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Defects in achieving a fully differentiated state and aberrant expression of

genes and microRNAs (miRs) involved in differentiation are common to

virtually all tumor types. Here, we demonstrate that the zinc finger tran-

scription factor ZNF281/Zfp281 is down-regulated during epithelial, mus-

cle, and granulocytic differentiation in vitro. The expression of this gene is

absent in terminally differentiated human tissues, in contrast to the ele-

vated expression in proliferating/differentiating ones. Analysis of the

3’UTR of ZNF281/Zfp281 revealed the presence of numerous previously

undescribed miR binding sites that were proved to be functional for miR-

mediated post-transcriptional regulation. Many of these miRs are involved

in differentiation pathways of distinct cell lineages. Of interest, ZNF281/

Zfp281 is able to inhibit muscle differentiation promoted by miR-1, of

which ZNF281/Zfp281 is a direct target. These data suggest that down-reg-

ulation of ZNF281/Zfp281 during differentiation in various cell types may

occur through specific miRs whose expression is tissue-restricted. In addi-

tion, we found that in rhabdomyosarcoma and leiomyosarcoma tumors,

the expression of ZNF281/Zfp281 is significantly higher compared with

normal counterparts. We extended our analysis to other human soft tissue

sarcomas, in which the expression of ZNF281 is associated with a worse

prognosis. In summary, we highlight here a new role of ZNF281/Zfp281 in

counteracting muscle differentiation; its down-regulation is at least in part

mediated by miR-1. The elevated expression of ZNF281/Zfp281 in soft tis-

sue sarcomas warrants further analysis for its possible exploitation as a

prognostic marker in this class of tumors.
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ATRA, all-trans-retinoic acid; miRs, microRNAs; WB, western blotting.
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1. Introduction

A variable degree of dedifferentiation compared with

the normal tissue they originate from is a distinctive

feature of tumors (Merrell and Stanger, 2016) and

other pathologies (Xie et al., 2018). The gain of pro-

genitor-like characteristics is associated with cancer

progression and spreading to distant locations (metas-

tasis) (Lu and Kang, 2019). Loss of differentiated fea-

tures during the transformation process can be

attributed to a variety of causes such as dysregulation

of signaling pathways (Frankson et al., 2017), epige-

netic mechanisms (Hu and Shilatifard, 2016), and sub-

stantial changes in the transcriptomic profile (Uhlen

et al., 2017) of the transformed cells compared with

their normal counterparts. Although it has been defini-

tively proved that a high degree of gene expression

heterogeneity exists at single-cell level within a tumor

(Tirosh et al., 2016), some genes act as required drivers

of more than one differentiation/dedifferentiation pro-

cess (Saladi et al., 2017; Storm et al., 2016). Among

different classes of genes, transcription factors are fre-

quently involved in differentiation for their ability to

modulate the expression of tens (or hundreds) of genes

simultaneously (Cassandri et al., 2017).
The zinc finger transcription factor ZNF281/Zfp281

(ZNF281 in humans, Zfp281 in mice) acts as a stem-

ness regulator mediating Nanog autorepression during

embryonic/fetal life (Fidalgo et al., 2011). An addi-

tional role of Zfp281 in maintaining genetic stability

of mouse embryos through the repression of L1 retro-

transposons has been discovered (Dai et al., 2017).

Indeed, the relevance of Zfp281 function during

embryonic life is underlined by the lethal phenotype of

Zfp281 knockout mice (Fidalgo et al., 2011). Neverthe-

less, the biological activity of ZNF281/Zfp281 is not

limited to embryonic/fetal life; Zfp281 increases car-

diac reprogramming of adult mouse fibroblasts by

modulating the expression of inflammatory and car-

diac genes (Zhou et al., 2017); in normal and trans-

formed cells, ZNF281/Zfp281 down-regulation

promotes osteogenic (Seo et al., 2013) and neuronal

differentiation (Pieraccioli et al., 2018), while its

expression drives epithelial–mesenchymal transition

(EMT) in colon cancer cells (Hahn et al., 2013). A fur-

ther and somehow unexpected finding highlighted the

involvement of ZNF281 in the transcriptional control

of DNA damage repair genes (Pieraccioli et al., 2016),

as well as in the recruitment of the repair machinery

components directly on damage sites (Nicolai et al.,

2019).

The multifunctionality of ZNF281/Zfp281 entails

that its expression occurs in a variety of tissues of

different origins, and consequently, it requires the exis-

tence of flexible regulatory mechanisms operating in

diverse cellular contexts.

