
with an effective means for collecting sound behavioral data [3,20,31,32]. In addition to
this, the evident savings in terms of time and money, combined with the possibility of
collecting large datasets, seem to largely compensate for the potential negative aspects of
this methodological approach [20].

Notwithstanding, some open questions about the comparability between online and
lab-based research in psychology still remain unaddressed. For example, although online
data collection could represent a useful solution to overcome many lab-based research
limitations, it imposes a major concern regarding sample representativeness [33]. In addi-
tion, a cogent question regards whether online data collection can impact differently on
the alerting state of participants, biasing their behavioral performance. Indeed, remote
execution does not allow for a strict time-by-time control of people’s response speed and
accuracy. This drawback can be partially mitigated by providing participants with either
some reward (e.g., money or course credits) or feedback on their task performance [21]. Yet,
the physical absence of the experimenter and the consequent unbiased social desirability
and low task-related motivation of participants could negatively impact on experiments’
execution [20,33,34]. Those aspects could especially influence tasks involving a large num-
ber of trials and implying repetitive and fast responses, which could induce a block-wise
decrease in response speed and/or accuracy. Therefore, better understanding of whether
performance shifts during the task (namely, time-on-task effects [35,36]) are negatively
impacted in the online setting clearly emerges as one of the core issues for advancing
psychological research.

Given the importance of time-on-task effects as potentially biasing factors, the aim
of the present study was to examine across the adult lifespan whether and to what extent
tasks based on a modulation of participants’ alerting and attention at an implicit level, such
as the dynamic temporal prediction (DTP) task [37], could elicit comparable experimental
effects in the online vs. laboratory setting. The ability to automatically and implicitly detect
statistical regularities in the environment is in fact a fundamental aspect of human cognition,
and it plays an important role in shaping behavior, motor preparedness, perception, and
cognitive functions in general [38–40]. Thus, targeting implicit tasks when comparing the
online with the lab setting as well as considering the whole adult lifespan may offer a
precious contribution to both the theoretical and methodological levels.

To this purpose, we administered online the DTP task [34] to an adult sample aged
19–69 years, and we compared the data collected online with a dataset previously acquired
in the laboratory with the same task. The DTP task consists of a brief, computerized
detection task collecting simple RTs to warned, visual stimuli. In the DTP task, a warning
stimulus (S1) is followed by the presentation of an imperative stimulus (S2), to which
participants must respond as fast and accurately as possible. The task investigates the
flexibility of motor control by inducing implicit temporal expectancy at both the trial-
(local) and the block-wise (global) level. More specifically, the effect of the local predictive
rules on behavioral performance is investigated by employing three different trial-by-trial
SOA intervals (short: 500 ms; medium: 1000 ms; long: 1500 ms), whereas the effect of
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the global predictive rules is investigated through the block-wise manipulation of three
different probability distributions per each SOA, yielding to fast blocks (prevalence of
short SOA intervals), uniform blocks (three SOA intervals equally distributed), and slow
blocks (prevalence of long SOA intervals). Moreover, the DTP task allows to obtain an
index of the implicit adaptation of motor response to global predictive rules (delta score) by
calculating the difference in RTs between slow and fast blocks. Importantly, participants are
not explicitly instructed about the different predictive rules involved in the paradigm: this
allows to study participants’ ability to implicitly adjust performance speed and accuracy as
a function of either local or global predictive rules. Lastly, this paradigm requires a high-
sensitive (but not extreme) stimuli delivery timing, preventing it from being inadequate to
the online setting [21,22]. These characteristics make the DTP task particularly suitable for
the purposes of our investigation, namely comparing data distribution, RTs, accuracy, and
time-on-task experimental effects between the online and lab settings.

