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Towards better understanding the stiffness
of nanocomposites via parametric study of
an analytical model modeling parameters
and experiments

Eyup Can Demir1, Mark T McDermott2, Chun ll Kim1 and Cagri Ayranci1

Abstract
The stiffness of polymeric materials can be improved dramatically with the addition of nanoparticles. In theory, as the
nanoparticle loading in the polymer increases, the nanocomposite becomes stiffer; however, experiments suggest that little
or no stiffness improvement is observed beyond an optimal nanoparticle loading. The mismatch between the theoretical
and experimental findings, particularly at high particle loadings, needs to be understood for the effective use of nano-
particles. In this respect, we have recently developed an analytical model to close the gap in the literature and predict elastic
modulus of nanocomposites. The model is based on a three-phase Mori-Tanaka model coupled with the Monte-Carlo
method, and satisfactorily captures the experimental results, even at high nanoparticle loadings. The developed model can
also be used to study the effects of agglomeration in nanocomposites. In this paper, we use this model to study the effects of
agglomeration and related model parameters on the stiffness of nanocomposites. In particular, the effects of particle
orientation, critical distance, dispersion state and agglomerate property, and particle aspect ratio are investigated to
demonstrate capabilities of the model and to observe how optimal particle loading changes with respect these parameters.
The study shows that the critical distance defining agglomerates and the properties of agglomerates are the key design
parameters at high particle loadings. These two parameters rule the optimal elastic modulus with respect to particle
loading. The findings will allow researchers to form design curves and successfully predict the elastic moduli of nano-
composites without the exhaustive experimental undertakings.

Keywords
Nanocomposite, modeling, mori-tanaka, Monte-Carlo, parametric study

Introduction

Nanoparticles have great potential to enhance the mechanical
properties of polymeric materials. Various nanoparticles are
shown to improve the stiffness of polymers: nano clay,1,2

carbon nanotubes,3,4 cellulose nanocrystals (CNC),5,6 layered
aluminosilicates.7 This improvement is mostly due to the
nanoparticles’ high surface-to-volume ratio,8,9 and extraor-
dinary properties. It is also shown that the addition of
nanoparticles can change the polymer crystallinity1 and
initiate specific interactions between polymer chains and
nanoparticles,10 also known as the polymer-particle interface.

The volume of the polymer-particle interaction is
maximized when nanoparticles are uniformly dispersed;
however, nanoparticles tend to agglomerate due to their
high surface area and energy. Particularly, high nanoparticle
loadings could result in agglomeration11 and cause overlaps
of the polymer-particle interfaces. Beyond a certain particle

concentration, agglomeration is shown to be a limiting or
even detrimental factor to the targeted properties of poly-
mers in many studies.12–15 This adverse effect could cause
mismatches between experimental findings and model
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predictions. Therefore, producing polymer nanocomposites
with accurately predicted properties is still a challenge.16,17

Predicting nanocomposites’ elastic properties at various
particle loading levels is an important aspect of nano-
composite studies. Accurate predictions increase the effi-
cient use of nanoparticles and lower the cost and time spent
on the experimental work. In recent years, many numerical
and analytical models were developed to predict the elastic
modulus of nanocomposites.18–23 Numerical models, es-
pecially molecular-level simulations, such as molecular
dynamics, may produce accurate predictions in small length
scales; however, they require high computational power to
achieve macro-scale responses due to complex interactions
between simulated elements. On the other hand, analytical
micromechanical models may serve as a viable alternative
for predicting the elastic modulus of polymer nano-
composites. They are, in general, easy to use, low cost, and
reasonably accurate.6,24

Short-fiber micromechanical models such as the Mori-
Tanaka,25 have been used or modified to predict nano-
composites’ behaviour. For example, Jinsu et al. used the
Mori-Tanaka micromechanics to predict elastic moduli of
the silane functionalized ceramic nanocomposite.26 It was
shown that the Mori-Tanaka model agrees well with the
experimental data of 0.04 volume fraction of TiO2 in ac-
rylate matrix.26 The Halpin-Tsai micromechanics is another
short-fiber composite model27 that was modified and im-
plemented to estimate material properties of nano-
composites. Zhang et al.4 included carbon nanotube
distribution, waviness, and networks for accurate predic-
tions. Their model agrees well with two existing literature
data; however, they suggested that a more compressive
model capable of considering carbon nanotube agglomer-
ation is needed. Researchers also introduced new variables
to micromechanical models or used multiscale approach for
more accurate predictions. Arash et al.28 developed an ef-
fective interface model that considers the interface between
the reinforcing element and matrix to predict elastic
modulus of carbon nanotube polymer composites. The
properties of the interfacial region were obtained based on
molecular simulations, and these properties were utilized in
a modifiedMori-Tanaka model. Kim et al.29 investigated the
mechanical properties of carbon nanotube modified carbon
fiber reinforced epoxy composites by developing a multi-
scale composite model. The Halpin-Tsai model was applied
to obtain carbon nanotube/Resin 2-phase system and then
woven fiber micromechanics was used for the integration of
fibers into the model. The model overestimates the ex-
perimental results. Kim et al.29 claimed that the assumption
of perfect bonding increases the discrepancy between
modeling and experimental results.

Many investigators included agglomeration as another
variable into analytical micromechanical models for better
predictions. Luo and Daniel30 proposed a three-phase

analytical model based on a hybrid use of the Mori-
Tanaka model and rule of mixtures to predict the elastic
modulus of polymer clay nanocomposites. The developed
model incorporates random orientation of clay layers and
various exfoliation levels to capture the mechanical re-
sponses. In their experimental work, only low concentration
levels (up to 1 w%) of clays were utilized, and higher
concentration levels were not explored. The predictions
agree well with the experimental findings when experi-
mental parameters are accurately implemented. Shi et al.4

studied the CNC waviness and agglomeration and their
effect on the mechanical responses of the composites. The
authors employed Eshelby’s inclusion model to predict the
elastic modulus of the composite with a spherical inclusion/
agglomeration assumption; however, they withheld the
exact definition of agglomerates. Villoria and Miravete31

focused on the effects of clusters on the stiffness of com-
posites. They applied the Reuss model to predict the
stiffness of clusters because it was assumed that fibers
would stick side by side in agglomerated regions. Their
study predicts composite stiffness as a function of clustered
fibers; however, agglomerated regions’ definition needs
further expansion.