MicroRNAs (miRs) are powerful post-transcrip-

tional regulators that bind to complementary

sequences in their targets provoking their degradation

and/or inhibiting their translation (Bartel, 2009). Fre-

quently, miRs act alone or in parallel with transcrip-

tional regulation to fine-tune the expression of genes

involved in complex cellular pathways (Croce and

Calin, 2005). Indeed, a wealth of experimental evi-

dence links specific miRs to cellular differentiation as

positive (Chen et al., 2006) or negative (Zhang et al.,

2014a) regulators of this process. Notably, the same

target can be controlled by several miRs depending on

their expression in different cellular districts (Lagos-

Quintana et al., 2002). Nevertheless, this adaptable

regulation requires the target to have multiple binding

sites for different miRs in its 30UTR. Although miR-

mediated post-transcriptional inhibition is by far the

most documented mechanism of action (Zhu et al.,

2017), some miRs can be also involved in other non-

canonical processes. For instance, miR-1, a well-

known driver of muscle differentiation (Chen et al.,

2006), is necessary to shuttle Ago2 inside mitochondria

of muscle cells and cardiomyocytes where Ago2 pro-

motes the translation of genes involved in ATP synthe-

sis by acting as a mitochondrial translation initiation

factor (Zhang et al., 2014b). The latter finding broad-

ens our knowledge on the function of differentiation-

related miRs not only in silencing the expression of

genes related to the differentiation process but also in

boosting the translation of other genes that help in

maintaining the differentiated phenotype. Mutations

and/or derangement of miR expression frequently

occurs in human neoplasms (Calin et al., 2002) where

they can act by inhibiting or promoting neoplastic

growth and metastasis (Croce and Calin, 2005; di Gen-

naro et al., 2018; Hurst et al., 2009; Pekarsky et al.,

2018) and by inducing chemoresistance (Si et al.,

2018).

Here, we demonstrated that the expression of

ZNF281/Zfp281 is repressed in all differentiation pro-

cesses tested. Its regulation can take place through a

post-transcriptional mechanism operated by several tis-

sue-restricted miRs. In muscle cells, the prodifferentia-

tion activity of miR-1 is counteracted by its target

Zfp281. The effect of ZNF281/Zfp281 in maintaining

an undifferentiated phenotype is exploited in soft tis-

sue sarcomas (Hawkins et al., 2013) where the expres-

sion of this gene is elevated compared with normal

counterparts and it is associated with a worse

prognosis.
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2. Materials and methods

The study methodologies conformed to the standards

set by the Declaration of Helsinki.

2.1. Cell lines and treatments

Human HEK293, lung carcinoma H1299, acute promye-

locytic leukemia NB4, and murine fibroblast NIH3T3 cell

lines were obtained from ATCC (Manassas, VA, USA)

and cultured in their suggested medium at 37 °C in 5%

CO2. Normal human epidermal keratinocytes, neonatal

(HEKn; Life Technologies, Thermo Fisher Scientific,

Waltham, MA, USA) were cultured in EpiLife medium

supplemented with human keratinocyte growth supple-

ments, HKGs (Life Technologies). The cells were kept

subconfluent to avoid triggering differentiation. The

HEKn cells were seeded on collagen-coated dishes and

were induced to differentiate by adding CaCl2 to a final

concentration of 1.2 mM to culture medium for 3, 7, and

9 days. Mouse C2C7 cell line, a subclone of C2 myoblasts

(Yaffe and Saxel, 1977), was grown to confluency under

5% CO2 at 37 °C in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 20% (v/v) FBS and peni-

cillin–streptomycin (100 U�mL�1). Cells were then

switched to differentiation medium (DMEM containing

2% horse serum). For granulocytic differentiation, NB4

cells (Lanotte et al., 1991) were kept at 2–5 9 105 and

treated with all-trans-retinoic acid (ATRA) (Sigma, Saint

Louis, MO, USA) at concentration of 10 lM for 3, 6, and

9 days. Cell lines utilized were tested for mycoplasma con-

tamination using MycoAlert Mycoplasma Detection Kit

(Lonza, Basel, Switzerland) every 3 months.

2.2. May–Gr€unwald–Giemsa staining of NB4 cells

Cytospin preparations of 2 9 105 cells treated or

untreated with ATRA were allowed to air-dry, incubated

in pure May–Gr€unwald solution for 5 min, then in 50%

May–Gr€unwald/water for 10 min, washed in water, and

incubated in a 20% Giemsa/water solution for 20 min.

The slides were then washed in water, air-dried, and

acquired under a Nikon laser scanning fluorescence confo-

cal microscope (Nikon Eclipse Ti, Nikon, Tokyo, Japan).

2.3. Protein analysis and antibodies

Western blot (WB) analysis was carried out as already

described (Pieraccioli et al., 2018). Antibodies were

ZNF281 (ab101318; Abcam, Cambridge, UK); DNP63

(clone 4YA3; Sigma-Aldrich); c-Myc (sc-40; Santa Cruz

Biotechnology, Santa Cruz Biotechnology, Inc., Dallas,

TX, USA); K10 (Covance, Princeton, NJ, USA); MyoG

(sc-1273; Santa Cruz); anti-Myosin (M8421; Sigma-

Aldrich); b-actin (AC-15 a5441; Sigma); anti-b tubulin

(sc-9104; Santa Cruz Biotechnology, Dallas, Texas

USA); anti-mouse-HRP-conjugated (Bio-Rad, Her-

cules, CA, USA; Cat. No.: 170-5047); and anti-rabbit-

HRP-conjugated (Bio-Rad; Cat. No.: 170-6515).