In line with the literature, we hypothesized to find (H1a) slower RTs in the online vs.
lab setting [3,22] and (H1b) no significant differences in performance accuracy between
the two settings [22]. We also expected to replicate in the online setting the effects of the
paradigm previously found in the lab: (H2a) the local prediction effect, with faster RTs and
lower accuracy in trials with long vs. medium and short SOA [34–37]; (H2b) the global
prediction effect, with faster RTs in fast blocks and slower RTs in slow blocks as compared to
the uniform block [34–36,38]; and (H2c) the implicit learning effect, reflected by a positive
delta score between slow and fast blocks [34,36]. Moreover, since the DTP task implicitly
induces response speed changes between the blocks, it could be possible to find (H3) an
interaction between block and setting (online vs. lab) with potentially slower RTs in the
online setting especially in less arousing blocks (uniform, slow). Lastly, we expected (H4)
that in both settings, the adaptation of response speed to local–global changes in the task
was affected by age, with a progressive loss of efficiency in flexible adaptive motor control
as age increased.

2. Materials and Methods
2.1. Participants

A total of 255 volunteer participants (78 males, age: M = 40.68, SD = 17.7, range = 19–69)
took part in the experiment either online or in the lab setting. They were enrolled via social
media (e.g., Facebook) or through university courses, and all signed a written consensus (lab
group) or agreed to participate by clicking a link (online group) after receiving information
about experimental procedure and data treatment. The study was approved by the Ethical
Committee for the Psychological Research of the University of Padua (protocol no. 3666)
and was conducted in accordance with the Declaration of Helsinki. Participants were free
to withdraw at any time by closing the browser window in the online setting or by leaving
the room in the lab setting. For each participant, demographic information (age, gender)
was collected (see Table 1). The two groups (online vs. lab) were slightly unbalanced for
gender and age.

Before the task, inclusion criteria for participation were assessed. All participants must
report having normal or corrected-to-normal vision, no neurological and/or psychiatric
disorders, and no drugs or psychoactive substances use. Participants over 60 years of
age with cognitive difficulties, i.e., a score below 25 in the Mini Mental State Examination
(MMSE) [39,40] for the lab setting and a score of 8 or below in the 10-item Short Portable
Mental Status Questionnaire (SPMSQ) [41] for the online setting, were excluded from
participation. Despite being different, the MMSE and the SPMSQ are both acknowledged in
the literature as reliable tools to assess cognitive functioning in aging, providing comparable
results [42]. Since the MMSE cannot be administered remotely, we employed the SPMSQ
for the online setting.
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Table 1. Main demographic characteristics (age and gender) of the two groups of participants (online
vs. lab). Mean (M) age, standard deviation (SD), age range, and gender for online and lab groups
are reported.

Group Gender N M ± SD
(Range)

Group M ± SD
(Range)

Online
M 34 50.14 ± 17.14

(20–69)
40.80 ± 17.75

(19–69)
F 92 37.35 ± 16.70

(19–69)

Lab
M 44 49.39 ± 15.14

(22–69)
40.55 ± 17.65

(19–69)
F 85 35.97 ± 17.12

(19–69)

2.2. Experimental Procedure

Data collection occurred in two different settings: online on participants’ personal
computers at a quiet location of participants’ choice and in the laboratory. The online study
was run through OpenSesame [43] and the JATOS hosting server [44], both open-source web
platforms for online studies. The lab study was run using E-Prime 2 software (Psychology
Software Tools, Pittsburgh, PA, USA [45]). In the lab setting, stimuli were presented on
a laptop with a 15-inch monitor at a resolution of 1280 × 1024 pixels. Participants were
seated comfortably in a chair at a viewing distance of around 60 cm from the monitor. All
participants performed the DTP task [34].

The experimental procedure included 1 practice block and 9 test blocks. At the
beginning of the task, a block of 6 practice trials was presented. During practice, all
participants received trial-by-trial feedback based on their performance. Specifically, a
yellow smile was displayed if anticipatory (before target onset), premature (<150 ms from
target onset), or excessively slow (>1000 ms from target onset) responses were provided,
while a green smile was displayed if the RT was between 150 and 1000 ms. Then, test
blocks were presented. Each block type (fast, uniform, slow; see 2.5 below for details) was
administered 3 times for a total of 9 blocks and included 30 trials for a total of 270 trials
(see Figure 1). SOA and block type sequence was randomized for each participant. The
total length of the experiment was about 15 min. Pauses occurred about every 2 min, but
no pauses were introduced between blocks to avoid participants inferring the change in
the global probability distribution. Notably, participants were also left uninstructed about
the presence of between-block different probabilistic distributions to ensure they did not
know about global rule changes.

