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Abstract

Background: MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional
regulation of gene expressions and are involved in development, metabolism, and many other important molecular
mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for
miRNAs as well as comparative analyses with other sequenced insect species.

Methodology/Principal Findings: We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs
from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14
developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs
(including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved
miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length
heterogeneity at 59 and/or 39 ends of nine miRNAs between cloned and predicted sequences, and three mature forms
deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing
development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we
discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of
miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination
with predicted target genes and silkworm’s phenotypic traits; our results indicated that miRNAs may play key regulatory
roles in specific developmental stages in the silkworm, such as ecdysis.

Conclusions/Significance: Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA
candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over
multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and
quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular
emphasis on complex stages rather than general regulatory mechanisms.
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Introduction

As key regulators for gene expression at post-transcriptional

levels, microRNAs (miRNAs) are a class of endogenous non-

coding RNAs transcribed by RNA polymerase II with a size range

of ,22 nt (nucleotides); they are processed from larger hairpin

structures—known as pri- and pre-miRNAs—by two specialized

proteins, namely Drosha and Dicer (or Dicer-like proteins, DCLs)

[1,2]. Mature miRNAs are incorporated into the RNA-induced

silencing complex (RISC) with the Piwi/Argonaute (AGO) protein

family to exert their functions [3], whereas their opposite strands,

known as miRNAs*, are scrapped [4,5]. Previous discoveries

suggested that the strand whose 59 end is less stably paired as

miRNA:miRNA* duplex is preferentially packaged into RISC

[6,7]. Similar to lin-4 and let-7 of Caenorhabditis elegans, the majority

of miRNA genes are transcribed as independent transcriptional

units [4,8,9] albeit a few of them were found in introns of pre-

mRNAs and co-expressed with their host genes [5,10,11,12,13]. A

large fraction of miRNAs are conserved among closely-related

species, and many even have homologs in distant species. For

instance, more than a third of miRNAs found in C. elegans have

homologs in humans [5], suggesting that they have important

functions that are evolutionarily-conserved [14]. miRNA genes are

sometimes observed as clusters frequently transcribed as single

polycistronic transcript [2,10], implying that they may share

common functional relationships. Since lin-4 and let-7 were found
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to regulate development in C. elegans [15,16], ample reports have

suggested that miRNAs play significant regulatory roles under

physiological (such as development) and pathological (such as

cancers) conditions in plants, flies, fishes, and mammals

[14,17,18,19,20,21]. Although animal miRNAs tend to show

imperfect base-pairing in 39 untranslated regions (39 UTRs) of

their target transcripts, a 7-nt seed sequence starting from the

second nucleotide at the 59 end of miRNAs pairs specifically with

their target mRNA is reported to lead to decreased transcription

and/or translational repression [11,22,23,24,25]. Viruses also use

their miRNAs to repress host genes that include transcriptional

regulators, components of signal transduction pathways, B cell-

specific chemokines, and cytokines [26,27,28].

Currently, 5071 miRNAs have been annotated in miRBase

(release 10.0) (http://microrna.sanger.ac.uk/sequences/) identi-

fied by either experimental or computational approaches [29]. For

instance, direct sequencing and Northern blotting validations for

endogenous small RNAs have been successful in identifying the

majority of known miRNAs [26,30,31,32,33,34,35,36,37,38]. One

limitation of these approaches is its poor detectability for both low

abundant miRNAs due to variable expression levels and their

specificities of precise temporal and spatial expressions during

developmental stages. For instance, in Drosophila melanogaster, mir-3,

mir-4, mir-5, and mir-6 are down-regulated in the transition from

embryo to larva, whereas mir-100, mir-125, and let-7 are up-

regulated from larva to pupa [39]. Another example is the fact that

miRNAs are often expressed in a strict tissue-specific manner

during development; for instance, miR-124a is expressed only in

brain and spinal cord of vertebrates and ventral nerve cord of

insects [40,41,42]. Other examples are miR-1, miR-133, and miR-

206; all are strictly expressed in muscles and heart [43,44,45,46].

Taking the advantage of computational algorithms that have

been developed based on structural characteristics of miRNA

precursors and phylogenetic conservation for the prediction of

miRNAs [5,11,37,47,48,49,50,51] as well as the recently-se-

quenced domesticated silkworm (B. mori) genome [52,53], we

studied miRNAs in this economically important species by using a

combined strategy—computational prediction and experimental

identification. For the computational approach, we added custom-

designed filters based on known characteristics of insect miRNAs

in addition to software tools, such as Srnaloop [48]. For the

experimental approach, we initially made 14 small-RNA-specific

cDNA libraries for the selected developmental stages throughout

the life cycle of silkworms from pre-diapaused egg (embryo) to

larva and moth, sequenced adequate amounts of clones from the

libraries, and confirmed in part our in silico discoveries and

predictions. We employed the stem-loop RT PCR to confirm the

cloned novel miRNAs and analyzed the expression pattern of

selected miRNAs in 14 developmental stages. In the context of

predicted target genes and life history traits of silkworms; we also

discussed potential functions of several stage-biased miRNAs.

Results

Computational identification of conserved miRNAs and
novel pre-miRNA candidates

We first surveyed the B. mori genome assembly to predict

candidate pre-miRNAs using Srnaloop program and custom-

designed filters (see Materials and Methods for details), we then

searched Rfam database [54], an insect ncRNA dataset, and a

CDS dataset assembled from the silkworm genome for removing

those overlapping with these specialized sequences, yielding

7,241,352 candidate pre-miRNAs. Since most of the mature

miRNAs are evolutionarily-conserved among diverged species [5],

we first identified hairpin sequences from B. mori, which are

homologous to known metazoan miRNAs by searching miRBase

10.0 [29], and identified 114 distinct conserved miRNAs. Of

them, there were 21 previously-known miRNAs from B. mori [52]

(Table S1). 78 were classifiable into known families based on their

precursor sequences, and 45 have homologs among known insect

miRNAs. We also discovered six pairs that are organized as

clusters; bmo-miR-1/bmo-miR-133, bmo-let-7/bmo-miR-100,

bmo-miR-12/bmo-miR-283, and bmo-miR-275/bmo-miR-305

are separated by less than 20 kb apart and in the same orientation;

bmo-miR-9b overlaps with bmo-miR-79 on the opposite strand;

and bmo-miR-2 is adjacent to bmo-miR-13 but on the reverse

strand in a tail-to-tail orientation about some twenty basepairs

away. Most strikingly, there are six members of bmo-miR-466

family, and three have multiple copies. For instance, bmo-miR-

466e has 16 copies in the current silkworm genome assembly.