2.4. Cell transfection, RNA extraction, and real-

time qPCR analyses

Pre-miRNAs, anti-miRNA-1, and siRNAs indicated in

Table S3 were used for transfection of H1299 or C2C7

cells according to the manufacturer’s instructions using

Lipofectamine RNAiMAX Transfection Reagent

(Invitrogen, Carlsbad, CA, USA). mRNA was

extracted with the RNeasy Mini Kit 50 (Qia-

gen, Hilden, Germany) according to the standard pro-

cedures. Reverse transcription and qPCR were carried

out as previously described (Pieraccioli et al., 2016).

hb-actin and mGAPDH were used as internal control.

Oligonucleotides used in this study are listed in

Table S2. The miRNA extraction, reverse transcrip-

tion, and qPCR were carried out as previously

described (Pieraccioli et al., 2016). TaqMan Micro-

RNA Assay Kits for miR-1 (#002222), using sno202

(#001232) as an endogenous control [Applied Biosys-

tems (Waltham, MA, USA), Life Technologies], were

used in this study.

2.5. Cloning

30UTR of human ZNF281 or murine Zfp281 was ampli-

fied using the primers listed in Table S2 and cloned in

pGL3-control vector (Promega, Madison, WI, USA) by

standard cloning procedures. Murine Zfp281 coding

sequence deprived of 30 UTR was amplified from cDNA

obtained from proliferating C2C7 myoblast and cloned

into pLenti-CMV-GFP-2A-Puro (ABM Inc., Vancouver,

Canada) by using the primers listed in Table S2. Deletion

mutants for miRNA binding sites were generated by

amplification of the PGL3-control-ZNF281-30UTR plas-

mid used as a template using the primers listed in

Table S2. The sequence of all plasmids generated for this

paper was checked by dideoxy-sequencing.

2.6. Dual-Luciferase reporter assay

Cells were transfected with wild-type and mutant

reporters containing the wt and the mutated 30UTR of

human ZNF281, or wild-type reporter containing the

30UTR of mouse Zfp281. Cells were cotransfected with

the pre-miRNAs indicated in Table S3 or negative

control using Lipofectamine 2000 (Invitrogen)
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according to the manufacturer’s suggestions. Lucifer-

ase assays were carried out using the Dual-Luciferase

Reporter Assay (Promega). Each experimental point

was analyzed in triplicate in three independent experi-

ments. Statistical significance was calculated by

unpaired two-tailed Student’s t-test.

2.7. Immunohistochemical staining

For optimization of conditions of immunohistochem-

istry, skin biopsy formalin-fixed paraffin-embedded

sections were dewaxed and rehydrated, and blocked

for 20 min in 0.03% hydrogen peroxide solution in

methanol; then, heat-mediated antigen retrieval

(HIER) was performed by boiling the samples in either

0.01 M citrate buffer pH 6.0 or 1 mM EDTA/0.05%/

Tween-20 pH 9.0 for 30 min in microwave. Then, the

slides were incubated with anti-ZNF281 antibodies

purchased from either Sigma (1 : 50, Cat. No.

HPA051228; Sigma) or Abcam (1 : 50, Cat. No.

Ab154093; Abcam) for 2 h at RT. For further

immunohistochemical staining of normal and tumor

tissues, HIER was performed by boiling the samples in

0.01 M citrate buffer pH 6.0 for 1 h in microwave;

then, samples were blocked in 5% normal goat serum

in PBS and stained with anti-ZNF281 antibody

Ab154093 (Abcam) at 1 : 50 dilution overnight at

+4 °C. The signal was detected using UltraTek HRP

Anti-Polyvalent DAB Staining System (ScyTek,

Logan, UT, USA); then, the slides were counterstained

with hematoxylin, dehydrated, and mounted. Tissue

microarray (TMA) of soft tissue tumors was purchased

from US Biomax (Cat. No. SO751a; US Biomax,

Rockville, MD, USA). Other samples of normal skele-

tal and smooth muscle (additional 10 cases), skin, ton-

sil, colon, adipose tissue, and liposarcoma were

utilized with the approval of the institutional review

board of University Hospital ‘Policlinico Tor Vergata’

(Protocol No. 129/18, Rome, Italy). Prior patient con-

sent was informed and written. All the slides were

scanned using 409 objective in the Ventana iCoreo

scanner (Ventana, Oro Valley, AZ, USA).

2.8. Histological scoring of the samples

Samples were scored in a blinded manner by a pathol-

ogist using a semiquantitative method. Cases were ana-

lyzed for staining intensity, which was scored as 0 (not

detected), 1+ (weak), 2+ (intermediate), and 3+
(strong). For each case, the histological H-score (0–
300) (Budwit-Novotny et al., 1986) was calculated by

multiplying the percentage of positive cells (0–100%)

by the staining intensity (0–3).