2.3. Trial Structure

Each trial began with the presentation of a warning visual stimulus (S1) followed by
the display of an imperative visual stimulus (S2). S1 consisted of a picture of a black camera
lens. S2 consisted of a picture of a cartoon character, which was presented centrally within
the camera lens. The inter-trial interval (ITI) was randomly manipulated between 1500 and
2000 ms. Participants performed a speeded target-detection task. They were required to
press the spacebar on the keyboard as quickly as possible at S2 onset (see Figure 1).
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character, here represented with colored circles for illustrative purposes due to copyright re-
striction). To assess the effect of global prediction, (b) different probabilistic distributions per each 
SOA (short, medium, long) were created a priori. SOA could be equally distributed (uniform), fast 
(biased toward the short SOA interval), or slow (biased toward the long SOA interval; adapted from 
[34], reproduced with permission from [34]. 
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Figure 1. Dynamic temporal prediction (DTP) task. Experimental procedure included 1 practice block
and 9 test blocks. Blocks could be uniform, fast, or slow. Each block was randomly administered
3 times. The figure shows (a) an example of block order. Each block included 30 trials, for a total of
270 trials. The single trial structure is illustrated: S1 (cue/black circle) can be followed by a short
(500 ms), medium (1000 ms), or long (1500 ms) SOA before S2 occurrence (target/cartoon character,
here represented with colored circles for illustrative purposes due to copyright restriction). To assess
the effect of global prediction, (b) different probabilistic distributions per each SOA (short, medium,
long) were created a priori. SOA could be equally distributed (uniform), fast (biased toward the short
SOA interval), or slow (biased toward the long SOA interval; adapted from [34], reproduced with
permission from [34].

2.4. Local Predictive Context

To explore the effect of the local predictive context on behavioral performance, the
S1–S2 SOA was varied trial-by-trial within each experimental block. Three fixed foreperiod
(FP) intervals were present: short (500 ms), medium (1000 ms), or long (1500 ms). This
manipulation introduced in each block three levels of temporal preparation to S2 onset,
allowing us to investigate local prediction as the effect of increase of temporal expectancy
as a function of SOA length on task performance. Indeed, the use of a variable S1–S2
SOA dynamically biases the subjective temporal expectancy [37,46–49]. In line with the
literature [37], we expected participants to be fastest at detecting the targets appearing at
the longest SOA and slowest at those occurring at the shortest SOA.
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2.5. Global Predictive Context

To investigate the effect of the global predictive context, three different probability
distributions per each SOA were created, yielding three different block types: fast (biased
toward short SOA intervals), uniform, and slow (biased toward long SOA intervals; see
Figure 1).

2.5.1. Uniform Block

In this condition, the uniform SOA distribution yielded a medium-speed block acting
as a baseline. Specifically, this consisted of a rectangular distribution of the three SOA so
that the probability of each SOA in the block was equally distributed (33.3% for each SOA).
The FP effect is usually expected to emerge in an a priori uniform distribution [37]. As time
passes, the conditional probability of S2 occurrence increases exponentially in virtue of
the fact that it has not occurred yet [37,38,47]. Consequently, motor preparedness will be
lowest for short SOA and highest for long SOA.

2.5.2. Fast Block

In the fast block, an a priori distribution biased toward the short SOA was present.
The relative percentage was 50%, 33.3%, and 16.7% for the short, medium, and long SOA,
respectively. This distribution, known as the non-aging distribution [38,50], is intended to
counterbalance the increase of temporal expectancy as a function of SOA length.

2.5.3. Slow Block

In the slow block, the relative percentage was 16.7%, 33.3%, and 50% for the short,
medium, and long SOA, respectively. In the literature, the a priori distribution biased
toward the long SOA is also known as aging distribution [38,50]. This distribution is
inserted to exacerbate the increase of temporal expectancy as a function of SOA length.

2.6. Experimental Design and Data Analysis

The experimental design yielded a 2 × 3 × 3 factorial design, that is, group (between-
subject: online, lab) × SOA (within-subjects: short, medium, long) × block type (within-
subjects: fast, uniform, slow).