Many researchers solely investigated the clustering/
agglomeration effect on the mechanical properties of
composites from different perspectives. Bhattacharyya and
Lagoudas32 studied different possible microstructures to
calculate the clustering effect on the stiffness of composites.
In the study, the clustering state is represented by probability
distribution functions and a sensitivity study is conducted
with respect to different clustering states. Although it is a
great approach to studying the clustering effect, Bhatta-
charyya and Lagoudas did not discuss the exact definition of
agglomerates in their study and the elastic modulus. Se-
gurado et al.33 studied the effect of particle clustering in
finite element analysis by dispersing particles randomly in
the computer setting. They idealized the inhomogeneous
structure with clustered particles in a spherical manner and
created this structure with random dispersion. The disper-
sion state was limited to random dispersion and only 15 v%
particle loading was studied. Hammerand et al.34 also used
the finite element method to calculate the elastic modulus of
carbon nanotube embedded epoxy for different cases of
clustering. In this study, clustering is defined as a deviation
state from uniformly dispersed particles; however, the exact
definition of a cluster is not presented, and RVE is limited to
only a few particles. Further, they only studied low particle
loadings that is up to 1.0 v%.

Attempts to predict elastic properties of nanocomposites
are invaluable; however, current studies in literature suggest
that there is a gap in knowledge as the available analytical
models are, in general, limited in their ability to capture
experimental trends at high nanoparticle loadings. Fur-
thermore, exact definition of an agglomerate is missing in
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the current literature. Intuition and existing analytical model
predictions suggest that improvement in stiffness increases
as the particle loading increases. On the other hand, the
reinforcement is limited to optimal particle loading. Ad-
ditional particle loadings higher than the optimal particle
loading become detrimental to the mechanical properties of
nanocomposites35–39. It can be claimed that the existing
analytical models do not account for the complex nature of
nanocomposites and agglomeration, and thus they fail to
predict the elastic modulus of nanocomposites at high
particle loadings.

Recently, we developed an analytical model that uses a
three-phase Mori-Tanaka model and the Monte-Carlo
method to predict the stiffness of nanocomposites.40 The
model predictions and experimental findings match well. A
comprehensive study of the model’s parameters can allow
us to examine and understand the effect of agglomeration on
nanocomposites to address the aforementioned gap in the
literature.

Consequently, in this paper, we focus on and study the
effect of the model’s parameters to establish a sensitivity
analysis for the model. We investigate the effect of critical
design variables defined in the model, such as the critical
distance, agglomerates’ properties, aspect ratio, particle
loading, and various dispersion states of nanoparticles. The
predictions of the proposed model are cross-examined with
experimental results from the previous study40 where
polyamide 6 (PA6) is reinforced with cellulose nanocrystals
(CNC).

Modelling

The current micromechanical models41,42 assume uniformly
dispersed particles; however, obtaining uniformly dispersed
nanoparticles is unrealistic because of nanoparticles’ high
surface energy and area. This non-uniform dispersion state
of nanoparticles could result in mismatches between model
predictions and experimental results, particularly at high
particle loadings. We aim to lower these mismatches by
introducing an agglomerate phase into the model. The
model, in this study, combines the Monte-Carlo approach
with analytical models to capture the effect of agglomer-
ation on the elastic modulus of nanocomposites.

The previously developed model40 aims to offer a simple
yet accurate method to predict elastic properties of nano-
composites with respect to particle loading. Its mainframe is
introduced here for ease of following; however, interested
readers can see the details in the original publication.40

The proposed model is developed based on six main
steps: (1) particles are dispersed in a computational setting,
(2) agglomerated particles are detected using a machine
learning method, (3) agglomerates are averaged based on
their volume fractions and particles concentrations, (4) the
elastic modulus of the averaged agglomerate is calculated

using analytical models, (5) a three-phase Mori-Tanaka
model is applied for homogenization, and (6) the Monte-
Carlo method is utilized for obtaining statistical information
about the elastic modulus of composites. Each step has
various parameters, and these parameters are explained in
the subsections of this section. For the visualization pur-
pose, the schematics of the homogenization approach are
given in Figure 1.

We assume that nanocomposites can be modelled using a
three-phase Mori-Tanaka approach where the phases are the
particle phase, the agglomerate phase, and the matrix phase.
The application of this model requires the shape and aspect
ratio of particles, as well as the elastic properties and volume
fractions of the phases. The shape and aspect ratio of
particles are assigned based on literature data; on the other
hand, the elastic properties and volume fractions of the
phases are determined using analytical and computational
tools. The phases’ volume fractions are calculated based on
a computational approach that we developed. A 2-
dimensional space (1000 × 1000 nm) in a computational
environment is set up for particle dispersion using MAT-
LAB software. The number of particles is calculated based
on a particle loading, and particles are dispersed in the two-
dimensional space using the Mersenne-Twister algorithm, a
pseudorandom number generator. Various dispersion states
are covered by changing value of dispersion parameter, µ½d�
value (detailed in Particle Dispersion section).

The dispersed particles are classified either as agglom-
erated particles or free particles using the hierarchical
clustering method, a machine learning method.43 The im-
plemented hierarchical clustering algorithm measures Eu-
clidian Distances between particles to detect agglomerated
particles. When the Euclidian Distance between two par-
ticles is shorter than the value of the critical distance pa-
rameter, γ½d� (detailed in Critical distance), particles are
considered to be agglomerated. In our approach, particles
that are close enough (i.e. within the order of 10 nm) to each
other are counted as agglomerated particles and matrix
material can exist between them. These regions, i.e. ag-
glomerated particles together with the matrix that is between
agglomerated particles, are defined as agglomerated re-
gions. A spherical border is drawn around agglomerated
particles to define an agglomerate and to calculate particle
concentration within each agglomerate. Once the particle
concentrations and volume of each agglomerate are known,
a volume-based averaging process is applied to obtain an
averaged agglomerate. The final averaged agglomerate is
taken as the agglomerate phase.

The volume fractions of the particle and matrix phases
are calculated based on the detected agglomerated regions.
The particle phase represents the free particles (non-ag-
glomerated particles). Because the total number of ag-
glomerated particles and initial particles are known, the
number of free particles is easily calculated. The total
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volume of free particles is found by multiplying the volume
of a particle by the number of free particles. In the end, the
particle phase’s volume fraction is obtained by dividing the
volume of free particles by the composite volume. Lastly,
the matrix phase’s volume fraction is calculated by sub-
tracting the volume fractions of the agglomerate and particle
phases from one.

Once the volume fractions are calculated, the elastic
properties of each phase are required to utilize the three-
phase Mori-Tanaka method. The matrix material is tested
for its properties whereas the particle phase’s elastic
properties are retrieved from the literature because
testing the nanoparticle’s properties is considerably
challenging and requires another major study. For the
agglomerate phase’s properties, we used two micro-
mechanical models: Halpin-Tsai and Reuss model (de-
tailed in section 2.5).