2.9. Bioinformatic analysis

For the analysis of RNA-seq carried out in myoblasts,

the signal tracks and transcript quantifications were

downloaded from ENCODE data portal (www.enc

odeproject.org). Signal tracks were visualized using

Integrated Genome Browser (bioviz.org). The follow-

ing experiments were analyzed: differentiation of

human primary myoblasts (ENCSR444WHQ and

ENCSR828TEI) and differentiation of murine-immor-

talized myoblasts C2C12 (ENCSR000AHY and

ENCSR000AIA). For gene expression analyses, nor-

malized values of ZNF281 expression were obtained

from NCBI Gene Expression Omnibus (GSE108022,

GSE62544, GSE17674, GSE114621, GSE6011,

GSE38417, and GSE21122). For survival analyses,

clinical and gene expression data were obtained from

TCGA (TCGA_SARC) or NCBI GEO (GSE17674).

2.10. Statistical analysis

All statistical analyses were performed using GRAPHPAD

PRISM 8.0 software (GraphPad Software, San Diego,

CA, USA). For the analysis of gene array data and pro-

tein level of ZNF281 from the TMA experiment, the sig-

nificance level (P) was calculated using the Mann–
Whitney test. The Kaplan–Meier curves were generated

in GRAPHPAD PRISM 8.0 software, and the significance

level was calculated using the log-rank Mantel–Cox test.

Values of P < 0.05 were considered significant. Violin

plots were generated in R using ggplot2 package.

3. Results

3.1. Post-transcriptional regulation of ZNF281 is

mediated by miRs

Since ZNF281/Zfp281 has been detected in many nor-

mal tissues during embryonic and adult life (Fidalgo

et al., 2011; Pieraccioli et al., 2018; Zhou et al., 2017),

we looked for a flexible regulatory mechanism that can

effectively regulate its expression in different cellular

contexts. We analyzed the 30UTR of the human

ZNF281 gene looking for potential miR binding sites

with three commonly used bioinformatic programs

(miRDB, miRanda, and Target Scan). Together with

the previously described sites for miR-203 (Viticchie

et al., 2011) and miR-34a (Hahn et al., 2013; Pieracci-

oli et al., 2018), we found 24 additional sites recog-

nized by all the three programs utilized that were not

previously described (Fig. 1A and Table S1). We

noticed that many of these miRs were involved in
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cellular differentiation (Table 1), suggesting the exis-

tence of a general regulatory mechanism to down-regu-

late ZNF281 during various differentiation processes.

To test this hypothesis, we selected 12 of these differ-

entiation-related miRs (Fig. 1B) and we carried out

functional assays by transfecting reporter vectors con-

taining the human 30UTR of the ZNF281 gene and

individual pre-miRs. All miRs analyzed (miR-1, miR-

23a, miR-23b, miR-33a, miR-33b, miR-125a, miR-

125b, miR-129, miR-449a, miR-449b, miR-34a, and

miR-203) were able to significantly down-regulate luci-

ferase activity from the human ZNF281 30UTR

(Fig. 1C, left). The same miRs excluding miR-23a and

miR-23b could also down-regulate the murine 30UTR

of Zfp281 (Fig. 1C, right). In this analysis, miR-134

and miR-519, for which no binding sites were found in

the 30UTRs of ZNF281/Zfp281, were kept as negative

controls (Fig. 1C). A comparison between the human

and murine 3’UTRs revealed that the seed sequence

for miR-23a/b that is present in humans is not con-

served in mice in contrast to the seed sequences of the

other regulatory miRs tested (Fig. S1A,B). In addition,

to rule out the possibility that miR-23a/b could regu-

late murine Zfp281 at the translational level, we trans-

fected the murine NIH3T3 cells with pre-miR-23a and

pre-miR-23b and analyzed the level of Zfp281 protein

by western blotting (WB). The amount of Zfp281 pro-

tein did not significantly change in miR-23a/b-trans-

fected cells compared with controls (Fig. S1C),

confirming that miR23a/b are unable to affect the

expression of Zfp281 in mice.

The miRs that were able to down-regulate the

expression ZNF281/Zfp281 (Fig. 1C) were further

tested for their ability to inhibit the expression of

ZNF281 by transfecting their pre-miR forms in

H1299 cells and measuring the level of ZNF281 pro-

tein at different time points by WB analysis

(Fig. 1D). To understand whether the post-transcrip-

tional regulation of ZNF281 by these differentiation-

related miRs was dependent on their binding to the

corresponding site in the 3’UTR of ZNF281, we per-

formed functional assays in which we cotransfected

the 3’UTR mutant forms of ZNF281 where the

potential sites for each of the analyzed miRs were

deleted by site-directed mutagenesis (Fig. S1D),

together with each of the analyzed miRs. Our analy-

sis indicates that ZNF281 regulation by differentia-

tion-related miRs occurs through the binding to

their respective sites in the 30UTR of this gene

(Fig. 1E). Together, these data highlight a post-tran-

scriptional regulation of ZNF281/Zfp281 mediated

by several miRs whose expression was associated

with differentiation.