Both mean accuracy and RTs to targets were collected separately per experimental
condition and per participant. Only responses between 150 ms and 1000 ms from target
onset were considered as correct and included in the analysis. RTs were log-transformed
in order to account for their skewed distribution [51,52]. Accuracy was computed as the
percentage of correct responses over the total number of trials per condition. Delta scores
were computed as the difference in RTs between slow and fast blocks.

We compared RTs and accuracy distributions between the two groups (online vs.
lab) by means of both visual inspection of the empirical cumulative distribution function
(ECDF) and paired two-sample Kolmogorov–Smirnov tests. This allowed us to explore
whether data within the two groups (online vs. lab) were drawn from the same probabil-
ity distribution.

In order to compare the two distributions neat of the other experimental variables (i.e.,
SOA, block), for each dependent variable (DV), we fitted the following linear models (LMs)
or (generalized) linear mixed-effects models ((G)LMMs) with individual random intercept:

1. Log-RTs: LMM with group (online, lab), SOA (short, medium, long), block type (fast,
uniform, slow), and their interaction as fixed factors and gender (M, F) and age
as covariates;

2. Accuracy: Logistic GLMM with group, SOA, block type, and their interaction as fixed
factors and gender and age as covariates (the percentage of correct responses was
weighted on the total number of possible correct responses per each condition);

3. Delta scores: LM with group as predictor and gender and age as covariates.

All statistical analyses were performed through R statistical software [53]. LMMs
effects were evaluated using F-test and p-values, calculated via Satterthwaite’s degrees
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of freedom method (α = 0.05, R package: lmerTest [54]); GLMMs effects were evaluated
through Type II Analysis of Deviance (R package: car [55]); LMs effects were evaluated
using F-test and p-values, calculated via Type III Analysis of Variance (R package: car [55]).
For SOA and Block type variables, treatment contrasts were used, setting the long condition
(i.e., long SOA and long biased block) as the reference level. For all the other variables,
contrasts were set by using effect coding. Such contrast coding was applied for all the tested
models. Post hoc pairwise comparisons between the levels of fixed factors were tested
by means of estimated marginal means (EMMs) contrasts, Tukey adjusted for multiple
comparisons (R package: emmeans [56]). For each model, we reported the estimates
with standard error (SE), 95% confidence interval (CI), and the associated statistics (t-test
for L(M)Ms, z-test for GLMMs). Moreover, for each LMM and GLMM, we reported
the marginal and conditional R2 (estimated as in [57]), and for each LM, we reported
adjusted R2.

3. Results
3.1. Descriptive Statistics

The mean RTs, accuracy (%), and delta scores per group and experimental condition
are summarized in Table 2.

Table 2. Descriptive statistics of online and lab groups. Mean (M) and standard deviation (SD) of
reaction times (RT, in ms) and accuracy (Acc, in percentage) are reported for each group (online vs.
lab) and experimental condition (fast vs. uniform vs. slow block type × short vs. medium vs. long
SOA—stimulus onset asynchrony). Delta scores (in ms) are reported for each group (online vs. lab).

Group Block

SOA

DeltaShort Medium Long

RT (m) Acc (%) RT (m) Acc (%) RT (m) Acc (%)

M ± SD M ± SD M ± SD M ± SD M ± SD M ± SD M ± SD

Online
Fast 380.5 ± 99.5 98.9 ± 2.2 356.4 ± 101.2 97.6 ± 4.5 348.0 ± 93.2 96.3 ± 8.8

−18.64 ± 32.1Uniform 412.2 ± 108.2 99.2 ± 2.1 365.2 ± 105.4 98.3 ± 3.2 348.7 ± 95.0 96.5 ± 6.1
Slow 419.0 ± 102.5 99.5 ± 1.9 368.2 ± 104.6 98.6 ± 3.8 353.6 ± 99.5 97.2 ± 5.1

Lab
Fast 373.7 ± 115.0 99.1 ± 1.4 338.3 ± 101.2 98.0 ± 3.4 330.0 ± 98.0 96.1 ± 10.2