For predicting novel pre-miRNA candidates, we used filters

based on sequences and structure features to limit false positives,

including GC content as well as minimum free energy of entire

hairpins, and core hairpin structures. To evaluate the performance

of our pipeline, we carried out a sensitivity test. Starting from 279

insect pre-miRNAs found in five known insect genomes, we

obtained 279 and 252 pre-miRNAs after folding and filtering

procedures, yielding sensitivities of 100% and 90.3%, respectively

(Table 1).

We also selected candidates whose sequences and structure

features are consistent with reference range values as listed in

Table 2. In addition, we searched the sequences against genomic

sequences of D. melanogaster, Drosophila pseudoobscure, Apis mellifera,

Anopheles gambiae as well as the silkworm ESTs. Our procedure

yielded 148 novel non-redundant pre-miRNAs candidates that are

anchored to the genome sequence and tailored with relative

abundances although in most cases only one arm of these pre-

miRNAs is processed into mature miRNAs and conserved among

closely related species. Our result indicated that conserved arms

Table 1. Sensitivity test on 279 published insect pre-miRNAs.

Tested miRNAs Number of miRNAs Number of miRNAs after Srnaloop Number of miRNAs after filters

A. gambiae 38 38 37

A. mellifera 54 54 43

B. mori 21 21 18

D. melanogaster 93 93 84

D. pseudoobscure 73 73 70

Total (Sensitivity) - 279 (100%) 252 (90.3%)

doi:10.1371/journal.pone.0002997.t001

microRNAs in Silkworm

PLoS ONE | www.plosone.org 2 August 2008 | Volume 3 | Issue 8 | e2997



(39 arm or 59 arm) in closely related species are more likely to

harbor authentic miRNAs. For instance, S1 has a conserved 39

arm among D. melanogaster, D. pseudoobscure, A. mellifera and

A.gambiae, better than its 59 arm. We also found that 28 candidates

(,18.9%) matched silkworm ESTs; shows that they are tran-

scribed, which is consistent with them being real miRNAs (Table

S2).

Cloning and identification of silkworm miRNAs
We also took a direct-cloning approach to identify novel

miRNAs. We first constructed 14 independent small RNA

libraries (in an insert-size range of 15 to 40 nucleotides) across

the life span (from fertilized eggs to pre-diapaused embryos and all

the way to moth; see Materials and Methods) of silkworms. We

acquired 6,720 clones (480 clones from each library) and 3,721

sequences are in a length range of 16 to 40 nucleotides; 69% of

them have at least one match in the silkworm genome sequence

annotated in SilkDB (http://silkworm.genomics.org.cn/) and the

database posted by the silkworm genome research program

(http://sgp.dna.affrc.go.jp/index.html). The remaining 31% did

not match anything and were not analyzed further. Among the

cloned small RNAs, we also identified rRNA (9%), tRNA (5%),

sn/snoRNA (1%), and other non-coding RNAs (4%) as well as a

small fraction (2%) that contains breakdown products of mRNAs.

2% of the sequences are believed to be putative miRNAs (Table 3),

and the remaining 46% of short sequences failed to be classified

based on the current silkworm genome sequence assembly.

Our sequence analyses on the sequenced clones have yielded 55

miRNAs, representing 17 unique conserved miRNAs already

discovered computationally. We also found several miRNA*s,

such as bmo-miR-263a* in bluish egg (BS), bmo-miR-71* in

spinning larva (SS) and pre-pupa (PPS), which providing solid

evidence for Dicer-like processing [55,56,57], as it was reported

that miRNA*s can also be functional [43,58,59]. Another group of

11 clones representing 11 novel putative miRNAs in our predicted

data were confirmed by direct cloning (Table 3). In addition, four

highly-conserved miRNAs (bmo-miR-278, bmo-miR-306, bmo-

miR-317 and bmo-miR-768) and three less-conserved miRNAs

(bmo-miR-1920, bmo-miR-1921 and bmo-miR-1922) were also

cloned directly, which were not predicted based on our predicting

criteria albeit their canonical precursors (Figure 1). To validate the

novel miRNAs identified through direct cloning (bmo-miR-

1920—bmo-miR-1926 and bmo-miR-2007—bmo-miR-2010),

we deployed a stem-loop RT-PCR to assess the expression of

these miRNAs (except bmo-miR-2009*). Expression of all 13 novel

miRNAs at the different developmental stages was confirmed

(Figure 2).

Direct cloning allowed us to identify several mature miRNAs

sequences, such as bmo-miR-263a, bmo-miR-282*, and bmo-

miR-317, which vary in their 59 and/or 39 ends on the same stem

of their precursors (Table 3). It is difficult to recognize accurate

sequences of mature miRNAs solely by computational prediction

and Northern blotting. Direct sequencing provides solid evidence,

to the level of single nucleotide. For instance nine miRNAs in our

dataset (bmo-miR-1, bmo-miR-10, bmo-miR-13, bmo-miR-31,

bmo-miR-71, bmo-miR-77, bmo-miR-263a, bmo-miR-275, and

bmo-miR-317) have nucleotide differences in 59 or/and 39 end of

their sequences when compared the mature forms to their

predicted sequences or homologs in closely related species

(Figure 3). Moreover, we found that bmo-miR-2008 from the 59

stem of putative pre-miRNA S147 yields three different segments

as mature miRNAs (Figure 4).

