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Simple Summary: Many glioma patients suffer from postoperative language problems after awake
brain surgery, which have a negative effect on their quality of life. We investigated which language-
related factors before and during surgery predicted language problems after surgery (language
outcome). We found that language problems before surgery and word-finding and production
problems during surgery were predictors for the language outcome. After surgery, the language
problems that occurred most often were production deficits and spontaneous speech deficits. In
conclusion, during surgery, word-finding problems and production errors should carry particular
weight during decision making concerning the optimal onco-functional balance for a given patient,
and spontaneous speech should be monitored. These new insights should be investigated further
and may facilitate decision-making during surgery in the future, which can improve the procedure.
This may improve the language outcome and ultimately the quality of life in this patient group.

Abstract: Awake craniotomy with direct electrical stimulation (DES) is the standard treatment for
patients with gliomas in eloquent areas. Even though language is monitored carefully during
surgery, many patients suffer from postoperative aphasia, with negative effects on their quality of
life. Some perioperative factors are reported to influence postoperative language outcome. How-
ever, the influence of different intraoperative speech and language errors on language outcome
is not clear. Therefore, we investigate this relation. A systematic search was performed in which
81 studies were included, reporting speech and language errors during awake craniotomy with
DES and postoperative language outcomes in adult glioma patients up until 6 July 2020. The fre-
quencies of intraoperative errors and language status were calculated. Binary logistic regressions
were performed. Preoperative language deficits were a significant predictor for postoperative acute
(OR = 3.42, p < 0.001) and short-term (OR = 1.95, p = 0.007) language deficits. Intraoperative anomia
(OR = 2.09, p = 0.015) and intraoperative production errors (e.g., dysarthria or stuttering; OR = 2.06,
p = 0.016) were significant predictors for postoperative acute language deficits. Postoperatively,
the language deficits that occurred most often were production deficits and spontaneous speech
deficits. To conclude, during surgery, intraoperative anomia and production errors should carry
particular weight during decision-making concerning the optimal onco-functional balance for a given
patient, and spontaneous speech should be monitored. Further prognostic research could facilitate
intraoperative decision-making, leading to fewer or less severe postoperative language deficits and
improvement of quality of life.

Keywords: awake craniotomy; direct electrical stimulation; brain mapping; intraoperative language
monitoring; speech and language errors; language outcome; glioma
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1. Introduction

The standard treatment for patients with gliomas in eloquent brain areas is resection
via awake craniotomy with direct electrical stimulation (DES) [1]. This procedure results
in a larger extent of resection while maintaining postoperative neurological and cognitive
function [1–3].

During stimulation of language areas (i.e., language mapping) and resection, vari-
ous (temporary) speech errors and language errors (i.e., paraphasias, henceforth called
errors) can be elicited. Some examples are anomia (word-finding difficulty), speech ar-
rest, dysarthria (articulation difficulty) comprehension errors, semantic errors (related in
meaning, such as “dog” for “cat”) and phonemic errors (substitution of sound(s), such as
“lorse” for “horse”). These errors indicate that the corresponding language function is (at
least partly) localized in that brain area [4,5] and that this area thus must be maintained or
handled with caution during surgery.

Even though these errors and language errors in general are monitored carefully
during surgery, the postoperative language outcome is often suboptimal. About 50% of
the patients suffer from postoperative aphasia [6]. Different aphasic disturbances can
occur, such as deficits in word-finding [7] and verbal fluency [8]. It is argued that these
postoperative deficits are often transient [9]. However, some language problems, such as
impairments in spontaneous speech [10] and verbal fluency [8], can persist until 1 year after
surgery, which can have strong negative effects on the quality of life of the patient [11].