3.2. The expression of ZNF281/Zfp281 decreases

during differentiation of tissues and cells of

different lineages

The expression of ZNF281 was evaluated in different

human tissues using a specific antibody (see antibodies

tests and procedures in Fig. S2A). ZNF281 is clearly

detected in the nuclei of cells in the basal layer of nor-

mal squamous epithelium (tonsil) and in the proliferat-

ing layer of the columnar epithelium (colon) (Fig. 2A).

On the contrary, it was undetectable in post-mitotic,

terminally differentiated tissues such as skeletal and

smooth muscle (Fig. 2A). In addition, human ker-

atinocyte precursors (HEKn) were allowed to differen-

tiate in vitro toward an epithelial phenotype in

medium containing CaCl2 (Fig. 2B, left). The expres-

sion of proliferation (c-Myc and DNp63) and differen-

tiation (Keratin 10) markers was evaluated by WB

analysis during the differentiation process. As

expected, the expression of DNp63 and c-Myc

decreased after 7 days in culture, while Keratin 10

(K10) sharply increased from day 3 up to day 9

(Fig. 2B, right). Of interest, the expression of ZNF281

rapidly declined from day 3 to 9 (Fig. 2B, right). To

evaluate whether the decrease in ZNF281/Zfp281 was

a phenomenon occurring also during other differentia-

tion pathways, we tested the immortalized murine

myoblasts, C2C7 cells (Yaffe and Saxel, 1977), which

recapitulate muscle differentiation in vitro upon lower-

ing serum level in the medium (Fig. 2C, left). In this

case, the expression of Zfp281 protein drastically

dropped after 48 h in differentiation medium (Fig. 2C,

right). In parallel, the muscle markers Myosin and

MyoG increased (Fig. 2C, right). Furthermore, we

tested the granulocytic differentiation of the human

promyelocytic leukemia cells NB4 (Lanotte et al.,

1991) by treatment with ATRA (Fig. S2B). WB analy-

sis demonstrated a strong reduction of ZNF281 signal

upon RA treatment (Fig. S2C), while only a partial

but significant decline in its transcript was detected

(Fig. S2D). In the same time frame, c-Myc and MPO

decreased and the differentiation markers CD11B,

CD11C, and CD14 increased (Fig. S2D). Altogether,

these data indicate that ZNF281/Zfp281 decrease is

associated with the acquisition of a differentiated phe-

notype in different cellular lineages.

3.3. Functional relationship between miR-1 and

Zfp281 during differentiation of murine

myoblasts

miR-1 expression is tissue-restricted prevalently in

muscle where it was demonstrated to function as a
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powerful driver of myogenic differentiation through