The calculated volume fractions and elastic properties of
the phases are inserted into the Mori-Tanaka model to
homogenize the composite system and predict the elastic
modulus of the nanocomposite. Main modelling equations
are presented here. Standard notation is used throughout the
manuscript. The notations, t, T, and T are vector, scalar
values, and second-order tensor, respectively. Subscript
letters represent the phases of the system, such as m for
matrix, p for particle, and a for agglomerate phase. The
closed-form of the three-phase Mori-Tanaka model is given
by equation (1)44

C¼�
vmCmþvf

�
CpAp

�þvafCaAa

���
vmIþvpApþvaAa

��1

(1)

where C is the stiffness tensor of the composite, Cm is the
stiffness tensor of the matrix, Cp is the stiffness tensor of
the particle, Ca is the stiffness tensor of the agglomerate, I
is the identity tensor, Ap is the strain concentration tensor
of the particle, Aa is the strain concentration tensor of the
agglomerate, vm is the volume fraction of the matrix, vp is
the volume fraction of the particles and va is the volume
fraction of the agglomerate, and the curly brackets “{}”
stand for the indication of orientation averaging (detailed
in section 4.3). The strain concentration tensor of phase i is
given by equation (2)

Ai ¼
�
I þ SiðCmÞ�1ðCi � CmÞ�1� (2)

where Si is the Eshelby tensor of phase i and its closed form
can be found in Mura’s book.45

In the last step of the model, the Monte-Carlo method is
utilized to acquire comprehensive data about the elastic
modulus of nanocomposites. The Monte-Carlo method uses
repeated random sampling to predict an outcome range of an
uncertain event or problem.46 The uncertain problem, in this
study, is the lack of knowledge about the exact dispersion
state of particles. The dispersion state is the main foundation
of stiffness prediction. In our model, random sampling
corresponds to determining the particles’ locations ran-
domly in the defined 1000 × 1000 nm2 space. As soon as
particles are randomly dispersed, the aforementioned
modelling steps are completed to calculate the volume
fractions of the three phases. Based on the calculated
volume fractions, the elastic modulus of the composite is
found using the three-phase Mori-Tanaka model. For ac-
curate and reliable predictions, this process is repeated one
hundred times for each particle loading. We kept the rep-
etitions at one hundred to ensure the timely completion of
Monte-Carlo and reach the near-infinite number of possible
predictions. The results for each particle loading are il-
lustrated in boxplots.

Particle dispersion

In the developed model, we introduce a parameter µ½d� that
controls the dispersion state of the particles in the com-
putational setting. Experimentally, the dispersion state is
usually quantified by measuring the distance between
neighbouring particles that are observed on microscope
images.47–49 The investigators47–49 measure and record
neighbouring distances and present them as histogram di-
agrams. The obtained histograms are fitted into lognormal
probability density functions to discuss the dispersion state
of particles. Here, instead of evaluating microscope images
to obtain lognormal distributions, we utilize lognormal
probability density functions to generate synthetic disper-
sion states. A lognormal probability density function is
formed based on two variables: the mean value (µ) and

Figure 1. Schematics of the homogenization approach.
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standard deviation (σ) of the variable’s natural
logarithm.48,50 The dispersion parameter µ½d� is defined as
the coefficient of particle diameter. The value of the dis-
persion parameter µ½d� is multiplied by the particle diameter
to find the mean of logarithmic values (µ) that are used to
establish lognormal probability density functions.

Particles’ locations are determined based on random
numbers that are generated from the established lognormal
distribution. The location of the first particle is selected from
the uniform distribution. For the second particle, a random
angle and a random distance are chosen from the uniform
probability distribution and lognormal probability distri-
bution, respectively. The chosen random values for the
angle and distance are utilized to locate the second particle
with respect to the location of the first particle. Each particle
is located in the same manner – the angle and distance are
selected to locate the new particle’s location with respect to
the previous particle’s location. The dispersion of particles
is continued until all particles are located. It is important to
note that particles cannot occupy the same location in the
model. Thus, in the case of particle intersection, a new
location is assigned to the newest particle based on the
random location selection from all possible locations.

In addition to the lognormal distribution, a uniform
probability distribution is used to disperse particles. In the
case of uniform distributions, the constant probability
distribution function is used to assign the location of a
particle. Once a particle is located, the next one is located
using the uniform distribution. In the case of an overlap, a
new location is assigned to the newest particle. Here, we aim
to capture various dispersion states, from uniformly dis-
persed particles to agglomerated particles. Although dif-
ferent states of dispersion are established, agglomerates are
needed to be defined and understood well to investigate their
effects on the stiffness of nanocomposites.

Critical distance

The critical distance parameter γ½d� is introduced to dif-
ferentiate agglomerated particles from non-agglomerated
particles as the distinction between them has been vague
in the composite literature. Existing agglomerate quantifi-
cation studies analyze and compare different microscope
images to show relative agglomeration states of nano-
particles instead of focusing on individual agglomerates.51

The distinction between agglomerated and non-
agglomerated particles can only be accommodated if in-
dividual agglomerates are defined and quantified. Here, the
critical distance parameter γ½d� is proposed to detect ag-
glomerated particles, define an agglomerate, and differen-
tiate one agglomerate from another. The critical distance
parameter is inspired by the “cut-off” argument defined in
the “cluster” function that is used in the hierarchical clus-
tering method in MATLAB.

The hierarchical clustering, a machine learning method,
is used to group data sets into a cluster tree where the tree
represents a hierarchy of clusters. Two hierarchical clus-
tering methods exist: agglomerative (bottom-up approach)
and divisive (top-down approach). In this study, we utilize
the agglomerative hierarchical clustering method because it
is a built-in tool in MATLAB Statistics and Machine
Learning Toolbox, and it is easier to comprehend intuitively.
In the agglomerative hierarchical clustering method, par-
ticles start with their own cluster and then combine into
bigger clusters based on the distance between them. This
method can be described in three main steps: (1) the distance
between particles is calculated using a “distance”metric, (2)
particles are linked and grouped with a “linkage” method,
and (3) the number of clusters (agglomerates) is determined
using the value of “cutoff” argument.

In this study, the agglomerative hierarchical clustering
method is adopted as a solution to detect agglomerates
based on the location data set. Firstly, the distance between
particles is calculated using the “Euclidean distance”metric.
The “Euclidean distance” is the length of a line between two
points that is calculated using the Pythagorean theorem.
Secondly, the particles are linked together based on the
“single” linkage method. The “single” method takes the
shortest distance between particles to link and group them.
Herein, the “single”method is used because we assume that
particles that are closest to each other should belong to the
same agglomerate. Thirdly, each agglomerate is classified,
and the number of agglomerates is found using the critical
distance parameter. The critical distance parameter is used
as the “Cut-off” argument that determines the number of
agglomerates in the system. If the critical distance is higher
than the shortest distance between two particles or ag-
glomerates, they are grouped together and becomemembers
of the same agglomerate. The critical distance parameter is
defined as a function of the particle diameter and the value
assigned to γ½d� represents the coefficient of the particle
diameter. For example, γ½d� ¼ 2 means that the critical
distance is 10 nm when the diameter of the particle is 5 nm.
If the center-to-center distance of any particles is less than
10 nm, then they are counted as agglomerated particles, and
particles belong to the same agglomerate. Thus, the value of
γ½d� is crucial for detecting agglomerated particles and
differentiating one agglomerate from another.

