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Introduction
In the last decades, the advancements in sequencing technolo-
gies have caused a drastic reduction in time and cost per 
sequencing experiment, dropping from over a $10 000 down to 
a few cents per megabase.1 As a result, the collection of publicly 
available sequenced genomes has heavily increased. This has 
encouraged the scientific community to develop computational 
methods to compare large genomic sequences and increase our 
understanding of the underlying genomic mechanisms that 
play a key role in evolution.2 However, the increasing complex-
ity of the current more-and-larger-genome trend is rendering 
some of the prevailing computational methods as futile.

In this line, comparative genomics has proven itself indis-
pensable, not only for the research of evolutionary mechanisms 
and forces but also for helping in the understanding of the 
human genome. In short, the essence of this field is that a 
sequence that is conserved across multiple and/or distant spe-
cies is likely to be involved in a biological function,3 thus affect-
ing its evolution.4

Computing large genomic pairwise comparisons often 
requires long running times and computational resources. 

Although tools such as GECKO,5 CGALN,6 or MUMMER7 
have been developed for large-scale sequence comparison, they 
can require up to several hours depending on factors such as 
the length of the sequences or number of repetitions. Moreover, 
comparing the full genome between 2 species (all-vs-all chro-
mosomes) can comprise up to 400 pairwise comparisons 
(around 20 20*  chromosomes) where a noticeable amount of 
the results is composed mostly of repeats and nearly no syn-
tenic blocks. Accordingly, novel bioinformatics tools such as 
CHROMEISTER8 reduce the computational complexity of 
performing an exhaustive comparison by incorporating a heu-
ristic step. These tools effectively determine whether conserved 
similarities exist across a collection of genomic sequence with-
out requiring large computation times. The detection of con-
served blocks includes both coding and noncoding regions, 
which enables the further identification of computational syn-
teny blocks (CSB).9 These CSBs describe a group of closely 
located regions that tend to be conserved due to several rea-
sons, such as the interaction of gene products,10,11 lateral gene 
transfer, co-localization of gene transcripts,12 or co-expression 
under specific environmental conditions.13 Furthermore, the 
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identification and tracking of highly conserved and collinear 
regions are important to solve multiple problems in compara-
tive genomics, such as the prediction of operon-protein inter-
action and functional annotation of uncharacterized genes,14 
and to study genome evolution and organization.15-17

Thus, these fast comparison methods provide further 
insight regarding large-scale genome evolutionary studies. 
However, effective and quick visualization methods to explore 
and analyze these comparisons are still required. Most of the 
handling, exploration, and curation of genomic information to 
identify coding regions or detect CSBs from pairwise com-
parisons are performed throughout dedicated platforms such 
as NARCISSE,18 Genomicus,19 or GBrowser.20 For instance, 
NARCISSE is a Web-based tool that enables the researcher 
to visualize both genome and chromosome comparisons along 
a collection of precomputed data through a multiple dotplot-
like visualization, but lacks, for instance, (1) methods to visual-
ize both the importance and the contribution of each 
comparison, (2) a tracking system for conserved blocks, (3) a 
dynamic communication between the visualization and the 
user, or (4) the ability to work with user-generated data. 
NARCISSE provides a matrix of 1 versus 1 comparisons that 
can be expanded as XCout does. This enables the user to visit 
each one of the regions to obtain a detailed view of that spe-
cific part.

Regarding Genomicus, it is a useful tool for genome com-
parison visualization that provides also a gene tracking system 
but has some limitations such as the following: (1) working 
with full genome multi-pairwise comparisons through differ-
ent species and (2) tracing shared regions through different 
species; GBrowser, on the contrary, is helpful for genome anal-
ysis but does not enable to track conserved regions between 
species. Other tools have opted for static visualization reports 
and statistics, such as Synimia,21 Evol2Circos,22 and 
SimpleSynteny,23 as opposed to dynamic, tailored, and interac-
tive representations as presented in Genomicus or NARCISSE.