Various (preoperative) clinical variables can influence the language outcome of glioma
patients after awake surgery, such as tumor characteristics. The risk of postoperative
cognitive decline (including language) is reported to be increased by a larger tumor size [12]
and, specifically for postoperative language decline only, by a tumor location in or near
a language area [13,14]. Furthermore, postoperative language decline is often found to
be associated with low-grade tumors [15], while postoperative cognitive improvement
(including language) is found to be associated with high-grade tumors [12].

It was also found that the risk of postoperative language deficits is higher when pre-
operative language deficits are already present [16–18], when a suboptimal (but still within
average range) score for object naming is found [17] and when seizures in combination
with language deficits occur [18]. A marker of preoperative resting-state brain activity as
measured by electroencephalography (EEG) (slow-wave activity in the theta band)has also
been reported to predict postoperative language outcomes [19].

Additionally, intraoperative variables can also affect the language outcome. An
association between the postoperative language outcome and the intraoperative scores of
the Pyramid and Palm Tree Test (semantic test) was found [20]. Furthermore, relations
between postoperative (transient) language deficits and the occurrence of intraoperative
positive stimulation sites during language mapping were found within the tumor [17] and
at the subcortical level using naming and comprehension tasks [16,21].

Moreover, a few studies observed a parallel between the occurrence of certain intra-
operative language errors and postoperative aphasia syndrome, such as intraoperative
problems in spontaneous speech and postoperative SMA syndrome or dynamic aphasia [9]
as well as intraoperative phonemic errors and postoperative conduction aphasia [22]. How-
ever, the possible prognostic link between different intraoperative speech and language
errors and the language outcome, is not clear.

Therefore, we aim to systematically review different intraoperative speech and lan-
guage errors and the perioperative language status. Additionally, for the first time, we aim
to investigate the potential prognostic relation between different intraoperative speech and
language errors and (1) the occurrence of postoperative language deficits as well as (2) the
type of postoperative language outcome defined by the linguistic modality (production,
comprehension, reading and writing), aphasia syndrome (e.g., Broca’s aphasia, and conduc-
tion aphasia), linguistic level (phonology, semantics and morpho-syntax) or another level
(e.g., articulation, spontaneous speech, speech apraxia and word-finding). These findings
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could be informative in terms of prognostics and providing patient information, and they
may guide awake tumor resection in the future.

2. Materials and Methods

The details of the protocol for this systematic review were registered in the PROSPERO
database (CRD42020196727) and divided into two: (1) intraoperative speech and language
errors and brain locations and (2) this current article’s focus of intraoperative speech and
language errors and language outcome.

2.1. Study Selection

A systematic search of five online databases (Embase, Medline Ovid, Web of Sci-
ence, Cochrane and Google Scholar) was performed in line with the PRISMA statement
guidelines [21] (for the search terms, see Text S1). Publication dates were included up
until 6 July 2020. The search was performed by a reviewer (E.C.) in collaboration with a
biomedical information specialist from the Erasmus Medical Centre Medical Library. Two
senior co-authors were consulted for difficult cases (A.V. and D.S.).

2.2. Inclusion and Exclusion Criteria

All articles reporting on speech and language errors (in detail) during awake cran-
iotomies with DES (during DES or resection) in adult monolingual (≥18 years) patients
with low- and high-grade gliomas (WHO grade II–IV), in combination with a postop-
erative language outcome, were included. Articles were excluded for multiple reasons
(see Figure 1), such as the intraoperative language errors not being clearly specified. The
PRISMA flowchart can be found in Figure 1.
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2.3. Data Extraction and Organization

The number of patients, tumor grade, tumor location, speech and language errors and
perioperative language status were extracted from the eligible studies. Language status was
mainly based on clinical observations and, in some cases, based on standardized tests and
reports by patients. Language status was categorized as the occurrence of language deficits:
yes, no or unknown (unknown meaning that no information was reported on possible
language deficits). In addition, the specific intraoperative speech and language errors
were grouped into categories (see Table 1) based on linguistic modality (comprehension,
production, reading and writing) or the linguistic level or other levels (articulation, morpho-
syntax, phonology, semantics, spontaneous speech, speech apraxia and word finding). The
error categories that occurred <10 times per outcome option (postoperative language
deficits (yes, no or unknown)) were grouped under “other errors” (see Table S1 for more
information about these errors).

