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Antimicrobial peptides are major effectors of innate immunity of multicellular organisms including humans and 
play a critical role in host defense, and their importance is widely recognized. The epithelium of the intestine is the 
largest surface area exposed to the outer environment, including pathogens, toxins and foods. The Paneth cell lineage 
of intestinal epithelial cells produces and secretes α-defensin antimicrobial peptides and functions in innate enteric 
immunity by removing pathogens and living symbiotically with commensal microbiota to contribute to intestinal 
homeostasis. Paneth cells secrete α-defensins, HD5 and HD6 in humans and cryptdins in mice, in response to bacterial, 
cholinergic and other stimuli. The α-defensins have selective activities against bacteria, eliciting potent microbicidal 
activities against pathogenic bacteria but minimal or no bactericidal activity against commensal bacteria. Therefore, 
α-defensins regulate the composition of the intestinal microbiota in vivo and play a role in homeostasis of the entire 
intestine. Recently, relationships between dysbiosis, or abnormal composition of the intestinal microbiota, and diseases 
such as inflammatory bowel disease and lifestyle diseases including obesity and atherosclerosis have been reported. 
Because α-defensins regulate the composition of the intestinal microbiota, Paneth cells and their α-defensins may have 
a key role as one mechanism linking the microbiota and disease.
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INTRODUCTION

Antimicrobial peptides are gene-encoded effectors in 
innate immunity of multicellular organisms, from plants 
and insects to animals including humans, and generally 
they are cationic small peptides with broad microbicidal 
activities against bacteria, fungi, protozoa, and certain 
viruses [1–3]. More than 1,000 antimicrobial peptides 
have been found in nature. Among mammals, defensins 
and cathelicidins are the two major families [4–6].

The intestine absorbs nutrients necessary for life, and 
it also prevents invasion of pathogens, thus contributing 
to mucosal immunity. Intestinal epithelial cells occupy 

the front line of the human interface with the external 
environment, which is under constant stimulation by 
foods and microbes, so they are important in a number of 
ways, including in nutrient absorption, regeneration and 
mucosal immunity [7, 8]. The epithelium of the intestine 
is the largest body surface exposed chronically to various 
pathogens, toxins, commensal microbiota and foods. 
More than 1×1014 bacteria live in the human intestinal 
lumen, and the normal intestinal microbiota is comprised 
of a huge number of symbiotic microorganisms [9, 
10]. The epithelial cells that line the small intestine are 
organized into villi and crypts and consists of four major 
lineages of terminally differentiated cells: columnar 
cells, enteroendocrine cells, goblet cells, and Paneth 
cells. These cell lineages are generated by cells termed 
crypt base columnar (CBC) stem cells, which reside at 
the bottom of the crypt, adjacent to Paneth cells [11]. 
Intestinal epithelial cells, except Paneth cells, migrate 
toward the top of the villi as they differentiate, and they 
are renewed every three to four days [12]. In contrast, 
Paneth cells reside at the bottom of small intestinal 
crypts, establish physical contact with CBC stem cells, 
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and live 24 days or more [13, 14] (Fig. 1A).
Recently, relationships between the intestinal 

microbiota and various diseases have become evident. 
One of the reasons for this is the rapid advances in 
metagenome analyses of the microbiota, which can 
detect and quantitate even non-culturable bacteria [15]. 
Similarly, the importance of antimicrobial peptides in 
regulating the microbiota as major effectors in innate 
immunity has also been widely recognized recently 
[16–20]. Paneth cells are the only intestinal epithelial 
cells expressing enteric α-defensins and secreting them 
onto the intestinal luminal surface in response to certain 
stimuli [16–18]. It is known that Paneth cell α-defensins 
are directly involved in not only removing pathogens but 
also in establishing symbiosis with the normal intestinal 
microbiota [19, 20]. In this review, we summarize recent 
advances in innate immunity related to Paneth cells and 
their α-defensins and consider possible links between the 
microbiota and disease.

PANETH CELLS, A LINEAGE OF INTESTINAL 
EPITHELIAL CELLS, SECRETE α-DEFENSINS

The intestine faces the outer environment with 
epithelial cells, which absorb nutrients, water and 
minerals while preventing invasion of pathogens or 
toxins by establishment of a physical barrier as well 
as innate immune responses. The intestinal cavity is 
an outside at an inside of the human body. It has long 
been known that the number of bacteria comprising the 
microbiota in the small intestinal is much lower than that 
in the large intestine. To explain this, the contributions 
of the digestive juice, mucus and bowel peristalsis have 
been considered as physiologic factors in the small 
intestine, as has the contribution of the adaptive immune 
system including IgA and lymphocytes in Peyer’s 
patches. In addition, the contribution of Paneth cells and 
secreted α-defensins in the innate enteric immunity has 
been recognized, as their roles have been clarified. In 
the innate immunity, recognition of microbes by Toll-