The value of γ½d� may depend on the constituents of the
composite; however, data in the literature guides us to
estimate a range. In a finite element analysis study, from
Sheng et al. study, strain fields intersect when the distance
between fillers is less than 4 times the diameter of the fillers.
In another study, Liu et al. studied nanoparticle dispersion
with molecular dynamics and discussed the interaction
between nanoparticles. Liu et al. claimed that particles do
not have to touch each other to be counted as agglomerates.
A short separation of fillers by polymer chains is defined as
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the state of “local bridging of fillers”. The short separation
distance is in the range of 1–2 times the particle diameter. In
this study, we follow a similar range (1–4 times particle
diameter) to examine the effects of critical distance on the
state of agglomerates.

The MATLAB code assigns a number to each ag-
glomerate so that we can detect individual agglomerates and
differentiate one from another. The number assigned to the
agglomerate is also associated with particles within that
agglomerate. For example, if we consider a case where there
are two agglomerates, one with 3 particles and the other one
with 5 particles. Here, the one with 3 particles is associated
with number 1 and the one with 5 particles is associated with
number 2. Hence, one can tell which particle belongs to
which agglomerate. Once the agglomerates and the particles
within each agglomerate are numbered, we establish a
spherical border around the agglomerated particles to define
agglomerated regions. Figure 2 shows the schematics of an
agglomerate. The green filled circles represent the fillers,
and the white region between them represents the matrix.
Because agglomerated particles do not have to be in contact,
an agglomerate can include particles and matrix within its
border. The border is fit around the agglomerated particles
such that the longest distance between two particles is
assumed to be the diameter of the agglomerate. With the
knowledge of the agglomerate boundary, the volume
fraction of particles within the agglomerate can be calcu-
lated and monitored for various critical distance values.

Particle orientation

Nanocomposites are stiffer in the direction of oriented fi-
bers; however, representing and utilizing the orientation of
fibers in modelling may vary and can be challenging. One
possible representation of fibers’ orientation is a probability
distribution function. According to Advani and Tucker,52

this probability distribution function can be replaced by an
orientation tensor for ease of calculation in continuum
equations. The orientation of the fiber is required to es-
tablish the orientation tensor. Figure 3 describes the ori-
entation of a fiber using spherical coordinate angles (θ,V)
under three main assumptions: fibers are rigid cylindrical,
fibers’ length and diameter are uniform, and the number of
fibers per unit volume is uniform.

The probability of having a fiber between angles θ1 and
θ1 þ dθ and V1 and V1 þ dV is given by Equation (3)

Pðθ1≤θ≤θ1þdθ,V1≤V≤V1þdVÞ¼φðθ1,V1Þsinθ1dθdV
(3)

where φ ðθ1,V1Þ is a probability distribution function. The
orientation of a fiber can also be represented as a vector f ,
and the components of the vector f in a Cartesian coordinate
system can be written by equations (4), (5), and (6)

f1 ¼ sinθcosV (4)

f2 ¼ sinθsinV (5)

f3 ¼ cosθ (6)

Because the orientation can be represented by f , the dis-
tribution function can be written as φðf Þ. If it is assumed that
all possible directions of a fiber correspond to the unit
sphere and a fiber is a unit vector, the surface integral of the
unit sphere can be calculated by equation (7)

Z π

θ¼0

Z 2π

V¼0

φ ðθ,VÞsinθdθdV ¼
I

φðf Þdf ¼ 1 (7)

Advani and Tucker52 showed that the probability dis-
tribution function can be represented by tensors, and they

Figure 2. Schematics of an agglomerate for better understanding
of a center-to-center distance.

Figure 3. The definitions of θ,V, and fiber f in a Cartesian
coordinate system.
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provided a widely used orientation tensor that represents the
orientation state of fibers. The fourth-order orientation
tensor that is defined by dyadic products of the vector is
given by equation (8)

Tijkl ¼
I

fi fj fk flφðf Þdf (8)

The integration of the product including all possible
directions with φ as the weighting function can be used for
the averaging process. The orientation averaging can be
represented by f g and expressed by equation (9)

T ijkl ¼
�
T ijkl

� ¼
Z π

0

Z 2π

0

T ijklðθ,VÞsinθdθdV (9)

where T ijklðθ,VÞ is the orientation distribution in tensor
format, T ijkl is the averaged orientation tensor and f g
represent averaging process.53

Aspect ratio of particles

The aspect ratio, defined as the length to diameter ratio, is
another key design parameter in composite modelling and
manufacturing. Some micromechanical models, such as
Shear-log, Halpin-Tsai, Mori-Tanaka take the aspect ratio as
a variable. In this study, we investigate the effect of the
aspect ratio using the Mori-Tanaka model.

In the three-phase Mori-Tanaka model, the aspect ratio of
particle phase and agglomerate phase is required for the
elastic modulus calculations. The aspect ratio of the ag-
glomerate phase is taken as one because it is assumed that
particles agglomerate in a spherical form due to the mini-
mum surface energy requirement and mechanical
stability.4,54 On the other hand, we investigated the effect of
the aspect ratio of the free particles on stiffness with three
different values: 15, 30 and 60. We selected that range
because the aspect ratio of reinforcement used in our ex-
periments, CNC, changes from 10 to 70 depending on the
source of CNC.55

Material properties

Material properties of the particle, agglomerate and matrix
phases are needed for the model implementation. The
matrix (PA6) is tested for its elastic modulus, and the
particle’s (CNC) elastic modulus is retrieved from the lit-
erature data55 for calculations. The agglomerate phases’
properties are more complicated than matrix and particle
phase’s properties, because of the lack of the agglomerate
definition and studies in the literature. Although many
studies examine the effect of agglomeration on the prop-
erties of composites,51 there is no consensus about the
individual agglomerate’s elastic modulus. Some studies56

assume that agglomerates behave like a void, whereas
others calculate their properties based on the Reuss model57

or the Halpin-Tsai model.58 For examples, Khodayari
et al.59 used Reuss model to predict elastic modulus of
cellulose nanofibrils and generalized the findings for mul-
tiphase nanocomposites. Esmizadeh et al.58 used the Reuss
model and Halpin-Tsai model to predict elastic modulus of
orgonoclay nanocomposite. In this study, either the Reuss
model or Halpin-Tsai model are utilized to calculate the elastic
modulus of agglomerated regions as they were also applied in
various nanocomposite studies.59 These models would provide
a good range of possible outcomes, and the effects of stiffness
of agglomerates on the stiffness of composite can be observed.
The Reuss model is given by equation (10)

Ea
�1 ¼ vamEm

�1 þ vapEp
�1 (10)

where Ea is the elastic modulus of the agglomerate, Em is the
elastic modulus of the matrix, and Ep is the elastic modulus
of the particle; vam is the volume fraction of the matrix
within the agglomerate, and vap is the volume fraction of the
particles within the agglomerate. Material properties of the
particle and matrix for the agglomerate property calculation
are kept the same as their individual properties.