Table 1. Intraoperative speech and language errors taken from the articles and their corresponding
categories (in bold).

No Speech and Language Errors No Speech and Language Errors

1 Anomia or word-finding difficulties 4 Semantic errors
Anomia Non-speech semantic processing problem

Circumlocutions Semantic association disturbance or error
Naming delay or delayed word retrieval Semantic comprehension error

Word-finding, searching or retrieval difficulties Semantic disorder, deficit or aphasia
2 Phonemic errors Semantic disturbance or error

Phonemic disturbance Semantic jargon aphasic language
Phonemic paraphasias in writing Semantic paraphasias in writing

Phonemic speech error or paraphasia Semantic speech error or paraphasia
Phonological paraphasia 5 Speech arrest

Phonological processing or disturbance 6 Other errors
3 Production errors Comprehension errors *

Anarthria Irrelevant paraphasia
Articulatory difficulty Morpho-syntactic errors *

Dysarthria Neologism
Hesitation Perseveration

Slow speech Reading errors *
Slurred speech Speech initiation difficulties *
Speech delay Speech apraxia
Stammering Writing errors *

Stuttering

Categories are printed in bold, No = number. Note: a paraphasia is a language error. * See List S1 for more
information about the types of errors grouped into this category.

Considering that much variation occurred between articles, the time points were
grouped as follows: (T0) preoperatively and postoperatively: (T1) acute (1–10 days), (T2)
sub-acute (≥2 weeks–3 months), (T3) short-term follow-up (≥3–8 months) and (T4) long-
term follow-up (12–15 months).

The language outcome (i.e., postoperative language status) reported at these time
points was first defined by the presence of language deficits (yes, no or unknown). Secondly,
the type of outcome was determined when possible. General descriptions of the outcomes
(e.g., language problems or aphasia) were not categorized. All other outcomes were
grouped according to the modality or aphasia syndrome (see Table 2). As a next step,
(part of) the outcomes were also grouped according to linguistic level or other levels if
possible (see Table 2). Note that the outcomes often included multiple deficits, of which all
individual complaints could not always be categorized.
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Table 2. The language outcome categories defined by (1) linguistic modality or aphasia syndrome
and (2) linguistic level or other factors.

Language Outcome Categories Language Outcome Categories

1.A. Linguistic modality 1.B. Aphasia syndrome
Comprehension Broca, motor, or expressive aphasia

Production Conduction aphasia
Reading -

2.A. Linguistic level 2.B. Other
Phonology Articulation
Semantics Spontaneous speech *

Morpho-syntax Speech apraxia
- Word finding

* Including speech fluency deficits, SMA syndrome deficits or mutism. Categories are printed in bold.

2.4. Analyses

First, the frequencies of all individual intraoperative errors and language statuses
(language deficits: yes, no or unknown) were calculated. Second, the distribution of the
different intraoperative language error categories (six types (see Table 1)) and language
outcomes per postoperative time point were inspected. Only the time points that included
intraoperative error categories that occurred >10 times per outcome option were selected
for statistical analyses, which were T1 (acute) and T3 (short-term follow-up). Binary
logistic regressions with postoperative language deficits (yes or no) as the dependent
variable and preoperative language deficits (yes, no or unknown) and intraoperative
speech and language error categories (six types) as categorical predictors was performed
for T1 and T3. The reference categories for the categorical predictors were no preoperative
language problems and intraoperative speech arrest. Speech arrest was chosen due to the
high frequency in the data. Based on the regression models, the marginal probabilities
were calculated.