Based on the numbers of sequenced clones per library, assuming

unbiased cloning process, miRNA expression profiles in B. mori

appeared stage-biased. We detected expressions of miRNAs in

multiple developmental stages, and the frequency of any single

miRNA appearing in sequenced libraries varied from one to seven

(Table 3). For instance, aside from a few commonly expressed

miRNAs, such as bmo-miR-8, bmo-miR-13, bmo-miR-263a,

bmo-miR-275, bmo-miR-279, bmo-282*, bmo-miR-285 and

bmo-miR-306, most of them were found development-related

(Table 3) although some may be due to inadequate sampling that

often results less reliable statistics. Furthermore, we noticed that

the highest number of miRNAs, both in sorts and quantities, were

detected in the library made from RNA isolated at molting larva

stage (MLS)—33 out of 77 sequences, representing 12 different

miRNAs.

Analyzing 15 mature miRNAs expression patterns and
potential targets

We analyzed the expression of 15 mature miRNAs from 14

different stages with stem-loop RT-PCR (Figure 5). The

expression of bmo-miR-92 varied across the 14 developmental

stages, highly expressed at five stages—pre-diapaused egg (PDS)

(p = 0.0014), diapause-broken egg (BKS) (p = 0.0011), pupa (PS)

(p = 0.0017) and PPS with slightly less significance (p = 0.067)—but

lower in other stages, and the lowest at diapaused egg (DS) stage

(p = 0.035). Bmo-miR-10 and bmo-miR-14 showed a synchronized

trend where a sharp increase at trachea appearing stage (TAS)

(p = 0.0048 and 0.0031, respectively), NLS (p = 0.011 and 0.00007,

respectively), and MLS (p = 0.012 and 0.0012, respectively). Bmo-

miR-31, bmo-miR-71, and bmo-miR-77 displayed a very similar

expression pattern, higher expression at NLS (p = 0.027, 0.035 and

0.0064, respectively); bmo-miR-31 and bmo-miR-77 are also

expressed at a higher level at MLS than at other stages (p = 0.019

and 0.0082, respectively). Bmo-miR-8, bmo-miR-9a, and bmo-

miR-263a, similar to bmo-miR-1, showed a slight elevation after

diapause-broken stage (DBS) and kept a relatively constant level

thereafter. In the case of bmo-miR-278 and bmo-miR-iab-4-3p,

our results showed that they displayed distinct increases at MLS

(p = 0.022), late fifth-instar larva (LFLS) (p = 0.048), PPS

(p = 0.042), and DS (p = 0.0083), SS (p = 0.012), PS (p = 0.022),

respectively. The expression of bmo-miR-7 and bmo-miR-275

maintained at a relatively stable level in 14 development stages

except bmo-miR-275 alone displayed a weak increase at both PPS

and PS. Bmo-miR-13 showed fluctuating trend with its lowest level

at LFLS (p = 0.042). In general, most of the miRNAs exhibited the

highest expression at NLS and MLS (Spearman’s r = 0.65,

p = 0.01) but the lowest expression at DS; these results are in

accord with the cloning results for the MLS, where abundant

miRNA expression was observed.

We used the PITA program to identify the target genes of the 15

mature miRNAs with a default criterion and DDG#25 kcal/mol.

From the long list of the target genes, we selected potential targets

with high probability after taking both expression patterns of

Table 2. Distributions and optimal ranges of quantifiable
features of pre-miRNAs.

GC content Core mfea Hairpin mfeb Ch_ratioc

Distribution 16–70 232.1– 28.1 246.3– 212 0.39–0.99

Reference value 30–60 229.7– 210 240– 215 0.4–0.99

aMinimum free energy of the whole hairpin.
bMinimum free energy (mfe) of the core of hairpin structure
cRatio of core mfe to hairpin mfe.
doi:10.1371/journal.pone.0002997.t002

microRNAs in Silkworm
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Table 3. miRNAs expressed in B. moria.

Name

Matched
prediction
candidatesc Sequence (59 to 39)