Fig. 1. Stem cells and Paneth cells, their α-defensins and the microbiota in the small intestine.
(A) Small intestinal epithelial cells form villus and crypt structures. Paneth cells and stem cells reside with physical contact at the bottom 
of crypt and create a stem cell niche. (B) Paneth cells secrete α-defensins in response to bacterial and various stimuli and contribute to 
innate enteric immunity as well as to regulation of the intestinal microbiota.
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like receptors and other pattern-recognition receptors 
on host cells occurs first [21, 22]. Immediately after this 
step, microbicidal antimicrobial peptide synthesis and/
or mobilization are triggered in affected epithelia or 
neutrophils, and their secretion by epithelia is activated. 
Antimicrobial peptides comprised of 18–45 amino acids 
in multicellular organisms are microbicidal cationic 
peptides and are capable of killing a variety of pathogens 
including bacteria, fungi, protozoa and viruses [3]. In 
mammals, defensins and cathelicidins are two major 
families of antimicrobial peptides. Among them, only 
α-defensins are constitutively expressed in intracellular 
granules of Paneth cells and secreted immediately in 
response to bacteria. Mammalian α-defensins are 3–4 
kDa cationic peptides with 6 cys residues that form 
invariant 3 disulfide bonds [6, 23–25]. In Paneth cells, 
HD5 and HD6 in humans and cryptdins comprised of 
six major isoforms, cryptdin-1 to cryptdin-6, in mice are 
the major constituents of the intracellular granules [16, 
17, 26, 27]. Mouse cryptdins are processed by matrix 
metalloproteinase 7 (MMP7) also called matrilysin, to 
the active form during granulogenesis [28]. In contrast, 
human Paneth cell α-defensins, HD5 and HD6, are 
packaged as pro-α-defensin and processed by one 
or more isoforms of trypsin during or after secretion 
[29]. Both in mouse and human Paneth cells, mature 
α-defensin segments are in the oxidized state so that 
internal digestion is prevented.

Paneth cell α-defensins are the major antimicrobial 
peptides produced and released by the small intestinal 
epithelium. As unique exceptions, it was reported that 
metaplastic Paneth cells found in the Helicobacter 
pylori infected stomach and in the colon in patients 
with ulcerative colitis produce α-defensins [30, 31]. 
Prevention of infection with pathogens by secretion 
of microbicidal α-defensins in immediate response to 
bacterial, cholinergic or other stimuli was revealed as 
an important role of Paneth cells in mucosal immunity 
[18, 32–39] (Fig. 1B). Paneth cells also secrete other 
antimicrobial peptides, such as Reg3γ, and antimicrobial 
proteins including lysozyme and secretory phospholipase 
A2 [40, 41]. Furthermore, Paneth cells are known to 
create a specific microenvironment called the stem cell 
niche together with CBC stem cells [42–47]. In the niche, 
Paneth cells produce growth factors and Wnt signaling 
molecules that lead to Wnt on and Notch off, which 
are delivered to CBC cells and induce differentiation 
of specific epithelial cell lineages. Therefore, Paneth 
cells function both in innate enteric immunity and in 
regeneration/differentiation of epithelial cells in the small 
intestine. They elicit even more multifunctional roles in 

chemotaxis and metabolism [48–50]. However, it must 
be emphasized that Paneth cells contribute professionally 
to host defense by secreting α-defensins. The fact that 
Paneth cells, which are capable of rapidly responding to 
microbial invaders, reside back to back with stem cells in 
the intestine may be very important.