Third, the distribution of the different intraoperative language error categories and
language outcome types (linguistic modality or aphasia syndrome and linguistic level or
other level) per postoperative time point were inspected. Only T1 included enough data
points in total (≥100) to conduct statistical analyses. Instances of <5 for some combinations
occurred (intraoperative errors × linguistic modality or aphasia syndrome or linguistic level
or other factor). Therefore, chi-squared tests with Monte Carlo simulation were performed
to examine the relation between intraoperative error categories and postoperative linguistic
modality or aphasia syndrome and linguistic level or other levelat T1. Intraoperative error
category 6 (“other errors”) was excluded here, since we were interested in specific errors for
this analysis. No statistical post hoc analysis could be performed due to a lack of sufficient
data points per outcome type. Therefore, the crosstabs were used to describe these data.

3. Results

In all, 1706 articles were found. After duplications were removed, 1015 remained. Of
these articles, 499 were excluded based on title and abstract, and 516 articles were reviewed
in full text, of which 435 were excluded (see Figure 1 for reasons), while 81 were included
(see references [9,23–102] for all included articles). The collected information from the
articles is shown in Table 3. The tumor grade and location were based on the total number
of errors and not the total number of patients.

3.1. Intraoperative Speech and Language Errors and Language Status

Fourteen different intraoperative errors were reported (see Table 4), of which some
occurred frequently (anomia or speech arrest >20%) and some occurred infrequently (irrele-
vant paraphasia, neologisms or speech apraxia <0.5%).

Language status was reported in more than 70% of the instances at T0, T1 and T3 but
only in less than 12% at T2 and T4 (see Figure 2). Preoperatively, language deficits were
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reported in 34.9% of the cases. This increased to 68.9% at T1 and then decreased to 14.6%
at T3.

Table 3. Overview of information from included articles.

Information from Incluced Articles All Articles

Total articles 81
Total errors 631

Number of awake patients in articles (range) 1–107
Tumor Grade

Low grade 452
High grade 118
Not stated 61

Tumor Location: Hemisphere
Left 552

Right 75
Not stated 4

Tumor Location: Lobe
Frontal 256
Parietal 57

Temporal 87
Occipital 3
Insular 32

Combination 196

Table 4. The occurrence of different intraoperative speech and language errors in absolute numbers
and percentages, ranked by frequency (n = 631).

Individual Error Error Category Absolute Number Percentage

Anomia Anomia 132 20.9%
Speech arrest Speech arrest 132 20.9%

Production errors Production errors 124 19.7%
Semantic errors Semantic errors 88 13.9%
Phonemic errors Phonemic errors 76 12.0%

Perseveration Other errors 23 3.6%
Reading errors Other errors 20 3.2%

Morpho-syntactic errors Other errors 15 1.1%
Writing errors Other errors 7 0.8%

Speech initiation
difficulties Other errors 5 0.8%

Comprehension errors Other errors 5 0.8%
Irrelevant paraphasia Other errors 2 0.3%

Neologism Other errors 1 0.2%
Speech apraxia Other errors 1 0.2%

3.2. Relation to Postoperative Acute and Short-Term Language Outcome (T1 and T3)

Preoperative language deficits (OR = 3.42, 95% CI 2.101–5.580, p < 0.001), intraoperative
anomia (OR = 2.09, 95% CI 1.154–3.791, p = 0.015) and intraoperative production errors
(OR = 2.06, 95% CI 1.141–3.716, p = 0.016) were significant predictors for postoperative
language deficits at T1 (see Table 5).

The marginal probabilities of the occurrence of postoperative language deficits at T1
when intraoperative anomia occurred were 75.5% and 91.3%, and when intraoperative
production errors occurred, they were 75.2% and 91.2% (without and with preoperative
language deficits, respectively).
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Table 5. Binary logistic regression models of predictors for language outcome at T1 (n = 589) and T3
(T3, n = 456).