Total
clones PDS DS DBS BKS TAS BS NLS FLS MLS LFLS SS PPS PS MS

bmo-miR-1 H2 UGGAAUGUAAAGAAGTGTGGA 1 1

bmo-miR-7 H92 UGGAAGACUAGUGAUUUUGUUGU 1 1

bmo-miR-8 H101 UAAUACUGUCAGGUAAAGAUGUC 3 1 2

bmo-miR-9a H110 UCUUUGGUUAUCUAGCUGUAUGA 1 1

bmo-miR-10 H3 UACCCUGUAGAUCCGAAUUUGU 2 2

bmo-miR-13 H11 UAUCACAGCCAUUUUUGACGAGUU 2 1 1

bmo-miR-31 H39 GGCAAGAAGUCGGCAUAGCUGU 2 2

bmo-miR-71 H95 UGAAAGACAUGGGUAGUGAGAUGU 1 1

bmo-miR-71* H95 UCUCACUACCUUGUCUUUCAUG 1 1

bmo-miR-77 H99 UCAUCAGGCCAUAGUUGUCCA 1 1

bmo-miR-92 H104 AAUUGCACCAAUCCCGGCCUGC 1 1

bmo-miR-263ab H22 AAUGGCACUGGAAGAAUUCACGGG 5 1 4

AAUGGCACUGGAAGAAUUCACGG 5 3 2

AAUGGCACUGGAAGAAUUCACG 11 1 7 3

AUGGCACUGGAAGAAUUCACG 1 1

AAUGGCACUGGAAGAAUUCA 4 4

bmo-miR-263a* H22 CUCUUAGUGGCAUCAC 1 1

bmo-miR-263b H23 CUUGGCACUGGGAGAAUUCA 1 1

bmo-miR-275 H24 UCAGGUACCUGAAGUAUCGCG 1 1

bmo-miR-278 – UCGGUGGGAUCUUCGUCCGUUU 1 1

bmo-miR-279 H27 UGACUAGAUCCACACUCAU 2 1 1

bmo-miR-282*b H29 GACAUAGCCUGAUAGAGGUUACG 2 1 1

ACAUAGCCUGAUAGAGGUUACG 1 1

bmo-miR-285 H31 UAGCACCAUUCGAAUUCAGUGC 4 1 1 1 1

bmo-miR-306 – UCAGGUACUAGGUGACUCUGA 3 2 1

bmo-miR-317b – AGUGAACACAGCUGGUGGUAU 2 2

UGAACACAGCUGGUGGUA 1 1

bmo-miR-768 – GAGGAUGAAAUUAUCGAGCUAC 1 1

bmo-miR-iab-4-3p H113 CGGUAUACCUUCAGUAUACGUAAC 1 1

bmo-miR-1920 – GCGUGCGCGUAGCGAGUUC 1 1

bmo-miR-1921 – UGAGAUUCAGCCUUGCGCCAGGU 1 1

bmo-miR-1922 – GUUCGUCGUGGAUUUAAGA 1 1

bmo-miR-1923 S105 UAAUCGCGUACCGUUGCAUAGCCGUGGC 1 1

bmo-miR-2008b S147 CGGCGAGAGGGACGCUCCUUAGAGUCG 1 1

AGGGACGCUCCUUAGAGUCGGGUU 1 1

GCGAGAGGGACGCUCCUUAGA 1 1

bmo-miR-2009 S127 GACCCGAAAGAUGGUGA 1 1

bmo-miR-2009* S127 GAUGGAGGAUCGUAGCA 1 1

bmo-miR-2010 S140 CACCACGGAAACACAAUAAUUG 1 1

bmo-miR-1926 S104 AGGAAUUCUAAAGCAAAAAGG 1 1

bmo-miR-2007 S122 UAAAAACGUGCGUUGGCCG 1 1

bmo-miR-1924 S45 UGAUGUCCGCGGAGGUGUAGUG 1 1

bmo-miR-1925 S20 UUUUCAACAUGGUAUGGAC 1 1

Total clones 77 3 1 3 1 2 4 4 1 33 5 9 7 2 2

aPre-diapaused egg(PDS); Diapaused egg(DS); Diapause-broken egg(DBS); Blastokinesis stage egg(BKS); Trachea appearing stage egg(TAS); Bluish egg(BS); Newly-
hatched larva(NLS); Fourth-instar larva(FLS); Molting larva(MLS); Late fifth-instar larva(LFLS); Spinning larva(SS); Pre-pupa (PPS); Pupa (PS); Moth (MS).

bThe sequences have length heterogeneity found on the 59 and/or 39 end, and different mature forms from the same stem of precursor are also listed.
cH, ID of miRNAs predicted based on homolog conservation comparison with known Metazoa miRNAs; S, ID of putative miRNAs predicted based on Sequence &
Structural features filters.

doi:10.1371/journal.pone.0002997.t003
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miRNAs and silkworm life traits into account, the targets predicted

or confirmed in Drosophila previously were also listed (Table 4).

These target genes involved those of hormone-regulated pathways

(such as myosuppressin receptor/BMSR, juvenile hormone

esterase/Jhe, juvenile hormone acid methyltransferase/Jhamt,

allatostatin receptor, bombyxin and RXR type hormone recep-

tor/BmCF1), cell cycle control (such as inhibitor of apoptosis

protein/Iap, annexin/EN16b, SCF apoptosis response protein/

SCF, and serine/threonine protein phosphatase 6), signal

transduction (such as notch homolog, presenilin enhancer, and

achaete-scute-like protein/ASE), and binding (such as DNA

supercoiling factor and RNA unwinding factor/vas).

Discussion

Performance of our prediction procedures
Our prediction protocol took the advantage of previous studies

[48,60] as well as custom-designed conditional filters. In particular,

we used shared features of insect mature miRNAs and pre-miRNAs,

and the protocol gave rise to a sensitivity of 90.3% for known insect

pre-miRNAs. However, several pre-miRNAs were not detected due

to the stringency of the filters but discovered with our direct cloning

experiments, including bmo-miR-278, bmo-miR-306, bmo-miR-

317, bmo-miR-768, bmo-miR-1920, bmo-miR-1921, and bmo-

miR-1922. Therefore, a combined approach is of essence to identify

more miRNAs in any species even when genomic sequence is

available and of high quality.

miRNA clusters in silkworms
Six pairs of clustered miRNA genes were uncovered despite the

fragmented nature of the draft sequence assembly. We noticed

that the bmo-miR-1/bmo-miR-133 pair is highly conserved across

diverse taxa including not only insects, such as honey bee and red

flour beetle (data unpublished), but also vertebrates, such as frog,

chicken, mouse, and human. In the silkworm genome assembly,

Figure 1. Predicted stem-loop structures of precursors and mature forms (highlight in red) of newly-identified miRNAs based on
our direct cloning approach from the silkworm. Hairpins longer than 120 nt were truncated; these hairpins are indicated by a double slash
preceding the stem. Scaffold numbers and genomic positions are indicated in parentheses.
doi:10.1371/journal.pone.0002997.g001

Figure 2. Expression confirmation of novel miRNAs identified by cloning from specific development stages of silkworm using stem-
loop RT PCR. For bmo-miR-2008, we detected its three different mature segments, bmo-miR-2008a, bmo-miR-2008b and bmo-miR-2008c; for bmo-
miR-2009, we detected only the mature segment from 59 arm of its precursor. U6 snRNA serves as a positive control.
doi:10.1371/journal.pone.0002997.g002

microRNAs in Silkworm
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this pair is situated on the antisene strand between the mind bomb

homolog 1 (MIB 1) and CG30492-PC, but in other species, they

are all exclusively harbored by the antisense strand of the same

intron (intron12) of MIB1. MIB1 as a ubiquitin ligase interacts with

the intracellular domain of Delta and promoting its ubiquitylation

and internalization for efficient activation of Notch pathway [61].