−16.52 ± 55.5Uniform 390.7 ± 134.6 99.0 ± 1.9 338.6 ± 113.3 98.6 ± 2.3 326.3 ± 105.3 97.7 ± 3.6
Slow 403.4 ± 143.7 98.8 ± 3.4 354.1 ± 119.4 98.3 ± 2.4 332.7 ± 108.7 98.2 ± 2.4

3.2. Distributions Comparison
3.2.1. Reaction Times

Visual inspection of RTs ECDF plots (see Appendix A, Figures A1–A9) revealed only a
partial overlap between the distribution curves of the two groups (online vs. lab) within
slow and uniform blocks in all the SOA intervals (short, medium, long), whereas a greater
overlap was observed within the fast blocks in all the SOA intervals. Visual inspection’s
qualitative analysis is supported by the results of Kolmogorov–Smirnov test comparing
RTs distributions between the two groups: statistically significant differences were found
between the RTs of the two groups only in slow and uniform blocks but not in fast blocks
(see Table 3).
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Table 3. Online and lab reaction times (RT, in ms) and accuracy (Acc, in percentage) distributions
comparison using Kolmogorov–Smirnov test. Significance level is set to <0.05. Bold p-values (p) signal
conditions in which online and lab distributions do not significantly overlap. While between-group
accuracy distributions revealed a comparable overlap across all experimental conditions, between-
group RT distributions showed an overlap in the fast block and only a partial overlap in the uniform
and slow blocks.

Condition RT (m) Acc (%)

Block SOA Kolmogorov–Smirnov
Test p Kolmogorov–Smirnov

Test p

Fast
Short D = 0.146 0.134 D = 0.109 0.434

Medium D = 0.127 0.254 D = 0.101 0.539
Long D = 0.167 0.057 D = 0.068 0.928

Uniform
Short D = 0.209 0.008 D = 0.136 0.189

Medium D = 0.230 0.002 D = 0.066 0.947
Long D = 0.245 0.000 D = 0.107 0.456

Slow
Short D = 0.194 0.017 D = 0.083 0.767

Medium D = 0.185 0.025 D = 0.164 0.065
Long D = 0.193 0.018 D = 0.106 0.476

3.2.2. Accuracy

Visual inspection of accuracy ECDF plots (see Appendix B, Figures A10–A18) revealed
a good overlap between the distribution curves of the two groups (online vs. lab) within
all the blocks (fast, uniform, slow) and SOA intervals (short, medium, long). Visual
inspection’s qualitative analysis is supported by the results of Kolmogorov–Smirnov test
comparing accuracy distributions between the two groups: no statistically significant
difference was found between the accuracy scores (%) of the two groups in any block and
SOA interval (see Table 3).

3.3. Statistical Models
3.3.1. Reaction Times

The LMM on log-RTs is summarized in Figure 2 and Table 4 and Table S1. We
found significant main effects of group (F(1, 251) = 4.67, p = 0.032), SOA (F(2, 2022) = 580.19,
p < 0.001), block type (F(2, 2022) = 38.43, p < 0.001), and age (F(1, 251) = 111.30, p < 0.001). With
regards to the group main effect, as hypothesized (H1a), participants showed significantly
slower RTs in the online as compared to the lab setting (lab vs. online: t(251) = −2.16,
p = 0.032). As for the SOA main effect, we replicated the attended results (H2a), with
increasingly slower RTs from the long to the medium and short SOA (long vs. medium:
t(2022) = −7.75, p < 0.001; long vs. short: t(2022) = −32.61, p < 0.001; medium vs. short:
t(2022) = −24.86, p < 0.001). Concerning the block type main effect, as hypothesized (H2b),
we found faster RTs in fast and slower RTs in slow as compared to uniform blocks (fast
vs. uniform: t(2022) = −4.21, p < 0.001; slow vs. uniform: t(2022) = 4.55, p < 0.001). Lastly,
as for the age main effect, as hypothesized (H4), we found significantly slower RTs with
increasing age (t(251) = 10.55, p < 0.001).