Although Genomicus and NARCISSE have been a source of 
inspiration for XCout, we propose a completely new method 
for carrying out experiments involving huge amounts of com-
parisons. (1) At a technical level, Xcout takes advantage of cur-
rent state-of-the-art techniques in Web visualization and Web 
development (ie, responsiveness, ubiquity access, application 
programming interface [API] support, dynamic interaction, 
etc) to improve user experience and broaden the scope of 
research experiments. (2) Regarding biological information, 
the amount of precomputed data is in the order of 50 000 com-
parisons. Although researchers can run their own instance of 
XCout, a method for working with proprietary data is also pro-
vided to use XCout as a public instance. Furthermore, the 
XCout API has also been developed taking into account the 
possibilities to expand the database through petitions to keep it 
updated. Finally, XCout also expands the capabilities of genome 
comparison visual analysis by providing methods for tracking 

conserved blocks and overlaying different comparisons to cre-
ate more complete pieces of the genomic puzzle.

In summary, in this article, we present XCout, a Web-based 
visual analytics application for multiple genomic comparisons 
designed to improve the workflow of analyzing large amounts 
of already computed genomic data by using novel technologies 
in Web visualization. XCout enables the user to check the 
results of hundreds of huge comparisons, further reducing the 
time of the analysis by identifying pairwise comparison simi-
larities with a significant signal of interest between different 
chromosomes across multiple species. The comparisons are 
presented to the user through an approach similar to a heat-
map, using a color scale to detect comparisons of interest at 
first sight. In addition, the user can notice the origin of the 
contributions of multiple chromosomes of one species against 
another chromosome of interest by performing an on-the-fly 
overlap of the genome selection. XCout also provides an anno-
tation tracking system that allows the researchers to identify 
genes between similar blocks and view related information, 
such as their coordinates, gene ID, product, and notes. The pre-
sented genomic information has been retrieved from the 
GenBank annotation files provided by the National Center for 
Biotechnology Information (NCBI).

In addition, an all-versus-all genome comparison between 
10 different species has been carried out, and the results of 
more than 50 000 pairwise comparisons are publicly available 
through a REST service API. Similarly, users are able to com-
pute their own comparisons locally and visualize their results 
through our graphical interface.

Finally, we present a systematic and general approach to 
contrast the collected CSBs from different comparisons 
regarding their location, similarity, and evolution through time, 
hence enabling the researchers to select a set of comparisons 
between chromosomes of different species and follow the 
CSBs that are directly linked between one another. This fea-
ture can be executed throughout the Web application in which 
the resulting relationships can be downloaded and visualized.

System and Methods
System architecture

XCout is based on an N-tiered architecture composed of 3 lay-
ers (see Figure 1). First, in the client side, we can find the first 
layer, the Presentation layer, where all the visualization is car-
ried out. The other 2 layers are located in the Server side where 
the complex workload is delegated through a REST API. This 
side is composed of a layer where logic has been implemented 
and a Database layer in charge of storing and accessing the 
files. The Database layer contains information regarding the 
species and chromosomes of all the stored pairwise compari-
sons. This structure allows us to perform the expensive compu-
tational methods in the server, even if the user decides to 
visualize local files.
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The 3 layers that compose the system architecture are the 
following:

•• Presentation layer: It provides the graphical user interface 
(GUI) of the Web application for the user. The layer ena-
bles the user to retrieve and visualize information from 
the server through the REST API regarding the species, 
chromosomes, and comparisons stored in the server or 
locally loaded.

•• Logic layer: This is responsible for accessing the control-
ler tier to manipulate and transform the data requested 
and send the results to the presentation tier. In addition, 
the REST API interface will enable users to request 
information from third party applications.

•• Database layer: This tier is in charge of accessing and 
manipulating data from the data sources. Moreover, the 
creation of simple reusable components allows this layer 
to invoke stored procedures and retrieve data from the 
database.

Client side. The client platform is composed of multiple inde-
pendent modules that execute specific visualizations and func-
tionalities for each of the visualizations offered by the 
application: grid, overlay, and block tracing. This platform was 
developed using a regular HTML524 structure combined with 
a customized CSS325 design based on Bootstrap library26 to 
provide a responsive style.

Similarly, Javascript27 was used to manage the natural 
behavior of the Web structure elements, accompanied by 
jQuery28 to control the user interaction. The different visuali-
zation methods were designed using D3.js,29 a famous data 
visualization library.

Server side. The server platform has a modular organization 
with 2 main sections that control the database and the services. 
On top of them, there is a REST API that enables the Client 
platform to communicate with the server to obtain the ade-
quate response, whether it is a Web page or the results of a 
process. In other words, the REST API is the interface between 
the Client and the services provided by the Server platform.

