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ABSTRACT Plant rhizobiomes are responsible for major soil processes in the im-
mediate plant environment, but our knowledge of the linkage between below-
ground microbiota diversity and plant health is limited. We studied the bacterial
and archaeal communities of sunflower rhizosphere organisms by comparing the
composition of these communities to bulk soils at three farms in the North West
province of South Africa. We evaluated and described a plethora of bacterial and
archaeal taxa.

South Africa, as one of the semiarid areas in the world, is a gold mine of important
soil microorganisms with various functions that could be used for biofertiliza-

tion. Sheila, Itsoseng, and Kraaipan are towns located in the Ngaka Modiri Molema
local district municipality (North West Province). North West Province, after Free
State, is the bedrock of sustainable sunflower production, accounting for around
80% of sunflower plantations and contributing significantly to the economy (1). The
high productivity of the study areas can be attributed to the plant growth-promot-
ing rhizobacteria present in the soil. This study was designed to determine the
structure of sunflower rhizospheric soil bacterial and archaeal communities of the
study areas.

Soil samples were obtained from sunflower rhizosphere and bulk soils from
three farms in North West Province. Farm soil samples came from Sheila (SH) (26°
2941.2020S,25°57947.490E), Itsoseng (IT) (26°4923.0640S, 25°58937.1040E), and Kraaipan
(KP) (26°17924.1860S, 25°13933.2580E). The rhizosphere soils were collected using a
destructive sampling method in which sunflower plants were uprooted from an
area of 2 by 4 m2. Then, the soil that was attached to the plant roots after shaking the
uprooted plant was collected and kept in a sterile plastic bag. The bulk soils were col-
lected 10 m from each site where sunflower rhizosphere soils were collected and also
kept in sterile plastic bags (2). The soil samples were immediately transported in an ice-
packed container to the laboratory and stored in a cold room at 4°C prior to analysis. A
kit (Zymo, California, USA) was used to extract microbial DNA from 2 g of each soil sam-
ple according to the manufacturer’s instructions.

Sample sequencing was performed using an Illumina MiSeq instrument at
Molecular Research LP (Shallowater, TX, USA). The purity and concentration of the DNA
samples were analyzed using NanoDrop ND-2000 and Qubit DNA broad-range (BR) rea-
gent assays. 16S rRNA libraries were obtained using the quality control (QC)-passed DNA
samples with the PCR primers 515F (59-AATGATACGGCGACCACCACCGAGATCTACAC
TATGGTAATTGTGTGCCAGCMGCCGCGGTAA-39) and 806R (59-CAAGCAGAAGACGGCAT
ACGAGATTCCCTTGTCTCCAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-39) (3) with
adapters and standard Illumina barcodes. The DNA samples were purified using
AMPure XP beads. As a quality control measurement, the barcoded libraries were
validated using the Agilent DNA 1000 bioanalyzer, and the concentration was
quantified using a Qubit assay kit. The libraries were merged and sequenced on the
Illumina MiSeq platform. The raw sequences were processed and analyzed on MG-
RAST server v4.0.3 (http://metagenomics.anl.gov/) (4). After demultiplexing of the
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paired-end reads, the raw data were uploaded as FASTQ files. Quality processing
and deduplication by MG-RAST pipeline analysis generated reads which were sub-
jected to taxonomic analysis (4). Then, the bacterial and archaeal abundances pres-
ent in the Sheila, Itsoseng, and Kraaipan soils were estimated (4). All bioinformatics
tools were run with default parameters (5).

At the domain level, the taxonomic descriptions of archaea and bacteria showed
7.0 to 13.4% and 86.59 to 99.30% mean read values, respectively. Bacterial phyla
such as Firmicutes (17 to 51%), Proteobacteria (18 to 36%), and Actinobacteria (7 to
38%) were the most abundant. Archaeal reads were allotted to Thaumarchaeota (1
to 13%) and Crenarchaeota (1%) abundance. The numbers of raw sequence reads of
each sample, which are higher than the corresponding numbers of reads that
passed quality control (QC), are shown in Table 1. Quality control of the metage-
nomics data was done to remove low-sequencing reads and contaminating reads
(e.g., reads of eukaryotic species). Since this study is based on the 16S amplicon,
the number of reads that passed QC is lower than the number of raw reads, possi-
bly because the samples contained more eukaryotic species, such as fungi, that
were identified and removed during the quality control step.

Data availability. The raw sequence files (reads in FASTQ format) were deposited at
the NCBI SRA database under the BioProject number PRJNA672856 for samples SH (sam-
ples S1_A, S2_B, S3_C, and S4_D), IT (samples S5_M, S6_N, S7_O, and S8_P), and KP (sam-
ples S9_Q, S10_R, S11_S, and S12_T). The samples can be accessed under SRA accession
numbers SRR12960272, SRR12960271, SRR12960268, SRR12960267, SRR12960266,
SRR12960265, SRR12960264, SRR12960263, SRR12960262, SRR12960261, SRR12960270, and
SRR12960269. The quality-filtered and annotated data for individual replicates have been
released publicly in the MG-RAST database with the accession numbers mgs831279 (sample
S1_A), mgs831282 (sample S2_B), mgs831285 (sample S3_C), mgs831300 (sample S4_D),
mgs831303 (sample S5_M), mgs831306 (sample S6_N), mgs831309 (sample S7_O),
mgs831312 (sample S8_P), mgs831270 (sample S9_Q), mgs831279 (sample S10_R),
mgs831273 (sample S11_S), and mgs831276 (sample S12_T).
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