In Drosophila, miR-1 functions in Notch pathway through targeting

the Notch ligand, Delta [62]. In frog embryos, miR-1 promotes

muscle differentiation by targeting histone deacetylase4 (HDAC4)

that acts as a transcriptional repressor in the Notch pathway [46].

These findings give us clues that conservative co-localization of the

miR-1/miR-133 cluster and its antisense gene may exhibit their

conserved functions in various species. Another pair of interesting

clustered miRNAs in the silkworm genome contains bmo-miR-2

and bmo-miR-13, which are classified into the miR-2 family based

on sequence similarity. Those two miRNAs also form a cluster in

D. melanogaster and have been defined as proapoptotic K-box

family miRNAs for regulating Notch target genes and K-box

containing genes such as proapoptotic genes grim, reaper, and sickle

[11,23,63]. The miR-2 family has been implicated in the control of

apoptosis [23,64]. Coincidently we detected bmo-miR-13 in two

stages: late fifth-instar larva (LFLS) and pupa stages (PS), and its

potential targets also include notch-like gene and inhibitor of

apoptosis gene (Iap) (Table 4) suggesting that bmo-miR-2/13 have

similar functions in silkworms and fruitflies.

Imprecise and alternative cleavage of Dicer and origins of
new functions for miRNAs

Some of the conserved miRNAs reported here have nucleotide

difference in their 59 and/or 39 ends as compared with predicted

sequences or homologs in closely-related species. Especially in

bmo-miR-263a (Figure 3), changes of one nucleotide in 59 or

more in 39 ends may not affect their regulatory roles because a

mechanism for selecting target genes is based on nucleotide

shuffling of a 7-nt seed sequence starting from the second

nucleotide at the 59 end of miRNAs. Such end polymorphism of

miRNAs has also been observed by others using small RNA

cloning approach [43,65] and other methods, such as RNA-

primed Array-based Klenow Extension (RAKE) [31]. The 59

and/or 39 heterogeneity might be mainly attribute to the less

precise Drosha/Dicer processing, degradation at the 59 and/or

39 end and addition of untemplated nucleotides to the 39 ends of

miRNAs [56,66]. In silkworms, such changes may occur in a

similar ways as in other well-studied species for better

performances in regulating their target genes. Although there

has not been evidence to explain the functional implication of

the sequence heterogeneity at 59 and/or 39 ends, our findings

may support the idea that such nucleotide changes possibly affect

the stability/subcellular localization of miRNAs and/or alter

chemically dynamic parameters of miRNA-target interactions,

thus induce miRNAs to select new target genes [25,66]. The

sufficient variations flank mature miRNAs could contribute to

the evolutionary diversification of these key regulatory genes

[67]. In our collection, for instance, the sequence of bmo-miR-

2008 has three different mature forms deducible from the same

stem of its precursor S147 (Figure 3); this phenomenon supports

the possibility that imprecise and alternative cleavage during

Figure 3. Length heterogeneity is found in the 59 and/or 39 end, the cloned sequences (C) of bmomiR-1, bmo-miR-10, bmo-miR-13,
bmo-miR-31, bmo-miR-71, bmo-miR-77, bmo-miR-263a, bmo-miR-275 and bmo-miR-317 have nucleotides difference (highlighted
in red) in 59 and/or 39 ends of the sequences as compared with their predicted sequences (P) or homologs among closely related
species.
doi:10.1371/journal.pone.0002997.g003

Figure 4. Three different segments of cloned bmo-miR-2008
(highlight in red, blue and green respectively) derived from the
59 arm of its predicted pre-miRNA S147. Scaffold number and
genomic positions are indicated in parentheses.
doi:10.1371/journal.pone.0002997.g004
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Dicer processing of mature miRNAs may allow miRNAs to

acquire new functions. However, functional validation is needed

to convince such active roles of Dicer contributing to the

evolution of miRNAs.

Stage-biased miRNAs and their potential functions
Our direct cloning approach served two basic purposes:

discovering new miRNA candidates and obtaining rough

frequencies in a per library manner. Our results offer indications

Figure 5. Expression profiles of 15 mature miRNAs in 14 developmental stages. Data from each miRNA were showed as dendrograms
indicating expression correlation among genes. Samples and miRNAs are displayed in rows and columns, respectively. The relative expression values
ranged from +5 log10 to 25 log10.
doi:10.1371/journal.pone.0002997.g005

Table 4. High-probability targets of 15 silkworm miRNAs.

No miRNAs Predicted targets (Known)* Predicted targets (Novel)

1 bmo-miR-1 Hr46, HDAC4, Delta1 BMSR, Cjhbp, Jhe, eclosion hormone, dopa decarboxylase

2 bmo-miR-7 Aop, HLHm3, Tom,YAN, hairy Ptsp, ecdysteroid-regulated 16 kDa protein precursor, vas, dopa
decarboxylase, Jhamt, SCF apoptosis response protein, presenilin
enhancer, BMSR, Ago2, Bras1

3 bmo-miR-8 Ptp99A, atrophin, Lpr4, Cdc2, BmCF1, Bras1, stathmin, Pbanr, Jhamt, trehalase

4 bmo-miR-9a Br, Hr46, SOPs ASE, Ago2, chiB4, Jhe, thymosin isoform 1, BRFa, Notch homolog,
stathmin,

5 bmo-miR-10 Scr, HOXA3 E75, BmCF1, ecdysone receptor, Jhe, Eck, EN16b

6 bmo-miR-13 Rpr, hb, abnormal wing disc-like protein, chiB4, Lysp, Scr, MOF protein,
Adamts-like protein, heptahelical receptor, Cjhbp, BMSR, Iap, notch-
like protein

7 bmo-miR-14 Br, NetA, EcR, Eip93F, Drice E75, BmBRC, BmCF1, BmCyc b, Jhe, Sgf-1

8 bmo-miR-31 NetB, grim, reaper, sickle presenilin enhancer, Adamts-like protein, Ago2, Bras2, allatostatin
preprohormone, eclosion hormone, Cjhbp