(Possible) Predictors
T1 T3

B (95% CI) S.E. Exp (B) B (95% CI) S.E. Exp (B)

Pre deficits (yes) 1.231 ** (2.101–5.580) 0.249 3.424 0.669 * (1.202–3.167) 0.247 1.951
Pre deficits (unknown) −0.530 (0.346–1.002) 0.271 0.589 −1.704 * (0.042–0.781) 0.744 0.182

Intra anomia 0.738 * (1.154–3.791) 0.303 2.092 0.614 (0.873–3.914) 0.383 1.848
Intra phonemic errors 0.381 (0.754–2.840) 0.338 1.463 0.540 (0.741–3.973) 0.428 1.716

Intra production errors 0.722 * (1.141–3.716) 0.301 2.059 -0.192 (0.363–1.875) 0.419 0.825
Intra semantic errors 0.332 (0.731–2.657) 0.329 1.394 −0.098 (0.376–2.190) 0.450 0.907

Intra other errors 0.064 (0.542–2.097) 0.345 1.066 0.545 (0.723–4.114) 0.444 1.725
Constant 0.385 0.213 1.470 −1.783 0.327 0.168

T1 = acute: 1–10 days postoperatively, T3 = short-term follow-up: ≥3–8 months postoperatively, pre = preoperative,
intra = intraoperative, unknown indicates that no information was reported about possible preoperative deficits,
and reference categories are no preoperative language deficits and intraoperative speech arrest. * = p < 0.05.
** = p < 0.001. Significant values are printed in bold.

Additionally, the preoperative language deficits (OR = 1.95, 95% CI (1.202–3.167),
p = 0.007) and “unknown” preoperative language deficits (i.e., when no information was
reported on possible preoperative language deficits, OR = 0.18, 95% CI (0.042–0.781) and
p = 0.022) were significant predictors for postoperative language deficits at T3 (see Table 5).
The results of these regressions are summarized in Figure 3 (excluding the “unknown”
preoperative language deficits predictor for T3 for simplicity).
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Figure 3. Significant preoperative and intraoperative predictors for postoperative language deficits at T1
(n = 589) and T3 (n = 456). T0 = preoperatively and postoperatively, T1 = 1–10 days, T3 = ≥3–8 months,
OR = odds ratio and CI = confidence interval. This figure describes the binary logistic regression (T1
and T3) with the predictors of preoperative language status, intraoperative speech and language error
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are no preoperative language deficits and intraoperative speech arrest. * = p < 0.05. ** = p < 0.001.
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3.3. Relation to the Type of Postoperative Acute Language Outcome (T1)

Chi-square tests with Monte Carlo simulations showed that the relation between
the intraoperative error categories and postoperative language outcome at T1 in terms
of linguistic modality or aphasia syndrome (p < 0.001) and linguistic level or other level
(p < 0.001) was significant.

The most frequently observed postoperative language deficits in terms of linguistic
modality or aphasia syndrome were production deficits (n = 205, Table 6). Postoperative
production deficits were most often observed after the occurrence of all intraoperative
error categories, compared toother postoperative deficits in terms of linguistic modality or
aphasia syndrome. Postoperative production deficits were observed, ranked by frequency,
after the occurrence of intraoperative production errors (n = 73), anomia (n = 46), speech
arrest (n = 41), semantic errors (n = 23) and phonemic errors (n = 22).

Table 6. The absolute frequencies of postoperative language deficits defined by linguistic modality or
aphasia syndrome and linguistic level or other levelafter different intraoperative speech and language
error categories.