different mechanisms (Chen et al., 2006; Zhang et al.,

2014b). To further test the role of miR-1 in muscle dif-

ferentiation, we transfected C2C7 cells with anti-miR-1

and cultured them in differentiation medium for 6 and

24 h. As expected, anti-miR-1-transfected cells

expressed a lower amount of the differentiation marker

MyoG compared with controls by WB analysis

(Fig. S2E). Next, since miR-1 is able to inhibit the

expression of ZNF281/Zfp281, we monitored the

expression of miR-1 during C2C7 differentiation. We

detected a sharp increase (around 30 folds) in miR-1

expression already after 48 h in differentiation medium

with a further increase at 96 h (Fig. 2D). Notably,

while the expression of Zfp281 protein abruptly

dropped at 48 h (Fig. 2C), its mRNA levels

significantly decreased only at late differentiation time

(96 h) (Fig. 2D). The slow decline in ZNF281/Zfp281

mRNA during muscle differentiation was confirmed

by RNA-seq analysis of primary human myoblasts

and immortalized mouse myoblasts (Fig. 2E). Indeed,

we could appreciate only a partial reduction of the

levels of ZNF281/Zfp281 transcripts in differentiated

compared with undifferentiated cells (Fig. 2E). Thus,

the slow decrease in Zfp281 mRNA together with the

fast reduction of the protein levels is consistent with a

miR-mediated post-transcriptional regulation. To bet-

ter understand the functional relationship between

Zfp281 and miR-1, we induced myogenic differentia-

tion in C2C7 cells by transfecting pre-miR-1 and eval-

uating the expression of muscle differentiation markers

Myosin and MyoG and the level of Zfp281 protein by

WB analysis (Fig. 2F). We could detect a sharp up-

regulation of Myosin and MyoG paralleled by a

decrease in Zfp281 (Fig. 2F). As expected, the levels of

miR-1 dramatically increased after pre-miR-1 transfec-

tion and remained high during the time frame of the

differentiation experiment (Fig. 2F). Next, we sought

to rescue the prodifferentiation effect of miR-1 on

C2C7 cells by sequentially transfecting miR-1 and a

vector containing only the coding sequence of the

Zfp281 gene (without the 30UTR) (Fig. 2G). Cells

transfected with miR-1 and the empty vector under-

went differentiation as expected (Fig. 2G). Of note,

cotransfection of the Zfp281 expression vector caused

a marked reduction in the expression of the late differ-

entiation marker Myosin and a modest down-regula-

tion of the early marker MyoG compared with the

cotransfection with empty vector (Fig. 2G). Thus,

miR-1-mediated muscle differentiation occurs, at least

in part, through a reduction of Zfp281 protein that, in

turn, is able to counteract the prodifferentiation effect

of miR-1. To understand whether the inhibition of

Zfp281 was able per se to accelerate the differentiation

process, we transfected C2C7 cells with siRNA direc-

ted against Zfp281. This experiment suggests that

although the reduction of Zfp281 is a requisite for

muscle differentiation, its sole inhibition does not

increase the kinetics of the process as evaluated by the

lack of induction of the MyoG marker (Fig. S2F).

Table 1. Differentiation-related miRs that control ZNF281/Zfp281

expression.

miR

Differentiation

pathways References

miR-1/miR206 Muscle Chen et al. (2006)

miR-23ab Neural, EMT Kawasaki and Taira

(2003); Yang et al.

(2017)

miR-33ab EMT Qu et al. (2015); Yang

et al. (2015)

miR34abc Brain, EMT,

ciliogenesis,

spermatogenesis

Agostini et al. (2011);

Bao et al. (2012);

Bouhallier et al. (2010);

Hahn et al. (2013);

Walentek et al. (2016)

miR-125ab Neural, EMT Boissart et al. (2012);

Cowden Dahl et al.

(2009); Ottaviani

et al. (2018)

miR-129 EMT Liu et al. (2014)

miR-203 Epithelial, EMT Diao et al. (2014);

Viticchie et al. (2012);

Wellner et al. (2009)

miR-382 Granulocyte Zini et al. (2016)

miR-449ab Brain, ciliogenesis

spermatogenesis

Li et al. (2018);

Wu et al. (2014)

miR-495 Muscle, mesendoderm Xie et al. (2019);

Yang et al. (2014)

Fig. 1. (A) Venn diagram showing predicted miR binding sites on human ZNF281 3’UTR with miRDB, miRanda, and Target Scan online

databases. (B) Schematic representation of the human ZNF281 30UTR. Blue boxes indicate the binding sites of differentiation-related miRs

selected for further analysis. (C) Luciferase assays carried out in HEK293 cells cotransfecting the indicated miRs with reporter vectors for

human ZNF281 3’UTR (left) or mouse Zfp281 30UTR (right). Graphs present means � SD; **P < 0.01 (two-tailed Student’s t-test). (D)

H1299 cells were transfected with the indicated miRs and collected at different time points. WB analysis demonstrates ZNF281 decrease;

b-actin was used as a loading control. (E) Luciferase assays performed as in (D) with mutated reporter vectors for human ZNF281 3’UTR.

Graphs present means � SD; **P < 0.01 (two-tailed Student’s t-test).
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3.4. The expression of ZNF281 is predictive of

prognosis in soft tissue sarcomas

Our data indicate that the expression of ZNF281

decreases during muscle differentiation, while the ecto-

pic expression of this gene counteracts the miR-1-dri-

ven differentiation of C2C7 myoblasts. Thus, we

analyzed samples of normal muscle tissue (N = 11 for

smooth muscle and N = 11 for skeletal muscle) and a

TMA containing leiomyosarcomas (Serrano and

George, 2013) (N = 18) and rhabdomyosarcomas (Ska-

pek et al., 2019) (N = 18) (Fig. 3A). We found that

ZNF281 is expressed at variable levels in both tumor

types (Fig. 3B). Conversely, ZNF281 was undetectable

in all normal skeletal and smooth muscle specimens

analyzed (Fig. 3B). ZNF281 levels expressed as H-score

(Budwit-Novotny et al., 1986) are higher in leiomyosar-

coma and rhabdomyosarcoma compared with their

normal counterparts (P = 0.002 and P = 0.02, respec-

tively; Fig. 3C). A complete description of the

histopathological features and the H-score of ZNF281

expression for each tumor analyzed is summarized in

Table S4. Representative immunostaining of ZNF281

in normal and tumor samples is presented in Fig. 3D.