The use of Python has become increasingly popular in bio-
informatics. Moreover, the huge variety of useful existing mod-
ules and the possibility to allow the user to develop his own are 
the reasons why we developed the backend implementation 
using Django,30 a Python framework designed for Web appli-
cations. This is the backbone of the server and simplifies the 
development of specific components of the application as it is 
based on a modular structure.

Database storage. Users are capable of loading local properly 
formatted data set results into XCout. However, to avoid the 
repetitive task of manually loading them, we have implemented 
a database that stores information regarding the species and 
chromosomes for each comparison. The stored information is 

Figure 1. N-tier architecture of XCout. It is composed of the presentation, logical, and database layers with an application programming interface layer 

that enables the communication between the client and server side. The client side has been developed using jQuery and D3.js and contains 3 different 

types of visualization: (1) heatmap-like, (2) comparison overlay, and (3) CSB tracking. The server side has been developed in Django.
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accessed and manipulated through the controller layer tier of 
the system architecture, which ensures a proper usage via the 
REST API.

Including comparisons into the database can be performed 
manually, yet we suggest the use of the API methods we have 
developed and implemented that automatize this tedious pro-
cess. The detailed description of this process and the informa-
tion stored by the database are provided in the Supplementary 
Material.

Comparative genomics workflow

This section describes the multiple visualization methods pro-
vided by XCout to display and analyze the results of full genome 
comparisons properly formatted, independent of whether they 
are stored locally or in a server. XCout has been developed to 
work specifically with the results of CHROMEISTER, so we 
fully encourage users to follow this step. Either way and as 
mentioned before, data can be loaded from local so that users 
can adapt their data to our specific input.

Grid visualization. Considering that a full genome compari-
son between 2 species comprises over N × M comparisons, 
with N and M being the number of chromosomes per organ-
ism, the user can visualize all the generated images through our 
grid visualization (see Figure 2, top). Such visualization facili-
tates the visual identification, based on the similarity degree, of 
comparisons of interest out of a huge number of comparisons 
by presenting an interactive matrix canvas in which each row 
and column represent a chromosome of a species and the cells 
represent the comparisons between them. These cells are dis-
tinguished by a customizable color gradient that represents the 
similarity of the compared sequences. Furthermore, function-
alities such as adjusting the color gradient and cell size, manu-
ally or automatically, expedite the multiple genome comparison 
analysis. Furthermore, this visualization enables the user to 
load as many desired all-versus-all comparisons at once (ie, 
1vs3, 2vs2, etc).

Extended cell visualization. The user is capable of selecting and 
visualizing the pairwise comparison image by selecting a cell. 
Moreover, an overlay feature has been implemented to enable 
the researcher to select a chromosome and overlay all the 
detected CSBs of such genome against all the chromosomes of 
another species (see Figure 2, bottom). This aspect supports a 
fast recognition of the contributions of multiple chromosomes 
of one species regarding another, which provides insight 
regarding the chromosomal mutations that have taken place.

CSB tracing. Researchers can also trace the CSBs that have 
been previously overlaid, or just those interesting, among dif-
ferent species. XCout performs the tracking on the server side 
and sends the results to the user to visualize it. From the com-
putational standpoint, the block tracing is performed by 

assessing whether the shared section of CSBs of 2 different 
species is statistically significant.

Annotations search engine. Regarding the tracking of conserved 
regions, XCout enables researcher for searching through anno-
tations retrieved from GenBank. Through this feature, specific 
annotations are represented at the same time with the tracking 
so that the user can visually compare them. Annotations can 
also be downloaded for any further processing that have to be 
done out of the XCout environment. Noncoding regions (ie, 
sequence zones without any annotations) can be also down-
loaded for deeper analysis.

Figure 2. On the top, all-versus-all pairwise comparison visualization of 

the chromosomes of Homo sapiens against the chromosomes of Mus 

musculus. The color of each cell is in the range of red-green-white color 

scale, which represents the similarity degree of each comparison, 

respectively, from the most similar to the least. At the bottom, the overlay 

of the 3 pairwise comparisons of the chromosomes of Mus musculus 

chromosomes against the first chromosome of Homo sapiens.
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File management. XCout allows the researcher to make com-
plete analysis through different tools, but further processing 
may be required. In this way, XCout implements methods to 
download information regarding the current session such as 
conserved regions or annotations. The use of local files, to work 
with specific comparisons bypassing the database, is also avail-
able through the interface. Regarding the work involved, data 
set must include a collection of images, one for each compari-
son, as well as a scoring metric comparison. CHROMEISTER 
is known to produce these type of results, but any other soft-
ware can be used.