Moreover, as hypothesized (H3), the LMM showed a significant interaction between
group and block type (F(2, 2022) = 5.35, p = 0.005): the online group showed significantly
slower RTs as compared to the lab group but only in the slow (lab vs. online: t(272) = −2.12,
p = 0.035) and in the uniform blocks (lab vs. online: t(272) = −2.68, p = 0.008). Interestingly,
no significant between-group differences were found within the fast blocks (lab vs. online;
t(272) = −1.55, p = 0.121).
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Table 4. Main results of the linear mixed-effects model (LMM) on log-transformed reaction times
(RTs), namely F-test (F), degrees of freedom (df ), and p-values (p), are reported. Bold p-values signal
statistical significance.

Predictors F df p

SOA 580.19 2, 2022 <0.001
Block 38.43 2, 2022 <0.001
Group 4.67 1, 251 0.032
Gender 3.20 1, 251 0.075

Age 111.30 1, 251 <0.001
SOA × Block 13.59 4, 2022 <0.001
SOA × Group 1.29 2, 2022 0.276
Block × Group 5.35 2, 2022 0.005

SOA × Block × Group 1.01 4, 2022 0.403

3.3.2. Accuracy

The GLMM on accuracy is summarized in Figure 3 and Table 5 and Table S2. We
found significant main effects of SOA (χ2(2) = 163.37, p < 0.001), block type (χ2(2) = 20.72,
p < 0.001), and gender (χ2(1) = 6.14, p = 0.013). As hypothesized (H1b), no significant main
effect of the group emerged (χ2(1) = 0.10, p = 0.746). With regards to the SOA main effect, we
found increasing accuracy from the long to the medium and short SOA (long vs. medium:
z = −6.05, p < 0.001; long vs. short: z = −7.38, p < 0.001; medium vs. short: z = −5.01,
p < 0.001). Concerning the block type main effect, we found a more accurate performance
in slow as compared to fast blocks (slow vs. fast: z = 3.22, p = 0.004) and a less accurate
performance in fast as compared to uniform blocks (fast vs. uniform: z = −2.35, p = 0.049).
Lastly, as for the gender main effect, we found that female participants (69%) were slightly
more accurate than males (male vs. female: z = −2.48, p = 0.013).
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Table 5. Main results of the generalized linear mixed-effects model (GLMM) on accuracy, namely
chi-square test (χ2), degrees of freedom (df ), and p-values (p), are reported. Bold p-values signal
statistical significance.

Predictors χ2 df p

SOA 163.37 2 <0.001
Block 20.72 2 <0.001
Group 0.10 1 0.746
Gender 6.14 1 0.013

Age 0.61 1 0.434
SOA × Block 3.87 4 0.424
SOA × Group 9.15 2 0.010
Block × Group 1.00 2 0.607

SOA × Block × Group 10.90 4 0.028

Moreover, we found significant interactions between group and SOA (χ2(2) = 9.15,
p = 0.010) and between group, SOA, and block type (χ2(4) = 10.90, p = 0.028). However, the
only significant post hoc contrast was found between the online and lab settings within
short SOA intervals regardless of block (short SOA: lab vs. online: z = −2.32, p = 0.021),
suggesting a slightly more accurate performance in the online setting.

3.3.3. Delta Scores

The LM on delta scores is summarized in Figure 4 and Table 6 and Table S3. Inter-
estingly, as hypothesized (H2c), in both the groups, mean delta scores were positive. We
found a significant main effect of age (F(1, 2289) = 138.5, p < 0.001), with greater delta scores
with increasing age, suggesting a less efficient implicit adaptation of motor response to
between-blocks task speed changes in older participants. As hypothesized (H3c), the group
did not exert a significant modulation on delta scores (F(1, 2289) = 1.08, p = 0.298), thus
suggesting that the implicit modulation of RTs as a function of task changes in the global
predictive context occurred in a comparable way in the two settings.
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Table 6. Main results of the linear model (LM) on delta scores, namely F-test (F), degrees of freedom
(df ), and p-values (p), are reported. Bold p-values signal statistical significance.

Predictors F df p

Group 1.08 1, 2289 0.298
Gender 0.06 1, 2289 0.812

Age 138.50 1, 2289 <0.001

4. Discussion

The present work represents to the best of our knowledge the first attempt to compare
behavioral data collected across the adult lifespan in the traditional laboratory setting
with ones collected in an online setting by employing a task inducing a modulation of
participants’ alerting at an implicit level (i.e., DTP task).