Postoperative Language Deficits
Intraoperative Speech and Language Errors

Anomia Phonemic
Errors

Production
Errors Semantic Errors Speech Arrest Total

By linguistic modality or aphasia syndrome
Production 46 22 73 23 41 205

Comprehension 3 3 0 3 4 13
Reading 16 8 1 7 8 40

Conduction aphasia 3 5 2 0 2 12
Broca’s aphasia 3 0 9 0 10 22

Total 71 38 85 33 65 292
By linguistic level or other level

Articulation 6 3 18 2 9 38
Morpho-syntax 3 3 0 6 5 17

Phonology 0 5 3 1 0 9
Semantics 2 1 5 7 0 15

Spontaneous speech 12 8 10 2 9 41
Speech apraxia 0 0 2 2 0 4
Word finding 1 1 2 1 4 9

Total 24 21 40 21 27 133

The most frequently observed postoperative language deficits, in terms of linguistic
level or otherlevel, were deficits in spontaneous speech (n = 41) and articulation (n = 38,
Table 6). Postoperative spontaneous speech deficits were observed after the occurrence
of all intraoperative error categories: intraoperative anomia (n = 12), production errors
(n = 10), speech arrest (n = 9), phonemic errors (n = 8) and semantic errors (n = 2). Within
the categories of intraoperative anomia, speech arrest and phonemic errors, postoperative
spontaneous speech deficits were observed most frequently out of all postoperative deficits
in terms of linguistic level or otherlevel. Postoperative articulation deficits were most often
observed after intraoperative production deficits (n = 18). Postoperative semantic deficits
were most frequently observed after intraoperative semantic errors (n = 7).

4. Discussion

For the first time, we performed a systematic search of the literature to investigate the
occurrence of different intraoperative speech and language errors and the perioperative
language status, as well as their relation.

4.1. Intraoperative Speech and Language Errors and Language Status

Fourteen different error types were reported, of which some occurred frequently (e.g.,
speech arrest and anomia) and some occurred infrequently (e.g., irrelevant paraphasia,
neologisms and speech apraxia). Language status was often reported preoperatively and
postoperatively in the acute and short-term follow-up phases (T1 and T3, respectively)
but not in the sub-acute or long-term follow-up phases (T2 and T4, respectively). Most
language deficits occurred postoperatively in the acute phase (T1) and were resolved by
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the short-term follow-up (T3). This pattern of postoperative transient language deficits is
well-known [9,103].

However, postoperative language deficits still occurred in 14.6% of cases at the short-
term follow-up (T3). Unfortunately, it is unknown whether these deficits were still present at
the long-term follow-up (T4), since only 2.2% of cases reported an outcome at this time point.
Considering that language deficits can still be present a year after surgery [10], a longer
follow-up period is necessary for this patient group, as also indicated by Satoer et al. [104].

4.2. Relation to Postoperative Acute and Short-Term Language Outcome (T1 and T3)

The results from the regressions and the marginal probabilities confirmed that the
chance of postoperative language deficits in the acute and short-term follow-up phases
(T1 and T3, respectively) was higher when preoperative language deficits were present.
This is in line with previous studies [16–18]. Language networks may be less sensitive
to postoperative neuroplasticity, since this reorganization ability may already have been
exhausted preoperatively [17], caused by slow tumor growth.

Surprisingly, we also found that “unknown” preoperative language deficits (i.e., when
no information was reported on possible preoperative language deficits) was a significant
predictor for postoperative short-term language deficits (T3). This may be due to the size
and nature of this data group. A fairly large part (11.8%) of all preoperative deficits in
this analysis (n = 237) was marked as these “unknown” deficits. This part presumably
consisted of patients with and without language deficits, resulting in mixed results. This
underlines the importance of obtaining information on possible preoperative language
deficits, considering that the predictions for the outcome were more distinct when this
information was available.

Furthermore, the findings suggest that the occurrence of intraoperative anomia and
production errors were also predictors for postoperative language deficits at the acute
phase (T1), probably mapping onto multiple broader semantic and phonological net-
works [105–108]. These results underline the importance of object naming and production
tests (e.g., repetition and verbal diadochokinesis) during surgery (see Section 4.4).