The randomly orientated Halpin-Tsai model is calculated
based on the particle volume fraction within agglomerated
regions by equation (11)

Ea ¼ 5 =

8EL þ 3 =

8ET (11)

where EL is the longitudinal modulus and ET is the
transversal modulus. The longitudinal modulus EL is cal-
culated by equation (12)60

EL ¼ Em
1þ 2βvapƞl

1� ƞl

(12)

where β and ƞl are geometrical parameters. β converges to
2 for transverse modulus or converges to 2α for longitudinal
modulus, where α is the aspect ratio of the particles defined
as ratio of length (l) to diameter (d) of particles. The
transversal modulus ET is calculated by equation (13)

ET ¼ Em
1þ 2βvapƞt

1� ƞt

(13)

where ƞt is a geometrical parameter for transversal modulus,
and ƞl and ƞt are given by Eq. (14) and Eq. (15),
respectively

ƞl ¼
EP

Em
� 1

Ep

Em
þ β

(14)
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ƞt ¼
EP

Em
� 1

Ep

Em
þ 2

(15)

Experimental methodology

The experimental work to validate the model was presented
in a previous study.40 Herein, we summarize the procedure,
and readers are encouraged to see the previous study for
detailed information.

PA6 was dissolved in formic acid, and then CNC was
added to the suspension based on the target concentration.
The prepared suspension was kept under agitation for ap-
proximately an hour. The prepared suspension was soni-
cated for 45 min before the spinning process. 2 mL of the
suspension was cast on a rectangular glass substrate, and the
glass substrate was spun at 2000 r/min for 15 s and at 3000 r/
min for 30 s.

CNC-PA6 nanocomposite samples were tested using TA
Instrument ElectroForce 3200 with 10 N load cells. The elastic
modulus of samples was calculated from the linear region of
the stress-strain curve and reported for comparison of the
model predictions and experimental results.

Model implications and discussion

Effect of critical distance and particle orientation

The elastic modulus of randomly and aligned fiber com-
posites in the longitudinal direction are calculated with the
critical distance parameter γ½d� for the values of 1, 2, 3, and
4. The model outputs for the aligned and randomly oriented
particles are given in Figure 4(a) and (b), respectively. In the
model predictions, the elastic modulus of agglomerates is

calculated based on the Reuss model, the aspect ratio is
taken as 30 and particles are dispersed uniformly. The
matrix material is assumed to be isotropic material with the
elastic modulus of 911 MPa according to experimental
results retrieved.40 Reinforcing material, CNC, is also as-
sumed to be isotropic material with the elastic modulus of
150 GPa. The predictions are shown in box plots as a
hundred elastic modulus values for each particle loading are
predicted during the Monte-Carlo method. The red crosses
in the graphs show outliners, and the dashed lines are used
to connect average values.

The trends of predictions in Figure 4(a) and (b) are
similar at the same values of γ½d�; however, the trends vary
among different γ½d� values. The critical distance parameter
γ½d� is used to detect agglomerated and free particles. If the
critical distance is higher than the shortest distance between
two particles, those particles are counted as agglomerated
particles. When γ½d� ¼ 1, the model predicts continuous
enhancement with respect to particle loading because the
three-phase Mori-Tanaka converges to the two-phase Mori-
Tanaka: the particle and matrix phases without an ag-
glomerate phase. Selection of γ½d� ¼ 1 (critical distance of
5 nm) eliminates the chance of agglomerate formation
because the closest distance between particles’ centers
cannot be lower than 5 nm. As a result, each particle be-
haves as a free particle, and an approximate linear trend is
observed in the case of γ½d� ¼ 1. On the other hand, the
trend is highly different with the selection of γ½d� ¼ 2
compared to the selection of γ½d� ¼ 1. The predictions in-
crease up to an optimal point of particle loading and then
start to drop with particle over loadings. This prediction
trend is also valid for γ½d� ¼ 3 and γ½d� ¼ 4, although the
predicted values are different. There are 3 main reasons for
this type of trend: (1) the high probability of agglomerate
formation, (2) the low elastic modulus of agglomerates and
(3) the low aspect ratio of agglomerates.

Figure 4. Elastic modulus predictions of cellulose nanocrystals with polyamide 6 (CNC-PA6) composite as a function of CNC loading
for (a) aligned and (b) randomly oriented particles at various γ½d� values.

1094 Journal of Composite Materials 57(6)



Particles are expected to agglomerate when γ½d�> 1
because the shortest distance between particles can only be
lower than the critical distance at values of γ½d�> 1. The
probability of agglomerate formation increases with in-
creasing particle loadings and higher γ½d� values. High
particle loadings decrease the shortest distance between
particles, and high γ½d� values result in higher critical dis-
tances. Thus, increase in both parameters leads to the higher
probability of agglomeration. The higher probability of
agglomeration accelerates the agglomerate phase domina-
tion in overall model response, and the properties of ag-
glomerates become major contributors to the model
predictions. Because the Reuss model predicts lower than
the two-phaseMori-Tanaka model and is used for predicting
the elastic modus of agglomerates, the three-phase model
predicts lower values after an optimal particle loading. The
lowest elastic moduli are observed for γ½d� value of 4 be-
cause the critical distance reaches its highest value among
the four values. This high value of critical distance yield
easier particle agglomeration and low elastic modulus.

Another reason for lower model predictions after the
optimal particle loadings at γ½d�> 1 is the low aspect ratio of
agglomerates. We assume that the agglomerate phase is in
spherical form and has an aspect ratio of one, which is much
lower than the aspect ratio of CNC. This decrease in the aspect
ratio, according to the Mori-Tanaka model calculations, also
lowers the model predictions. The decrease in the aspect ratio
of phases, the probability of agglomerate formation and the
low elastic modulus of agglomerates result in differences
between the prediction trends of various γ½d� values.

The prediction values for the aligned particles are higher
than randomly oriented ones, although the trends are similar
at the same value of γ½d�. The dramatic influence of alignment
on the elastic modulus can be seenwhen in Figure 4(a) and (b)
are compared at γ½d� ¼ 2. According to the model predic-
tions, the maximum elastic modulus for aligned particles is
2800 MPa, whereas it is approximately 1300 MPa for the
randomly oriented particles. The particle alignment provides
approximately 2.5 times stiffer nanocomposite than randomly
oriented particles at 5.0 v% CNC loading. Stiffer nano-
composites in the longitudinal direction are obtained with
aligned particle reinforced composite unless particle loadings
are not higher than 7.5 v%. Although particle alignment
provides stiffer nanocomposites in the longitudinal direction,
obtaining aligned particles in nanocomposites could require a
specialized manufacturing method such as electrospinning.
The electric field can be used to align particles in electro-
spinning method; however, most of the engineering
manufacturing methods such as injection molding could
result in random orientation of particles. Manufacturing
method should be taken into account while applying the
model for the elastic model prediction of nanocomposites.