As for the setting effect, we confirmed the expected results of a significant delay
(here, of about 20 ms) in response speed (see H1a), not implying accuracy differences
though (see H1b), in the online setting. This is consistent with recent literature suggest-
ing that RTs are systematically delayed (usually within a range of 25–60 ms) in online
experiments [22,24–26], and it can be explained by the inevitable technical variability in
browsers/operating systems within participants’ devices [3,22].

Moreover, as hypothesized, we replicated in the online setting and across the whole
age range considered (19–69 years) all the task-specific experimental effects already found
in the lab (and described in [34]): (i) faster RTs and lower accuracy in trials with long vs.
medium and short SOA (see H2a); (ii) faster RTs in fast blocks and slower RTs in slow
blocks as compared to the uniform block (see H2b); and (iii) the implicit learning effect,
as reflected by a positive delta score (of about 16 ms for the lab and 18 ms for the online
setting) between slow and fast blocks (see H2c).

Furthermore, age showed the expected modulation on response speed (see H4), with
progressively slower RTs with increasing age. Although a thorough interpretation of age-
related effects on task performance goes beyond the aims of this study, it is interesting to
note that as net of the RTs slow down, older participants showed a less efficient implicit
adaptation of their motor response to the task-induced between-blocks speed changes (as
reflected by greater delta scores). A similar finding was reported for younger vs. older
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children by [34] in their original study. Taken together, the evidence that both younger
children and older adults exhibit less efficient implicit motor adaptation to the global, block-
wise changes in task speed, which may reflect age-related strategic adjustment of proactive
motor control. More specifically, we may speculate that the low processing speed (i.e.,
overall slower RTs) observed in the early and late stages of the human lifespan may provide
more space for behavioral advantage induced by implicit learning. In other words, people
who have slow processing speed (i.e., younger children and older adults) may benefit
more from implicit experimental manipulations since they have greater psychomotor
gain margin (high delta score). By contrast, people who show fast processing speed
(i.e., older children, adolescents, and young adults) have already quasi-ceiling behavioral
performance. Hence, they will generally benefit less from experimental manipulations
implying motor adjustments (low delta score). However, the investigation of age effects
on implicit flexibility is beyond the scope of the present study and is currently under
investigation by our group (Mento et al., in preparation).

Crucial for the scope of the present study, our results suggested that, regardless of age
and sex, the implicit motor adaptation occurred similarly in the online and lab settings
since no significant differences in delta scores emerged between them. Participants in the
online setting seem therefore able to implicitly infer the task temporal structure and to
proactively adapt their response speed depending on global predictive rules, similarly to
the way it occurs when the DTP task is administered in the lab. Thus, consistently with the
literature [23,27–30], our results provide evidence that both the direction and magnitude of
the DTP task-specific effects are comparable between the online and laboratory settings.

Lastly and most interestingly, some interactions between the setting and DTP task’s
specific features emerged, as hypothesized (see H3). More in detail, we found that par-
ticipants in the online setting showed a significantly slower response speed in slow and
uniform blocks (but not in fast blocks) and a slightly more accurate performance in trials
with short SOA intervals (but not in trials with medium or long SOA) as compared to
participants in the lab. These interactions clearly revealed how task-specific behavioral
features ascribable to participants’ alerting state may be further modulated by the task
administration setting, with experimental conditions being differently affected depending
on the response rate they implicitly induce. In fact, at a global level, the systematic delay in
response speed expected in the online setting emerged only in those task blocks involving
a slower response rate (i.e., slow and uniform) and thus a potential decrease of participants’
alerting. On the contrary, no delay emerged in blocks inducing a faster response rate (i.e.,
fast) since the higher stimuli frequency may have pushed participants towards a heightened
alerting state, which in turn may have resulted in a faster performance eventually compen-
sating for the RTs delay. The different arousal levels induced by the task thus interacted
with the online setting, leading participants to a heightened vulnerability to distractions
and attentional shifts (which are per se greater and less controllable online as compared
to the lab setting) [17,58,59], especially in those experimental conditions implying a less
urgent response rhythm. At a local level, instead, conditions implying a faster response
rate (i.e., short SOA intervals), which elicited a better overall performance in both settings,
underwent a slight (0.2%) but significant accuracy increase in the online setting. It may be
possible that a potential increment of participants’ alerting, as induced by a local predic-
tive rule implying a faster response rate, may have supported heightened attention and
response control, eventually leading to a more accurate performance. Thus, in summary,
participants’ behavioral performance (as reflected by both response speed and accuracy)
seems to be more sensitive to task-induced alerting shifts in the online as compared to the
lab setting, leading to either a heightened or reduced efficiency depending on a faster or
slower response rate of experimental conditions, respectively. This may depend on the
inevitably less strict time-by-time control of participants’ performance typical of the online
setting [60,61].