4.3. Relation to the Type of Postoperative Acute Language Outcome (T1)

Intraoperative error categories and postoperative outcome in the acute phase (T1) in
terms of linguistic modality or aphasia syndrome (comprehension, production, reading,
Broca’s aphasia and conduction aphasia) and linguistic level or other level (phonology,
semantics, morpho-syntax, articulation, spontaneous speech, speech apraxia and word-
finding) were related. Our descriptive results show that the most frequently observed
postoperative deficits were production deficits (in terms of modality or aphasia syndrome)
and spontaneous speech deficits (in terms of the linguistic or other levels). Both of these
postoperative deficits were observed after the occurrence of all intraoperative error cate-
gories. This shows that language production was most often impaired at the acute phase
(T1). Additionally, it confirms that multiple linguistic levels are necessary for intact spon-
taneous speech production and that the disturbance of at least one component results in
spontaneous speech output deficits. Considering that the articles often did not provide
detailed information, and multiple types of spontaneous speech deficits were grouped,
we could not determine whether the spontaneous speech deficits in this study stemmed
from problems at the word level or sentence level (i.e., grammatical difficulties). Moreover,
it is not clear whether the spontaneous speech deficits in this study could be defined as
dynamic aphasia. Dynamic aphasia is a disorder characterized by reduced spontaneous
speech and speech initiation while naming, repetition and comprehension are intact [109].
This disorder is generally associated with frontal lesions in the supplementary motor area
(SMA) [23,110]. However, perhaps damage to other areas beyond the SMA can result in
these difficulties as well, considering that spontaneous speech deficits occurred the most
often postoperatively out of all errors (in terms of linguistic or other levels), even though
many tumor locations in this study were not in the SMA (tumor locations: 41% in the
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frontal lobe, of which a smaller unknown part would be the SMA specifically, 28% in other
lobes and 31% in combined lobes).

Even though variation occurred, the type of intraoperative error and type of postoper-
ative language deficit defined by the linguistic modality or linguistic level were sometimes
similar. For example, intraoperative production errors (e.g., dysarthria or slurred speech)
were most frequently followed by postoperative production deficits (linguistic modality).
Additionally, intraoperative semantic errors (i.e., errors related in meaning, such as “cat”
for “dog”) were most frequently followed by postoperative semantic deficits (linguistic
level). This can be explained by the fact that resection is performed close to a language
area responsible for (a) specific linguistic function(s), such as semantics. Working close to
this area can then result in disruption of the semantic system, logically resulting in both
intraoperative and postoperative semantic errors.

4.4. Clinical Relevance

Our results suggest that, apart from the obvious speech arrest, production errors and
anomia are important errors during surgery, since the occurrence of these error categories
appeared to be linked to postoperative language deficits. Therefore, these errors should
be monitored carefully. Anomia can be elicited with a task such as object naming, which
is one of the most widely used tasks during awake surgery. Production errors can also
be elicited with an object naming task but also with more specific articulation tasks such
as word repetition and verbal diadochokinesis. The occurrence of these errors during
surgery should carry particular weight during decision-making concerning the optimal
onco-functional balance for each individual patient. The results concerning the relation
between the type of intraoperative error and the type of postoperative language deficit can
be used for preparing and informing the patient.

Out of all postoperative language deficits (in terms of linguistic or other levels), postop-
erative spontaneous speech deficits were observed most often. These deficits occurred after
all intraoperative speech and language errors, thus arising from disruptions at multiple
linguistic levels. Spontaneous speech is a central part of everyday communication and
quality of life, and it is thus crucial to preserve it. Therefore, it should be tested during
surgery. Unfortunately, spontaneous speech is not often reported to be monitored during
awake brain surgery [109]. Spontaneous speech can be elicited in an interview setting with
preoperatively defined topics, such as work or hobbies, as described by Satoer et al. [111].
When the spontaneous speech deteriorates in terms of initiation of conversation, fluency of
speech or via the occurrence of speech and language errors, tasks targeting a specific lin-
guistic level can be used to further investigate the level of deterioration from, for example,
the Dutch Linguistic Intraoperative Protocol (DuLIP) [24]. For example, when a phonemic
paraphasia occurs in spontaneous speech, a word repetition task can be selected [109]. In
this way, spontaneous speech can be used to guide language monitoring and resection.