9 bmo-miR-71 - pbp2, Ago2, ecdysone 20-hydroxylase, ecdysteroid-phosphate
phosphatase, Pbanr, BRFa

10 bmo-miR-77 - SCF apoptosis response protein, Jhe, Iap, eclosion hormone, septin,
Jhamt, 20-hydroxy-ecdysone receptor, bombyxin

11 bmo-miR-92 Hr96 Eck, myosin light polypeptide, BmCyc b, tropomyosin isoform 2,
Boceropsin, DNA supercoiling factor, EN16b

12 bmo-miR-263a Abd-A, Clk, dbt,tws, slo presenilin enhancer, calreticulin, ecdysteroid-regulated 16 kDa protein
precursor, Scr, allatostatin receptor, dopamine transporter, caspase-1,
allatostatin receptor

13 bmo-miR-275 Scr, Drl-2, NetA, Bras2, Wcp4, presenilin enhancer, Pbanr, Rack1, BIR, cell death-
regulatory protein

14 bmo-miR-278 expanded BIR, Jhamt, Iap, ecdysone receptor, allatostatin preprohormone,
allatostatin receptor, Rieske-domain protein Neverland, BmCF1, Eck,
thymosin isoform 2, chitinase-like protein

15 bmo-miR-iab-4-3p - BmDHR-2, cell death-regulatory protein, BMSR, serine/threonine
protein phosphatase 6, PKG-II, Sgf-1, allatostatin preprohormone,
dopa decarboxylase, Adamts-like protein, IPPI_Bm

*Those target genes have been predicted or confirmed in Drosophila.
doi:10.1371/journal.pone.0002997.t004
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of stage-biased expression of miRNAs in B. mori. In particular the

most abundant miRNAs are found in NLS and MLS. Stage-biased

miRNAs, such as bmo-miR-92 at PDS, bmo-miR-10 at NLS and

MLS, bmo-miR-iab-4-3p at DS, SS and PS, may play crucial roles

in regulating development-related genes. These stage-biased

miRNAs provide insights into the mechanisms in regulating the

developmental stages of B. mori.

As shown in Figure 5, bmo-miR-iab-4-3p exhibited a relatively

high expression level at DS and SS, reaching its expression peak at

PS (p = 0.022). We noticed that its predicted target genes—BMSR

and cell death-regulatory protein—may be suppressed by bmo-

miR-iab-4-3p at PS, resulting in normal level of ecdysone and

inducing apoptosis of larval obligatory tissues as well as

differentiation of imaginal discs at PS. Remarkably, bmo-miR-

iab-4-3p displayed a relatively high level at DS whereas all other

14 miRNAs kept a low level expression. Previous research

indicated silkworm cells are suspended in G2 at DS [68,69], and

Ser/Thr protein phosphatase, targeted by bmo-miR-iab-4-3p,

controls the transition of G2 to M [70], suggesting that bmo-miR-

iab-4-3p may play a pivotal role in keeping embryonic cells at G2

by suppressing the function of Ser/Thr protein phosphatase. In

addition, dme-miR-92a, the ortholog of bmo-miR-92, was found

expressed in the brain primordium and a subset of the ventral

nerve cord in Drosophila [42], implying its possible role in

regulating brain and nerve development. We also found Boceropsin,

an important cerebral opsin of silkworms [71], is a potential target

of bmo-miR-92. The relatively low expression of bmo-miR-92 at

TAS and bluish egg stage (BS) may be essential for the function of

Boceropsin and normal development of stemma.

The expression patterns of bmo-miR-10 and bmo-miR-14 are

very similar, and they also shared several common targets, such as

ecdysone receptor (EcR), orphan nuclear receptor (E75), BmCF1,

and Jhe. Varghese and Cohen have reported that miR-14 plays a

key role in modulating the positive autoregulatory loop by which

ecdysone sensitizes its own signaling pathway [72]. Aside from

EcR, bmo-miR-10 and bmo-miR-14 may together down-regulate

the expression of Jhe, inducing juvenile hormone to accumulate

slowly at late MLS for normal larva development after ecdysis.

Molting stage is composed of a series of successive processes

including hypodermal cells activating, ecdysial fluid secreting,

cuticular chitin and exoskeleton degrading, new epidermis

formation, and old epidermis exuviation. The periodic ecdysis

primarily orchestrated by ecdysone and juvenile hormone is a

distinct characteristic in life cycle of silkworm [73]. Abundant

expressions of miRNAs at MLS implicated that miRNAs may be

fine-tuning this complicated and transient process. This result also

coincides with the expression pattern of bmo-let-7 reported

previously [74], which revealed that the expression level of bmo-

let-7 is higher at the beginning of each molt than at other periods.

According to our results, bmo-miR-31, its homolog dme-miR-31a

is expressed in a pair-rule pattern of 14 stripes and in the foregut,

anterior endoderm, and hindgut [42], and miR-31 was also found

to have a high expression level in the small intestine of mammals

[75], which contributes to the tumorigenesis and the acquisition of

a more aggressive phenotype in human colorectal cancer [76].

Those findings provided clues that bmo-miR-31 at MLS may

control epithelial metabolism during molting. Another MLS-

biased miRNA, bmo-miR-278, was also found at MLS, and its

homolog dme-miR-278 was proven to control energy homeostasis

in Drosophila, since miR-278 mutants have elevated insulin

production and elevated circulating sugar [77]. The relatively

high expression level suggested that bmo-miR-278, in company

with synchronized expressions of bmo-miR-77, bmo-miR-10 and

bmo-miR-14, may play a similar role in regulating energy

metabolism at molting stage, compromising for the conflict of

energy-hungry process and fasting behavior by targeting insulin

receptor-like protein precursor (BIR), bombyxin, and BmCF1.