In agreement with the results obtained with TMA,

the analysis of publicly available datasets of soft tissue

sarcomas confirmed a significantly higher expression of

ZNF281 in leiomyosarcoma, rhabdomyosarcoma, ded-

ifferentiated liposarcoma, and myxoid/round cell

liposarcoma (Hawkins et al., 2013) patients compared

with normal counterparts (Figs 4A and S3A,B). Fur-

thermore, a tendency to higher expression of ZNF281

was also detected in a panel of 46 sarcoma cell lines

compared with nontransformed cell lines from soft tis-

sues (Fig. S3C). The Kaplan–Meier survival probabil-

ity analysis in Ewing’s sarcoma performed by

subdividing patients in high- and low-expressing

ZNF281 highlighted a significantly worse prognosis in

high expressors (Fig. 4B, log-rank P = 0.032). Interest-

ingly, in the TCGA sarcoma dataset, the Kaplan–
Meier survival probability analysis indicated that high

miR-1 expression identifies a subset of patients with

better outcome compared with the low expressors

(Fig. 4C, log-rank P = 0.039). An opposite trend was

detected for ZNF281 for which high expression tends

to be predictive of worse outcome (Fig. 4C, log-rank

P = 0.054). The latter result is consistent with the

post-transcriptional control exerted by miR-1 on

ZNF281 expression that we have demonstrated

in vitro. Altogether, TMA and bioinformatic analyses

suggest that the expression of ZNF281 is elevated in a

wide range of soft tissue sarcomas.

4. Discussion

Here, we demonstrate that down-regulation of

ZNF281/Zfp281 expression is a common feature of

several differentiation pathways (epithelial, myogenic,

and granulocytic). These data suggest that the decrease

in ZNF281/Zfp281 expression is a general requisite for

the completion of differentiation in somatic cells and

raise the question of how the regulation of this factor

occurs in different cellular contexts.

The analysis of the ZNF281/Zfp281 3’UTR revealed

the presence of numerous miR binding sites that sug-

gested a miR-mediated post-transcriptional control

exerted on this gene. We demonstrated that a large

number of these miRs were indeed able to regulate the

expression of ZNF281/Zfp281. Since many of these

miRs have tissue-restricted expression, it is conceivable

that the miR-mediated post-transcriptional control of

ZNF281/Zfp281 during various types of cellular differ-

entiation occurs through miRs primarily expressed in a

specific cellular context.

To address this issue, we focused our study on mus-

cle differentiation and on miR-1, whose expression is

Fig. 2. (A) Immunostaining of ZNF281 on either normal tonsil with adjacent skeletal muscle or normal colon with adjacent smooth muscle.

Scale bars are 2 mm (on the left) and 50 µm (on the right). (B) Schematic representation of primary human keratinocytes in vitro

differentiation (left). Markers of proliferation and differentiation are shown on the bottom. The proteins analyzed for WB (right) are in black;

b-actin was used as a loading control. (C) Schematic representation of mouse-immortalized myoblasts in vitro differentiation (left). Markers

of proliferation and differentiation are shown on the bottom. The proteins analyzed for WB (right) are in black; b-actin was used as a loading

control. (D) C2C7 cells were induced to differentiate for the indicated time points. qPCR analysis show miR-1 (left) and Zfp281 (right) levels.

Graphs present means � SD; **P < 0.01 (two-tailed Student’s t-test). (E) mRNA expression of human ZNF281 and murine Zfp281 analyzed

by RNA-seq from ENCODE carried out in the human primary myoblasts (left) or murine C2C12-immortalized myoblasts (right) in conditions

of both proliferation and differentiation. Graphs on the right show the quantification of transcript abundance as fragments per kilobase

million. (F) C2C7 cells were transfected with pre-miR-1 and harvested at the indicated time points. WB analysis showing the expression of

the indicated proteins; b-actin was used as a loading control (left). qPCR analysis proving miR-1 overexpression (right). Graphs present

means � SD; **P < 0.01 (two-tailed Student’s t-test). (G) WB analysis of C2C7 cells transfected as indicated; b-actin was used as a loading

control (left). qPCR analysis demonstrating miR-1 overexpression (right). Graphs present means � SD; **P < 0.01 (two-tailed Student’s t-

test).
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tissue-restricted in skeletal muscle and heart and which

is itself a driver of myogenic differentiation acting

through canonical and noncanonical mechanisms

(Chen et al., 2006; Zhang et al., 2014b). Our data

demonstrate that ZNF281/Zfp281 is a new target of

miR-1 in muscle cells. The functional relationship

between miR-1 and ZNF281/Zfp281 is highlighted by

the inhibitory effect that ectopic expression of this

gene has on miR-1-driven muscle differentiation of

C2C7 myoblasts. The latter finding also implies that

ZNF281/Zfp281 is itself a negative modulator of myo-

genic differentiation although its sole inhibition is

unable to accelerate the process. Thus, our data indi-

cate that miR-1 exerts a post-transcriptional control

on the expression of ZNF281/Zfp281 (through direct

binding to the 30UTR of ZNF281/Zfp281) to ensure

the down-regulation of this gene that is required for

the achievement of a differentiated state. Indeed, the
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Fig. 3. (A) The structure of TMA of soft tissue cancer (SO751a; US Biomax) showing the distribution of samples. Twenty additional normal
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Heatmap showing the distribution of H-scores of nuclear ZNF281 expression in the TMA from (A). (C) Violin plots comparing H-scores of
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expression of ZNF281/Zfp281 is no longer required in