As a limit of the present work worth expanding on, since our experimental design did
not allow us to distinguish whether the interactions between the setting and task’s specific
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features were exclusively associated with the DTP task or whether they may be shared
with other implicit tasks, we encourage future research to implement new online vs. lab
comparison studies specifically targeting implicit tasks. As another potential limitation of
this work, it is worth noting that a different software has been used for lab and online data
collection (E-Prime vs. OpenSesame, respectively). However, both software types allow for
a millisecond precision timing in stimulus presentation; thus, any slight difference can be
reasonably considered of negligible significance and addressed to the specific effect of the
setting rather than to software differences.

5. Conclusions

In summary, our results support our hypotheses, and they contribute in advancing
knowledge on the interactions between data collection setting (online vs. lab) and task-
specific features. This work integrates well with existing studies suggesting that online data
collection may represent a methodologically sound tool for experimental psychological
research [3,20,31,32]. In fact, the online setting proved to be effective in replicating the
attended experimental effects not only when the task implies a fine stimulus/response
timing (as already demonstrated by the literature) [22,62] but also when this fine timing
is induced at an implicit level (as we demonstrated in the present work with the DTP
task). However, our results suggest not negligible caution in the case of tasks inducing
different response rates between conditions. In fact, we collected evidence that the online
setting is particularly sensitive to task-specific implicit alerting shifts, eventually leading
to a less efficient performance in experimental conditions with a less urgent response
rate. This may introduce a biasing factor threatening the methodological soundness of
the online version of the task, which must be taken into careful account. We thus suggest,
as potential countermeasures, to provide online tasks with clear and simple instructions,
short breaks during the task, and a reasonable overall duration. We also suggest employing
experimental tasks with a fixed temporal structure and fast inter-stimulus intervals in order
to maintain high and constant alerting levels and further facilitate participants’ attention
and motivation. Introducing trial- or block-wise performance feedback throughout the task
may be a useful additional countermeasure, too.

From a more general point of view, beyond the specific results reported here, this
article opens up interesting food for thought about the opportunity to use (or not) online
data collection methodology in a systematic way in psychological research. On the one
hand, it is important to consider that our data refer to a particular task and have made it
possible to answer a very specific question. Therefore, it is difficult for us to draw general
and definitive conclusions. On the other hand, the fact that our results confirm previous
studies on the reliability of this approach could lead us to evaluate the opportunity of use
it for any experimental circumstance. However, it should be borne in mind that online
research, although a potentially very valid ally of every researcher in the psychological field,
inevitably involves an increase in the variability (and therefore in the noise) of the data
collected. Therefore, its use could be more appropriate within experimental paradigms that
promise experimental effects able to survive a greater intra and inter individual variability.
Conversely, online collection may be less advantageous in cases of extremely subtle effects
that require high control of the experimental setting. Consequently, it is of fundamental
importance to evaluate on a case-by-case basis whether to resort to this alternative or to
follow the more traditional, old path of controlled laboratory research. However, a thorough
examination of all cases where the advantages of online research outweigh the potential
disadvantages is beyond the scope of this paper. Therefore, a systematic comparison within
the same study between these two methods using different experimental tasks with effects
of different magnitudes and possibly in multiple fields of psychological research is still as
yet missing as appropriate and welcome in psychological research literature.
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SOA per group. X-axis refers to the RTs (in m); y-axis refers to the ECDF of RTs. Purple = online
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