Implementation
Client side

The client platform is composed of multiple independent 
modules that execute specific visualizations and functionalities 
for each of the visualizations offered by the application: grid, 
overlay, and block tracing. This platform was developed using a 
regular HTML524 structure combined with a customized 
CSS325 design based on Bootstrap library26 to provide a 
responsive style.

Similarly, Javascript27 was used to manage the natural 
behavior of the Web structure elements, accompanied by 
jQuery28 to control the user interaction. The different visuali-
zation methods were designed using D3.js,29 a famous data 
visualization library.

Server side

The server platform has a modular organization with 2 main 
sections that control the database and the services. On top of 
them, there is a REST API that enables the Client platform to 
communicate with the server to obtain the adequate response, 
whether it is a Web page or the results of a process. In other 
words, the REST API is the interface between the Client and 
the services provided by the Server platform.

The use of Python has become increasingly popular in bio-
informatics. Moreover, the huge variety of useful existing mod-
ules and the possibility to allow the user to develop his own are 
the reasons why we developed the backend implementation 
using Django,30 a Python framework designed for Web appli-
cations. This is the backbone of the server and simplifies the 
development of specific components of the application as it is 
based on a modular structure.

Database storage

Users are capable of loading local properly formatted data set 
results into XCout. However, to avoid the repetitive task of 
manually loading them, we have implemented a database that 
stores information regarding the species and chromosomes for 
each comparison. The stored information is accessed and 
manipulated through the controller layer tier of the system 
architecture, which ensures a proper usage via the REST API.

Including comparisons into the database can be performed 
manually, yet we suggest the use of the API methods we have 
developed and implemented that automatize this tedious pro-
cess. The detailed description of this process and the informa-
tion stored by the database are provided in the Supplementary 
Material.

Results
We will demonstrate the capabilities of XCout to explore and 
assess the evolutionary differences and similarities across mul-
tiple species, namely, human, gorilla, and mouse. We have 
designed an exercise comprising multiple pairwise comparisons 
and conserved block tracking aimed at showcasing the follow-
ing features: (1) to understand the evolution between the mul-
tiple chromosomes of Gorilla gorilla (gorilla) to the first 
chromosome of Homo sapiens (human) using the signal contri-
bution analysis and (2) to observe the different chromosomal 
mutations that have taken place along evolution in the genome 
of Mus musculus. Step-by-step descriptions of multiple exer-
cises are detailed in the Supplementary Material.

To be of relevance to human medicine, the animals used in 
research should show similarities to human biology to maxi-
mize the chances of success during an experiment. In this 
sense, mice and rats are invaluable for studying biological pro-
cesses that have been conserved during the evolution of the 
rodent and primate lineages and for investigating the develop-
mental mechanisms by which the conserved mammalian 
genome gives rise to a variety of different species.31 These 
rodents are widely used for scientific research due not only to 
its resemblance of human genome but also because they are 
small, breed readily, can be genetically modified rather easily, 
and are usually inexpensive.32,33 However, mice and humans 
have evolved and adapted to different environments; therefore, 
despite their genomic relatedness, they have become very dif-
ferent organisms. There are some examples where the gaps 
between the biology of rodents and that of humans are too 
wide: the rodents’ brain functions, diseases, reproduction, and 
susceptibility to certain infections are radically different from 
the human biology.34,35 Hence, the research has to consider 
these gaps or it might be done on more closely related animals 
such as primates or apes.36

To begin the exercise, we open the full genome comparison 
between the human and mouse genome. The grid visualization 
provides insight regarding the similarities between chromo-
somes (Figure 2, top). To fathom the contribution of the mouse 
chromosomes to the human’s first chromosome, we proceed to 
overlay the detected CSBs from the 3 most significant com-
parisons (Figure 2, bottom). The visual analysis provides evi-
dence of coverage between these chromosomes.

Consequently, we proceed our analysis by tracing the 
detected CSBs across human and mouse. We have added the 
gorilla to the comparison to show how blocks evolve through 
species as chromosome 1 of human and gorilla shares several 
conserved regions (Figure 3, bottom). In the first comparison, 
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between human and gorilla, we clearly identify 2 big blocks (A, 
B) that cover almost all the chromosome. Second, we identify 3 
groups of blocks (C, D, E) that have been traced across these 
species and mice by splitting into 3 different chromosomes. We 
can see how the conserved region A in the human chromosome 
can be partially found in mouse chromosome 3 (D) and in 
mouse chromosome 4 (E). The display also enables the detec-
tion of inversions, for example, in blocks C1, C3, D1, E2 and 
E3 and translocations, for instance, in blocks D and E.