fully differentiated myotubes as demonstrated by our

immune-histological analysis of skeletal and smooth

muscle tissues. A scheme of the roles of ZNF281/

Zfp281 and miR-1 in muscle differentiation is pre-

sented in Fig. 4D. Complex events such as cell differ-

entiation require adjustments of gene expression that

must be time-, point-, and cell-lineage-specific and

involve numerous players (Strober et al., 2019). Our

data do not rule out that the regulation of ZNF281/

Zfp281 can also occur through other mechanisms;

however, the miR-1-mediated gene regulation during

myogenic differentiation seems to be appropriate for

controlling more than one target by only one effector.

Contrary to what happens in skeletal and smooth

muscle tissues, the expression of ZNF281/Zfp281 is

significantly elevated in rhabdomyosarcoma (Shern

et al., 2014) and leiomyosarcoma (Hernando et al.,

2007) tumors. This observation suggests that the

expression of ZNF281 can be considered a marker of

proliferative/transformed state related to the dediffer-

entiation process common to virtually any type of

tumor (Merrell and Stanger, 2016). Our analysis also

reveals that elevated expression of ZNF281 compared

to normal counterparts is a feature of several other

soft tissue sarcomas (van der Graaf et al., 2017). In

line with this, high expression of ZNF281 is associated

with a significantly worse prognosis in Ewing’s sar-

coma (Balamuth and Womer, 2010).

5. Conclusion

In summary, our study highlights a common behavior

of ZNF281/Zfp281 during several differentiation path-

ways in which the expression of this gene is invariably

down-regulated. Modulation of the expression of this

gene is, at least in part, dependent on post-transcrip-

tional control of different miRs that are frequently tis-

sue-restricted. Accordingly, in muscle differentiation, a

functional inverse relationship exists between Zfp281

and muscle-specific miR-1. The elevated expression of

ZNF281 in a vast range of soft tissue sarcomas war-

rants further investigation of the prognostic potential

of this gene within this class of deadly tumors.
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Fig. 4. (A) Violin plots comparing ZNF281 expression between
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Fig. S1. (A) Sequence alignment of the indicated miRs

on human ZNF281 3’UTR. (B) Schematic representa-

tion of the human ZNF281 3’UTR and murine Zfp281

3’UTR indicating the binding sites of differentiation-

related miRs selected for further analysis. (C) Murine

NIH3T3 cells were transfected with the indicated miRs

and collected at different time points. WB analysis

demonstrates that Zfp281 is not under control of miR-

23a/b; b-actin was used as a loading control. The

asterisk indicates non-specific band. (D) Schematic

representation of ZNF281 3’UTR different mutants.

Red boxes indicate deletions of the relative binding

sites along ZNF281 3’UTR.

Fig. S2. (A) Immunostaining of ZNF281 on normal

human skin. Two different antibodies and three differ-

ent conditions of heat-induced epitope retrieval (no

HIER, HIER pH9 EDTA, and HIER pH6 Citrate)
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were used to determine the optimal condition for

immunostaining. (B) Representative images of NB4

cells treated with DMSO or ATRA 10 µM for 9 days.

(C) WB analysis of NB4 cells induced to differentiate

for the indicated times; -actin was used as a loading

control. (D) qPCR analysis of samples in (C). (E) WB

analysis of C2C7 cells treated with the indicated RNA

oligonucleotides for 24 h and then shifted in differenti-

ation medium for either 6 or 24 h; -tubulin was used

as a loading control. (F) WB analysis of C2C7 cells

transfected with the indicated siRNAs for 48h; -tubu-

lin was used as a loading control.

Fig. S3. (A) Violin plots comparing ZNF281 expression

between normal adipose tissue and different types of

liposarcoma from the study GSE21122. (B) Immunostain-

ing of ZNF281 on either normal human adipose tissue of

breast or de-differentiated liposarcoma. Infiltrating lym-

phocytes were used as internal positive control for

ZNF281 immunostaining of breast, meanwhile smooth

muscle adjacent to tumor was used as internal negative

control for specificity of ZNF281 immunostaining of

liposarcoma. (C) A heatmap showing the relative mRNA

expression of ZNF281 in either 5 normal cell lines of soft

tissues or 46 cell lines of soft tissue cancer.

Fig. S4. Uncropped western blots related to Figs 1D

and 2B,C.

Fig. S5. Uncropped western blots related to Fig. 2F,G

and to Fig. S2C.

Table S1. Bioinformatic analysis of miRNA sites in

human ZNF281 3’-UTR.

Table S2. Oligonucleotides used in the study.

Table S3. Pre-miR, Anti-miR and siRNAs used for

transfection.

Table S4. Tissue microarray TMA-SO751a from US

Biomax (leiomyosarcoma/rhabdomyosarcoma dupli-

cate cores per case).
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