Our cloning and real-time PCR results showed the expression of

miRNAs is outstanding in stage of MLS, both in sorts and

quantities. These discoveries shed lights on the fine-tuning

mechanism of miRNAs in regulating different developmental

stages of B. mori. Further investigations are needed to expand our

comprehensive understanding of the modulating networks of

miRNAs in the development of B. mori and even other insects.

Materials and Methods

Experimental materials from silkworms
Our starting materials were from HCl-treated diapaused eggs

(they are actually developing embryos but here we used the

common word egg instead) of Chinese silkworm strain Dazao

provided by the Sericultural Research Institute, Chinese Academy

of Agricultural Sciences, Zhenjiang, P. R. China. Eggs were

incubated at 2561uC under illumination, and larvae were reared

on an artificial diet produced by the Sericultural Research Institute

of Shandong, P. R. China. Eggs were incubated at 25uC for 30

days, and then transferred to 4uC and kept cold for 2 months to

terminate diapause. All developmental stages of the silkworm were

obtained in the following manner: (1) eggs laid within a 20-hour

period for pre-diapause stage (PDS), (2) eggs laid within 40–

48 hours for diapause stage (DS), (3) chilled eggs just before revival

for diapause-broken stage (DBS), (4) eggs collected 72 hours after

diapause-broken stage for blastokinesis stage (BKS), (5) eggs

collected 120 hours after diapause-broken stage for trachea-

appearing stage (TAS), (6) eggs collected 200 hours after

diapause-broken stage for bluish stage (BS), (7) larvae hatched at

the first day were collected for newly-hatched larva stage (NLS), (8)

larvae collected on day 3 of the fourth-instar for fourth-instar larva

stage (FLS), (9) larvae collected at fourth-molting for molting larva

stage (MLS), (10) larvae collected on day 4 of the fifth-instar for

late fifth-instar larva stage (LFLS), (11) larvae collected at spinning

for spinning stage (SS), (12) larvae collected 2 day after cocooning

for pre-pupa stage (PPS), (13) pupas collected 6 days after

cocooning for pupa stage (PS), and (14) moths collected before

mating for moth stage (MS).

Computational prediction of microRNAs
We used Srnaloop to predict putative miRNAs from the silkworm

genome. The genome assembly and some functional annotations

were downloaded from SilkDB (http://silkworm.genomics.org.

cn/) and Silkworm genome research program (http://sgp.dna.

affrc.go.jp/index.html). The optimized parameters for Srnaloop

program were described previously [60], except for the parameter

‘‘-l 90’’, which was specific to identify hairpins shorter than 90

bases and was based on observations on known insect pre-

miRNAs. We screened those hairpin sequences using overlapping

filter developed by Li et al [60]. For removing other non-coding

RNAs, we used Rfam database (http://www.sanger.ac.uk/

Software/Rfam/) and assembled a database of rRNA, tRNA,

snRNA, snoRNA sequences by querying GenBank (http://www.

ncbi.nih.gov/Genbank/index.html), with the appropriate feature

keys (D. melanogaster, D. pseudoobscure, A. mellifera, B. mori and A.

gambiae) as what in the insect ncRNA database. We also used a

data set of silkworm CDS sequences (http://silkworm.genomics.

org.cn/) to screen out protein-coding sequences.

Two strategies were taken to predict conserved and novel

miRNAs. The first strategy for obtaining homologs or orthologs of

previously validated miRNAs, and candidate hairpins were searched

microRNAs in Silkworm
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against sequences of known metazoan miRNAs in miRBase (release

10.0) [78]. Based on the nomenclature of miRNAs, newly identified

miRNAs with less than two bases variations against known miRNAs

were classified into the same miRNAs family.

The second strategy for predicting novel miRNAs in the remaining

hairpin sequences is to reduce the number of false predictions of pre-

miRNAs based on Srnaloop. We applied several additional sequence/

structure filters such as GC content, minimal free energy of the full-

length hairpin (hairpin mfe), minimal free energy of the core hairpin

structure (core mfe), and the ratio of core mfe to hairpin mfe

(ch_ratio) to select authentic pre-miRNAs as described previously

[60]. We also investigated features of known mature miRNAs and

their precursors of D. melanogaster, D. pseudoobscure, A. mellifera, B. mori

and A. gambiae. The candidate hairpins with sequence and structural

features within the optimized reference range values of insect

miRNAs were extracted for further analysis.

To assemble our own predicted miRNAs database, we searched

putative pre-miRNAs against genomic sequences of D. melanogaster,

D. pseudoobscure, A. mellifera and A. gambiae from UCSC (http://

genome.ucsc.edu/) and silkworm EST sequences downloaded

from NCBI dbEST (http://www.ncbi.nlm.nih.gov/dbEST/index.

html) for sequence conservation and analyzed their expression

levels. We extracted the conserved pre-miRNAs whose 59 arm or

39 arm have $20-nt continuous fragments identical to a subject

sequence and the opposite arm have at least 15-nt fragments

matching the same subject sequence.

Cloning of small RNAs
The isolation and enrichment procedure for small RNA fraction

were performed by using the mirVanaTM miRNA Isolation Kit

(Ambion, Austin, TX), and isolated small RNAs were further

separated with flashPAGETM Fractionator (Ambion, Austin, TX)

according to the manufacturer’s manuals. Small RNAs was cloned

with special adaptors. The 39 adapter oligonucleotide (59-pUUUc-

tatccatggactgtx-39, where uppercase, lowercase, p, and x stand for

RNA, DNA, phosphate, and inverted deoxythymidine, respectively)

with a 59 monophosphate and a 39 inverted deoxythymidine to

prevent self-ligation was ligated first to the small RNA preparation

with T4 RNA ligase (NEB) at 37uC for 1 h. The ligation product was

then recovered after fractionation and ligated to the 59 adapter (59-

tgggaattcctcactAAA-39). The ligation product was fractionated again

and reverse-transcribed by using a RT primer (59-TACAGTC-

CATGGATAGAAA-39), followed by PCR amplification with the

reverse (RT primer) and forward (59-CATGGGAATTCCTCAC-

TAAA-39) primers. The gel-purified PCR products were finally

ligated to pGEM-T vector and transformed into Electro-

MAXTMDH10BTM competent cells (Invitrogen).