The analysis shows several interesting features of the com-
parison, for instance, (1) the human and mouse genomes are 
very similar and share several CSBs as seen in Figure 2 (bot-
tom); (2) the translocations between different chromosomes, 
which help identify evolutionary rearrangements; and (3) how 
these blocks are also conserved in the first chromosome of 
Gorilla gorilla as seen in Figure 3. Although the evolution is not 
linear, the tracing of blocks could help researchers to study the 
history of genes and how they have been rearranged, replicated, 
removed, or created throughout evolution. In addition, this 
information could be useful to determine how far a group of 
species is in evolutionary terms.

To validate the accuracy of the methods from XCout, we will 
compare the analysis with that of the HGP.37 At the time of 
publishing, they also compared the similarities between the 
human and mouse genome (Figure 3, top). From such com-
parison, we observe that not only do our methods provide an 
accurate result, but they also provide further interactive infor-
mation regarding the subdivisions of each chromosome’s 
contribution.

Finally, our proposal enables to navigate through all the 
annotated genes located between the coordinates of the selected 
block (Figure 4). Afterward, selecting a gene will automatically 
(1) retrieve its coordinates, (2) search for genes within the 
matching regions of other species, and (3) display the results. In 
addition, there is a search function that allows to find desired 

products inside the selected blocks (Figure 4). We can also 
download sequence files for both coding and noncoding regions 
along with the chromosome positions, as it could be used to 
extract related sequences aside for future investigations.

Discussion and Conclusions
Web technologies are constantly growing into more com-
plete and consistent tools. The bioinformatics field has tradi-
tionally used Web services as a result of the complexity of 
some of its tasks. In the particular case of data analysis, Web 
visualization methods offer ubiquitous and multi-platform 
access while enabling interactivity, aesthetics, and useful 
results. We have combined the momentum of Web technolo-
gies and the intricacy of bioinformatics data with our point 
of view of the future of the Web and designed a fully inte-
grated one-stop tool to carry out extensive comparative 
genomic analysis using state-of-the-art technologies in Web 
applications.

XCout is a Web-based application with innovative features 
that contribute to the field of comparative genomics and data 
visualization applied to bioinformatics. This software pro-
vides new methods to aid in the identification of large-scale 
genome rearrangements and its evolution throughout differ-
ent species involving huge amounts of data. In particular, 
XCout provides researchers with novel tools that enable new 
experiments which typically require extensive manual inspec-
tion, annotation, and curation, such as the identification of 
significant signal in all-versus-all genomic comparisons or the 
automated on-demand tracking of conserved regions across 
several species.

These contributions include (1) the grid heatmap–based 
visualization, which enables to obtain a quick overview of the 
similarity between multiple comparisons of interest; (2) the 
large-scale genome rearrangement tracking system; and (3) the 
annotation search engine. Furthermore, XCout provides a 

Figure 3. Visualization comparison between XCout results and Human Genome Project (HGP). On the top, the HGP analysis of the first human 

chromosome shows the conserved regions in the mouse genome where each color block represents a particular mouse chromosome. On the bottom: 

XCout visualization of human first chromosomes and detected CSBs from the first, third, and fourth chromosome of mouse and the first chromosome of 

gorilla, in which the analogous color blocks correspond to the same pairwise comparison.
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database with up to 50 000 precomputed comparisons that can 
be also accessed through the API.

Throughout the different experiments, we have shown the 
differences and similarities between the human genome and 
the mouse through the grid visualization. Afterward, we 
focused on the contributions of Mus musculus to the first chro-
mosome of Homo sapiens with the help of the extended cell 
visualization. Once the importance of chromosomes 1, 3, and 4 
of Mus musculus in respect to the first chromosome of human 
genome was assessed, and due to the similarities found between 
Homo sapiens and Gorilla gorilla, specific rearrangements were 
tracked with the CSB Tracking System through these 3 differ-
ent species to further perform an annotation search for genes 
related to coagulation.

In summary, the identification of these similarities and the 
further analysis of specific regions conserved across different 
species provide a more profound understanding of multiple 
organisms, thus unraveling new insights regarding the under-
pinnings of evolution and prevention of diseases, the etiology 
of which is related to DNA mutations.
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