The impact of the particle concentration and γ½d� value on
agglomeration tendency is investigated by extracting the

volume fractions of each constituent. Table 1 shows the
volume fractions of each constituent at various particle
loadings and γ½d� levels. The initial volume fraction of
particles (vip) is given in the first column of Table 1. Based
on the initial volume fractions, the number of particles is
calculated and reported in the third column. As expected,
when the initial volume fraction of particles increases from
0.35 to 0.85, the number of particles increases from 1800 to
4372. Based on the selected γ½d�, the number of agglom-
erates and the volume fractions of each constitute are cal-
culated. It can be seen that agglomerated particles, given in
the fourth column, increase as vip and γ½d� increase.
However, the number of agglomerates (# Agg) does not
increase in the same ratio, and it even decreases when
vip ¼ 0:85.

The decrease in the number of agglomerates is related to
the particle concentration and size of agglomerates. When
γ½d� is set to 2 for 0.85 vip, high number of small ag-
glomerates are formed (737 agglomerates with 0.392 total
average volume of fraction agglomerates). On the other
hand, when γ½d� is set to 3 for 0.85 vip, low number of big
agglomerates are formed (59 agglomerates with 0.579 total
average volume of fraction agglomerates). Thus, it can be
suggested that big agglomerates are formed with less
concentrated particles. The volume fractions of particles
within agglomerates (vap), in the eighth column, at 0.85 vip
can be compared to observe the effect of γ½d� at values of
2 and 3. Agglomerated particle fraction ðvapÞ decreases from
0.188 to 0.145 when γ½d� increases from 2 to 3 for the same
initial particle fraction. It again suggests that big agglom-
erates are formed with less concentrated particles.

The volume fraction of free particles and matrix highly
depend on γ½d�. It is clear that free particle fraction (vp) drops
with increasing γ½d� for the same initial particle fractions.
Similar trend is also observed for the matrix phase fractions.
The matrix volume fraction ( vm), in the ninth column, de-
creases as (vip) and γ½d� increases because of higher agglom-
erated matrix and particle fractions. Because the free particles
are the main reinforcing elements, the model is expected to
predict lower composite elastic modulus with increasing γ½d�.

Effect of critical distance and agglomerate property

The effect of γ½d� and agglomerate’s properties on the
longitudinal elastic modulus of randomly oriented particle
nanocomposites is shown in Figure 5. The values of 2 and
4 for the γ½d� are investigated along with two different
models, which are applied to calculate agglomerates’
properties: the Reuss and Halpin-Tsai models. While the
γ½d� values and properties of agglomerates are changed, the
other parameters are fixed in the model calculations. Par-
ticles are assumed to be randomly oriented, and the aspect
ratio (α) is taken as 30. Locations of particles are randomly
selected from the uniform probability distribution function.
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In the case of the Halpin-Tsai model, the elastic modulus
of nanocomposites increases with increasing particle
loading regardless of the γ½d� value. The average elastic
modulus improves from 1890 MPa to 2700 MPa when the
particle loading increases from 8.5 v% to 11.5 v% with
γ½d� ¼ 4. The slope of this increase is 270 MPa/v%. In a
similar manner, the average elastic modulus increases from
965 MPa to 1295 MPa when the particle loading increases
from 0.5 v% to 3.5 v% when γ½d� ¼ 4. The slope for the
second case is 110.0 MPa/v%. It can be claimed agglom-
eration contributed to the elastic modulus positively with
the Halpin-Tsai model. that both slopes are very close to
each other. A similar positive slope is also observed for the
model predictions when γ½d� ¼ 2. The slope of the pre-
dictions between 8.5 and 11.5 is 118 MPa/v%, and the slope

between 0.5 and 3.5 is 91MPa/v%. The increase in the slope
shows that agglomeration results in more enhancement in
the stiffness of the nanocomposite, which confirms higher
elastic modulus values when γ½d� ¼ 4. This enhancement
depends on particles fraction within agglomerates and re-
maining matrix fraction within composite. For example, the
elastic modulus of agglomerates is calculated as 7969 MPa
and 5955 MPa in one of the runs at 1.5 and 10.5 v% re-
spectively when γ½d� ¼ 2, and the Halpin-Tsai model is
applied. The elastic modulus of agglomerates become
3495 MPa and 3411 MPa at 1.5 and 10.5 v% respectively
when γ½d� ¼ 4. The elastic modulus values decrease with
increasing γ½d� because while matrix fraction within ag-
glomerate increases with increasing γ½d�, matrix fraction in
the composite decreases.

Table 1. Volume fractions and number of each constitute at various γ½d� values and partcile vp%.

vip γ½d� # Particle # Agg # Agg. particles vp Ave va Ave vap vm

0.35 2 1800 367 980 0.016 0.084 0.226 0.9
0.35 3 1800 368 1463 0.007 0.21 0.135 0.783
0.85 2 4372 737 3803 0.011 0.392 0.188 0.597
0.85 3 4372 59 4318 0.001 0.579 0.145 0.42

Figure 5. The effect of γ½d� and agglomerate’s property on the elastic modulus of randomly particle nanocomposites based on the Reuss
and Halpin-Tsai (HT) used for agglomeration.
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The prediction trends are quite different in the case of the
Reuss model. We first observe an increase in the elastic
modulus, and then a decrease regardless of the γ½d� value.
The increase is particularly observed at low particle load-
ings. For example, the average elastic modulus of the
composite increases from 980 MPa to 1190 MPa when the
particle loading is increased from 0.5 to 3.5 v% when
γ½d� ¼ 2. We see a similar improvement in the elastic
modulus up to 1.5 v% particle loading, in the case of
γ½d� ¼ 4. The maximum average elastic modulus is obtained
at 1.5 v% when γ½d� ¼ 4 and 7.5 v% when γ½d� ¼ 2. The
higher than optimal particle loadings result in a decrease in
the elastic modulus because of the agglomerates’ properties.
The agglomerates’ properties start to dominate the overall
response with high particle loadings and high γ½d� values.
Because the Reuss model predicts a lower value than the
Halpin-Tsai and Mori-Tanaka models, the agglomerate
domination lowers the elastic modulus of the composite.
This decrease starts earlier with γ½d� ¼ 4 due to the higher
probability of agglomeration. Thus, it can be said that the
impact of γ½d� is apparent when the Reuss model is applied
because of the low stiffness of agglomerates. As the ag-
glomerate dominates in the composite material, overall
response shifts to the Reuss model predictions at high
particle loadings.