Isolated language tasks can also be used to elicit spontaneous speech in context [109],
such as sentence completion from DuLIP. In this task, patients have to complete a sentence
with either one or two words (closed context) or with a constituent (broad context). The
broad context task is especially useful for monitoring spontaneous speech in context, since
it requires forming a grammatically and semantically correct sentence (“At 5 o’clock [ . . . ]
the neighbor drives to work”). Sentence completion can be used during stimulation and
resection. Another task for eliciting spontaneous speech in context during surgery is the
sentence generation task [112], in which pictures of geometrical shapes are shown and the
spatial relation has to be described (“The blue triangle is above the red circle”). We advise
monitoring spontaneous speech (in context) structurally during surgery and using it as
guidance during awake craniotomy.
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4.5. Limitations and Future Research

A limitation of this study is that the articles varied greatly in how detailed they
were when reporting on intraoperative speech and language errors (e.g., nature of error,
definitions and type of errors), language status and at which time points they were reported.
Information was often missing or unclear and could therefore not be included, which also
meant that no statistical analysis was possible for certain time points. Language status was
often based on clinical observations instead of standardized tests, resulting in a subjective
outcome that may not be fully accurate. Another limitation is that each intraoperative error
was coded separately and not per patient, resulting in a simplification of clinical practice,
considering that multiple different errors can be elicited in one patient.

Even though more intraoperative tasks are available, such as DuLIP [24], many articles
only used object naming during surgery. Object naming often elicits anomia, while other
errors (e.g., syntactic errors) are less or not likely to be elicited during this task. Therefore,
anomia may have been overrepresented, while other errors may have been missed. Further
research should focus on the sensitivity of different standardized language tasks and their
relation to intraoperative speech and language errors.

Due to many missing data, no statistical post hoc analysis could be performed to
investigate the relation between the type of intraoperative speech and language error and
the type of postoperative language outcome. Future research should explore this further.
This could help with informing the patient better and selecting more specific therapies after
surgery based on a specific linguistic modality or level.

This study emphasizes the importance of spontaneous speech monitoring during
surgery. Considering that intraoperative spontaneous speech has not been investigated
in depth before, future research should zoom in on the properties of it, including the
different speech and language errors it contains and in which way it changes over time in
the perioperative period.

Lastly, considering that this study was based on many different articles which all
reported differently, we underline the importance of intraoperative anomia and production
errors and their relation to postoperative language deficits, but we cannot provide a critical
cut-off point for when a functional boundary is truly reached and resection should be
stopped based on the current data (e.g., after the occurrence of x times anomia). However,
more in-depth research could possibly determine these critical cut-off points by constructing
a prognostic severity scale for intraoperative speech and language errors on postoperative
language outcome. This could be used to define functional boundaries even more accurately
during awake tumor resection, which could result in less postoperative language deficits,
possibly leading to improvement in a patient’s quality of life.

5. Conclusions

This systematic review investigated the relation between speech and language errors
during awake craniotomy and the postoperative language outcomes of glioma patients.
Our results suggest that the occurrence of preoperative language deficits, intraoperative
anomia and intraoperative production errors are predictors for postoperative language
deficits. These intraoperative errors should carry particular weight during decision making
concerning the optimal onco-functional balance for a given patient during surgery. Spon-
taneous speech should also be monitored carefully during surgery, and it can be used as
guidance during resection. Investigating the prognostic value of intraoperative speech
and language errors on postoperative language outcomes further may improve language
monitoring, which could potentially result in a reduction in postoperative language deficits
and the improvement of quality of life in patients undergoing awake craniotomy.
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