Sequence analysis
We used PHRED, CROSS_MATCH, and BLASTN for

automated base calling, vector removal, and sequence compari-

son, respectively [79,80]. After trimming off low-quality sequences,

we compared miRNA candidates ranging from 16nt to 40 nt in

length to the silkworm genome sequence for putative origins, and

those with perfect matches were searched against Rfam and our

custom-curated insect ncRNA databases to remove sequences that

are neither siRNAs nor miRNAs based on their sequence and

structural features. We used the silkworm CDS database to

identify and to remove sequences from degradations of mRNAs,

and we also confirmed the candidate sequences by identifying

query sequences among our predicted miRNAs and in miRBase

10.0. To get a prediction of the folding of these miRNAs, the

candidate sequences along with 100-nt upstream and downstream

flanking sequences were ran through Mfold [81].

Stem-loop reverse-transcription PCR confirmation and
Real-time PCR quantification

cDNA was synthesized from total RNA by using miRNA-

specific stem-loop primers obtained from commercial service

(Takara, Dalian). For quantification of known miRNAs, cDNA

was synthesized according to the TaqMan MicroRNA Assay

protocol (Applied Biosystems, Foster City, CA) except bmo-miR-1,

bmo-miR-13, bmo-miR-14, bmo-miR-77, bmo-miR-263a, bmo-

miR-275, and U6 snRNA, whose stem-loop primers also obtained

from commercial service. All the stem-loop RT primers and gene

specific primers were listed in Table S3. Reverse transcriptase

reactions contained 20 ng of RNA samples, 50 nM stem-loop RT

primer, 16 RT buffer, 0.25 mM each of dNTPs (Promega),

0.01M DTT (Invitrogen), 5 U/ml SuperScriptTM II reverse

transcriptase (Invitrogen) and 0.25 U/ml RNase Inhibitor (Pro-

mega). The 15-ml reactions were incubated in an Applied

Biosystems 2720 Thermal Cycler in a 96-well plate for 30 min

at 16uC, 30 min at 42uC, 5 min at 85uC and then held at 4uC.

The cDNAs were diluted 15 times to perform PCR for

expression confirmation or real-time PCR for expression patterns

analysis. PCR mixture containing 1 ml cDNA, 0.5 mM forward

and reverse primers, 16 PCR buffer, 1.75 mM Mg2+, 0.25 mM

each of dNTPs (Promega) and 1.25 U Taq polymerase (Fermen-

tas). The 20 ml PCR reactions were performed using Applied

Biosystems 2720 Thermal Cycler in 200 ml micro-tubes for 5 min

at 95uC, followed by 35 cycles of 15 sec at 95uC, 30 sec at 58uC,

and 30 sec at 72uC. PCR products were detected by electropho-

resis with 3% agarose gel containing ethidium and photographed

under UV light. Real-time PCR was performed using an ABI

PrismH 7300 Sequence Detection system. The 20 ml PCR

included 1.33 ml RT product, 16TaqMan Universal PCR master

mix and 1 ml primers and probe mix of the TaqMan MicroRNA

Assay. The reactions were incubated in a 96-well optical plate at

95uC for 10 min, followed by 40 cycles of 95uC for 15 sec and

60uC for 10 min. All reactions were run in duplicate. The

threshold cycle (Ct) is defined as the fractional cycle number at

which the fluorescence passes the fixed threshold. For analyzing

the expression patterns of bmo-miR-1, bmo-miR-13, bmo-miR-

14, bmo-miR-77, bmo-miR-263a, bmo-miR-275 and U6 snRNA,

real-time PCR was performed in an ABI PrismH 7300 Sequence

Detection system with Quant SYBR Green PCR kit (TIANGEN,

BJ) following the manufacturer’s instructions. The 20 ml reactions

including 1.33 ml RT product, 16 RealMasterMix (SYBR) and

0.5 mM forward and reverse primers were incubated in a 96-well

optical plate at 95uC for 10 min, followed by 40 cycles of 95uC for

15 sec, 58uC for 30 sec and 70uC for 30 sec. Melting curves for

each PCR were carefully monitored to avoid nonspecific

amplifications. All reactions were run in duplicate.

Normalization and data analysis
Since there has not been a standard control for expression

normalization for miRNAs, we adopted a strategy using U6

snRNA as an internal control. Relative quantification (RQ) of

each miRNA expression was calculated with 22DCt method, and

the data were presented as log10 of RQ of target miRNAs. Results

were visualized with GENESIS (Alexander Sturn, Institute for

Genomics and Bioinformatics, Graz University of Technology).

Statistical analysis of miRNA expression profiles
For each miRNA, one-tailed t-tests were applied to experimen-

tal replicates of each pair of stages to assess significance of

differential expression. Stage that has the highest expression level

was identified by times of rejection of null hypothesis that
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expression of tested stage is no higher than the other. And for

certain miRNAs, group of stages of high expression level was

defined by rejection of null hypothesis between lowest expression

value in the group and highest one of the remaining. Nonpara-

metric correlation coefficients between profiles of different stages

were presented as Spearman’s r to demonstrate relative

similarities. p,0.05 was considered statistically significant. All

related calculation was performed using the software MATLAB

version 2007a.

Target gene prediction for miRNAs
For miRNAs target gene prediction, we extracted 39 UTRs of

the silkworm (Dazao strain) UniGene which downloaded from

NCBI UniGene database (http://www.ncbi.nlm.nih.gov/sites/

entrez?db = unigene) by using PITA program[82] that takes target

accessibility on the interaction of miRNAs and their targets into

account, was employed to predict miRNAs targets using default

parameters. We selected and analyzed the target genes with

DDG#25 kcal/mol from the original predictions.
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