Predicting the mechanical behaviour of nanocomposites
becomes difficult with increasing particle loadings because
experimental findings vary substantially. For example, the
elastic modulus values59,58,57,56 reach a plateau value or
decrease with particle over loading. Peng et al.61 observed a
plateau value at 3.5 w% of CNC in PA6 whereas Morelli
et al.62 observed that optimal particle loading is between
5 and 10 w% for unmodified CNC. These studies dem-
onstrate that the optimal particle loading, and the amount of
increase and decrease depend on experimental settings;
however, the proposed model suggests that the combination
of agglomerates’ property and γ½d� determines the overall
composite reaction at high concentration levels. The trends
in the elastic modulus of composites in37–39 validate that the
Reuss model is more appropriate for the predictions of
elastic modulus of agglomerates in the proposed model.

The critical distance parameter is the main parameter that
controls the agglomerate formation, and higher γ½d� values
result in a higher agglomeration chance. In Figure 5, the
values of 2 and 4 for γ½d� are examined. The implementation
of γ½d� ¼ 4 in the model dramatically lowers the predictions
in the case of the Reuss model due to agglomerate domi-
nation. Thus, the appropriate value of γ½d� is crucial for
accurate predictions. The exact value of the critical distance
γ½d� may depend on the material system or interface
chemistry. Sheng et al.2 modelled polymer/clay composite
using finite element analysis. The particles are classified as
“isolated”, “partially overlapped” and “completely over-
lapped” according to the distance and load transfer

efficiency. The load transfer efficiency starts to decrease as
the distance between nanoparticles is approximately below
20 nm, and they define particles that are closer than these
values as overlapping particles. The value of 20 nm cor-
responds to approximately 4 distance/diameter ratio of clay
in their study. Therefore, it can be claimed that the value of
γ½d� between 1 and 4 is a reasonable range.

Effect of orientation and aspect ratio of the particles

The effect of orientation and aspect ratio of the particles is
shown in Figure 6. Uniform probability distribution is
utilized for the particle dispersion, and γ½d� is kept at the
value of 2. The Reuss model is applied to calculate the
modulus of agglomerates in this case.

Figure 6 contains six predictions based on various aspect
ratios and particle orientations. The highest three elastic
modulus values are from the aligned composites. For a
better understanding of the orientation effect, the aligned
and randomly oriented CNC with the aspect ratio (α) value
of 15 can be compared. The model predicts an average
elastic modulus of 1750 MPa for aligned particles and
1125 MPa for randomly oriented particles at 7.5 v%, ap-
proximately 60% difference. This difference is higher when
the aspect ratio is set to a higher value. For example, the
model predicts an average elastic modulus of 3800 MPa for
aligned particles and 1460 MPa for randomly oriented
particles at 7.5 v%with the aspect ratio of 60, approximately
170% difference. This high difference suggests that particle
orientation should be considered as a major contributor to
the elastic modulus of nanocomposites. According to the
6 model predictions, it can be said that orientation carries
more importance than the aspect ratio. The aligned particle
composite with the aspect ratio of 15 provides approxi-
mately 50% higher elastic modulus than the randomly
oriented particle composite with the aspect ratio of 60,
which proves the importance of alignment.

The elastic modulus of nanocomposites is improved with
an increasing aspect ratio according to the Mori-Tanaka
model. This improvement is much higher when particles are
aligned. For example, at 6.5 v% CNC, the increase in the
elastic modulus is approximately 150% (from 1600 MPa to
3600 MPa) for the aligned particles when the aspect ratio
changes from 15 to 60; however, it is approximately 40%
(from 1125 MPa to 1460 MPa) for the randomly oriented
particles at the same particle loading.

The maximum improvement with respect to neat PA6,
∼330% increase, is predicted to be at 7.5 v% with γ½d� value
of 2 and the aspect ratio of 60. However, the average CNC
aspect ratio used in this study is approximately 30, and it is
difficult to obtain fully aligned CNC reinforced composites.
Thus, the maximum increase in elastic modulus would be
expected to be lower than the 330% increase.
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Effect of dispersion and critical distance

The effect of dispersion is explored by selecting the location
of particles from the lognormal probability distribution
instead of using the uniform probability distribution. The
main reason to choose lognormal distribution is that dis-
tances between neighbour particles obey lognormal distri-
bution according to dispersion quantification studies.63,51,48

The lognormal probability distribution is defined by μ
(mean of logarithmic values) and σ (standard deviation of
logarithmic values). It is challenging to know exact μ and σ
values because they vary in the studies68,67,66,65,64,51,48

depending on material system, production, and character-
ization methods. Instead of implementing an exact value,
various μ values are used to study the dispersion effect on
the composite’s modulus. The parameter μ½d� is defined as
the coefficient of the particle diameter in this section i.e.,
μ½d� ¼ 0:5 means that the mean of logarithmic values is 2.5.
The more uniform particle dispersion is obtained with a
higher μ½d� value.

The effects of the dispersion μ½d� and critical distance
parameters γ½d� on the elastic modulus of the composite at
different particle loadings (1.0–15.0 w%) are presented with
the surface plots in Figure 7. The surface plots are generated
with 0.2 and 0.04 intervals of μ½d� and γ½d�, respectively: In
these predictions, the agglomerate’s property is calculated

based on the Reuss model, the aspect ratio is taken as 30,
and free particles are assumed to be aligned. The black
spheres in the figures represent the average experimental
results from the previous study.40 The black spheres are
located in the figures based on predictions’ minimum mean
squared error with respect to the obtained experimental data.

The surface plots show that the model can predict ex-
perimental findings well for each CNC loading. The model
calculates the highest outputs at γ½d� ¼ 1 because the model
assumes no agglomeration in the system, which results in a
two-phase Mori-Tanaka model. On the contrary, the model
predicts lower elastic modulus values at high γ½d� values and
high particle loadings because of agglomeration. The
transition between high and low ends is well captured by
setting various levels of γ½d� and μ½d� at any particle
loadings.

Experimental results are relatively high compared to neat
PA6 (911 MPa) at 1.0, 2.5 and 5.0 w% CNC and they are
captured with low γ½d� and high μ½d�. On the other hand,
there is a dramatic drop in the elastic modulus values after
5.0 w% CNC loading. The drop and low elastic modulus
values are captured with high γ½d� and low μ½d� values. The
high γ½d� and low μ½d� values result in the domination of
agglomerates in the model and since the Reuss model is
used for agglomeration, the surface plots bend toward the
lower end.

Figure 6. Predictions of the longitudinal elastic modulus of CNC-PA6 composites as a function of CNC concentrations for various
orientation and aspect ratio (α) of the particles.
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Higher values of μ½d� in the model generate a better
dispersion and stiffer nanocomposites, and many experi-
mental studies70,69 suggested that well-dispersed particles
provide stiffer nanocomposites. Azizi et al.39 observed an
improvement in the elastic modulus to a certain extent and
then a decrease in the modulus after optimal particle
loading. According to Azizi, poor dispersion of CNC results
in the drop of the elastic modulus. Similar to the experi-
mental work,39 the poor dispersion results in decrease in
elastic modulus in the model. This drop after an optimal
particle loadings, is satisfactorily captured by the developed
model. One can observe the effect of dispersion by ex-
amining Figure 7(b) at various values of μ½d�. The elastic
modulus values increase with increasing μ½d� values (in-
creasing dispersion) at a constant γ½d� value. It is difficult to
know exact value of μ½d� because the exact value may
depend on the process, materials, and even on particle
loading. A detailed study should be conducted to correlate
the critical distance and the logarithmic mean of neighbour
distance (μ) to the variables in the experiments. Each ma-
terial system may require particular modeling inputs;
however, it is shown here that the modeling outputs can
capture a wide range of experimental results.

Another aim of this study is to cross-examine the model
predictions with respect to particle loadings. Here, we fine-
tune the values of the model parameters depending on the
experimental setting. In the experimental study,40 the par-
ticles and the matrix were dissolved in a solvent before

producing the samples. Various agitation methods were
used to disperse particles uniformly in the suspension
during the mixing process. Thus, it seems reasonable to use
the uniform probability distribution to predict the locations
of particles in the model. Based on TEM images of the
previous study,40 free particles were mostly aligned, and the
average aspect ratio was taken to 30. Here, we assume fully
aligned particles with the aspect ratio of 30 for the calcu-
lations. Furthermore, based on the modeling predictions in
this study and experimental results from the literature, the
Reuss model seems acceptable to calculate the agglomer-
ates’ elastic modulus. According to these assumptions,
Figure 8 exhibits the predictions of elastic modulus of
nanocomposites with respect to CNC particle loading along
with some conventional analytical models.

A drop in elastic moduli, and high standard deviations, at
higher CNC loadings are observed in Figure 8. This can be
related to agglomeration state of the particles and their
potential effects on homogeneity of specimen thickness.
During the experiments, the agglomerated particles were
observed with the naked eye at high CNC loadings. TEM
analysis from our previous study40 also shows how ag-
glomerates reach micron-size dimensions at 15.0 w% CNC
loading where the thickness of the sample was approxi-
mately 5 μm. It can be discussed that some micron-sized
agglomerates are partially embedded into the matrix. These
defects may lead to variations in results of the experiments
and could lower the elastic modulus of the nanocomposite.

Figure 7. Predictions of elastic modulus of nanocomposites as functions of γ½d� and µ½d� at 1.0 (a), 2.5 (b), 5.0 (c), 7.5 (d), 10.0 (e) and
15.0 (f) w% of CNC and corresponding experimental findings from40 shown with black spheres.
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As can be seen, in high loadings, this could even result in
nanocomposite’s elastic modulus to be lower than the
matrix’s elastic modulus. Although the nature of the
specimens result in variations in experimental results, our
model captures the trend of the experimental results rela-
tively well compared to existing conventional models.

It is still important to understand the deviations from
experimental findings. In our predictions, we assumed
aligned particles with a specific aspect ratio value. However,
even if it is reasonable to assume particles are aligned, the
complete particle alignment at the nanosize level is chal-
lenging to achieve. The alignment might also depend on the
particle loading. In addition, particle size is likely to have
distribution instead of a certain value; however, an average
value is used in this study instead of distribution. These
uncertainties are thought to be the main reasons for the
difference between the model predictions and experimental
results. In addition, the dispersion is assumed to be uniform
for all concentrations in these predictions, which may not be
completely valid. The particle dispersion may change with
increasing particle concentration due to increased viscosity
or particle-particle interactions. Kalfus et al.71 discussed
these physical relations and noted that a stable dispersion
could be possible with favorable interactions between
particle and matrix. Kalfus et al.71 also state that temperature
and particle loading affects the particle dispersion. Thus, the

effect of temperature and particle loading can be related to
dispersion parameter in the model. Moreover, Janjar et al.72

reviews the physical relationships between nanoparticles
and properties of polymer nanocomposites and shows how
matrix type – amorphous versus crystalline can change
mechanical response and dispersion state. The interactions
between chains and nanoparticles surfaces based on mo-
lecular dynamic data and material type can be used when
deciding the value of the critical distance parameter. Al-
though variabilities exist in the model and the experimental
setting, it can be said that the model satisfactorily captured
the experimental results. The proposed model reflects the
experimental trend well whereas common analytical models
predict a continues increase with increasing particle loading.
Linear relationship between the elastic modulus and particle
loadings.

Conclusion

The proposed study focuses on a parametric study of our
recently developed model that predicts the elastic modulus
of nanocomposites based on the three-phase Mori-Tanaka
model: free particles, agglomerated regions, and a matrix.
The aim is to study the effect of agglomerations on
nanocomposites at a broad range of reinforcement loadings.
Since the agglomeration tendency of nanoparticles is a

Figure 8. Predictions of elastic modulus of nanocomposites with respect to CNC concentration and experimental findings adapted
from.40
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challenging problem to predict, the Monte-Carlo and hi-
erarchical clustering method are proposed to capture the
agglomerate formation. Along with agglomerate formation,
a systematic study is performed to understand the effect of
aspect ratio, critical distance, particle orientation, ag-
glomerate property, and dispersion state of particles.

The critical distance parameter and elastic modulus of
agglomerates are the key design parameters at high particle
loadings. The critical distance parameter defines the ag-
glomerated region that contains matrix and particles. Higher
critical distance values result in easier agglomeration. As
agglomerates are formed, the agglomerates’ properties begin
to dominate the general response of nanocomposites. In that
sense, predicting agglomerates’ properties become crucial for
the model. Either the Halpin-Tsai or the Reuss models are
assigned to predict agglomerates’ properties and examine
agglomerates’ effect on the elastic modulus of nano-
composites. While the Halpin-Tsai overestimates the elastic
modulus, the Reuss model provides more reasonable results.

The aspect ratio, orientation and dispersion of particles are
also investigated to understand the model’s sensitivity. The
drastic effect of aspect ratio and particle orientation on the
elastic modulus of nanocomposites is observed at high particle
loadings. At any aspect ratio, aligned fillers exhibits shows
steeper slope than randomly oriented particles. It is concluded
that alignment has more influence on the elastic modulus than
the aspect ratio in the range of 15–60 for the case of uniform
particle dispersion. Particle dispersion, another key parameter,
is studied by locating the particles differently in the com-
putational setting. The more uniform dispersion results in
higher elastic modulus of nanocomposites regardless of other
parameters. It is also observed that the agglomeration is in-
evitable at high particles even if particle locations are selected
from uniform distribution function.

In this work, the capability of the previously developed
model is analyzed with a systematic study. The proposed
approach captures the experimental trend of elastic modulus
of CNC reinforced PA6 samples relatively well compared to
the conventional analytical models. As future of this work,
the manufacturing methods and critical distance could be
categorized based on the material system, and they could be
correlated to the dispersion state of nanoparticles. With the
existing data in the literature, we believe these correlations
can be established via machine learning techniques.
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