α-DEFENSINS ELIMINATE PATHOGENS BUT 
DO NOT KILL COMMENSAL BACTERIA TO 

MAINTAIN THE INTESTINAL ENVIRONMENT

Intestinal epithelial cells absorb nutrients and water 
and at same time create potent barriers against microbes 
including pathogens. When pathogens try to invade the 
host, innate immune mechanisms of intestinal epithelial 
cells are induced or activated immediately. Since potent 
microbicidal activities of cryptdins, mouse α-defensins, 
against pathogenic bacteria were reported, the importance 
of α-defensins in mucosal immunity has been widely 
recognized [51–53]. MMP7 processes and activates 
pro-α-defensins, pro-cryptdins, in mouse Paneth cells. 
MMP7-null mice lack activated cryptdins in Paneth cell 
granules, accumulating only inactive, non-microbicidal 
precursors. When mice were challenged orally with 
Escherichia coli, significantly greater numbers of 
surviving bacteria were recovered from the MMP-7-null 
mouse intestine as compared with the numbers recovered 
from wild type mice. Furthermore, when Salmonella 
typhimurium was orally administered, the MMP7-null 
mouse was more susceptible to systemic disease [28]. This 
was among the first evidence showing that antimicrobial 
peptides are involved in mammalian host defense in vivo. 
Paneth cells at the bottom of small intestinal crypts of 
the mouse secrete intracellular granules rich in cryptdins 
in immediate response to various stimuli including 
carbamylcholine, Gram-positive and Gram-negative 
bacteria, lipopolysaccharide, and muramyl dipeptide [18]. 
Secreted cryptdins kill pathogenic bacteria to contribute 
to innate immunity. The expression of a human Paneth 
cell α-defensin transgene, i.e., HD5, in mouse Paneth 
cells augmented mouse innate enteric immunity and 
conferred immunity against oral Salmonella infection by 
reducing bacterial numbers in the intestinal lumen and in 
feces, decreasing bacterial translocation and promoting 
high survival rates after lethal Salmonella challenge [54]. 
These results demonstrated that Paneth cell α-defensins 
contribute actively to enteric host defense in vivo. In 
addition, deficiency of another antimicrobial peptide in 
mouse Paneth cells, Reg3γ, disrupts the physical barrier 
function of intestinal epithelial cells [55].

It has been known that the growth of germ-free mice is 
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poor and that these mice are immature or even deficient 
in mucosal immunity [56]. The commensal microbiota 
is able to elicit maturation of enteric mucosal immunity, 
including development of Peyer’s patches, increasing 
IgA production; differentiation of regulatory T cells; 
and induction of certain antimicrobial peptides [10, 
57–69]. Therefore, commensal bacteria are necessary 
for development and stability of the enteric immune 
response. It has been revealed that α-defensins not only 
kill pathogens but also contribute to intestinal homeostasis 
by maintaining the composition of the normal intestinal 
microbiota. For example, the ileal microbiota in MMP7-
deficient mice, which lack activated cryptdins, contained 
a significantly higher percentage of Firmicutes and a 
significantly lower percentage of Bacteroides compared 
with wild-type mice [19]. Furthermore, in DEFA5+/+ 
mice, which express the human α-defensin HD5 transgene 
in Paneth cells, the microbiota composition in the small 
intestine was dramatically different from that of the wild-
type strain, with significantly decreased Firmicutes and 
significantly increased Bacteroidetes [54]. Of the six 
most abundant mouse Paneth cell α-defensins, cryptdin4 
is the most potent microbicide. Masuda et al. revealed 
that oxidized cryptdin4 with three disulfide bonds 
shows potent bactericidal activity against pathogenic 
bacteria but no or minimal bactericidal activity against 
commensal bacteria such as Bifidobacterium bifidum, 
Lactobacillus casei and Bacteroides fragilis [20]. In 
contrast, reduced cryptdins, which have no disulfide 
bonds, kill both pathogenic and commensal bacteria. 
These results suggest that Paneth cell α-defensins possess 
disulfide bond-dependent bactericidal activities and play 
a role in regulating the composition of the intestinal 
microbiota to maintain the intestinal environment (Fig. 
2). It has been shown that Crp4 permeabilized the 
phospholipid bilayer and that the activity was dependent 
on the membrane composition [70]. It has also been 
reported that depolarization of the membrane potential in 
some noncommensal bacteria occurs via cryptdin4 [20]. 
However, the precise bactericidal mechanisms of native 
Crp4 have yet to be fully elucidated and may be bacteria 
dependent. Furthermore, a recent report clarified that 
activated cryptdins, which have been previously thought 
to play a role only in the small intestine, are present in 
the luminal content of the cecum and colon [71, 72]. 
Although the effects of α-defensins on the composition 
of the colonic microbiota remain unknown, it is possible 
that Paneth cell α-defensins may influence the microbiota 
of the distal gut. However, a lack of sensitive assays to 
quantify α-defensins released into the intestinal lumen 
has limited efforts to establish a relationship between 

levels of secreted α-defensin and disease. Nakamura et 
al. established a highly sensitive and specific sandwich 
ELISA for cryptdins recently [73]. The concentration of 
cryptdin4 was measured throughout the enteric lumen, 
and it was confirmed that the concentrations of secreted 
cryptdin4 increases along the proximal to distal axis, 
with the highest levels in the distal ileum. In addition, 
the concentration of cryptdin4 was determined in the 
luminal contents of the cecum and colon, where Paneth 
cells are absent. This is consistent with a previous finding 
indicating that processed cryptdins were recovered from 
the luminal contents of the colon and cecum, which 
was confirmed by both bactericidal assays and gel 
electrophoresis [73]. Therefore, secreted α-defensins 
may influence the intestinal microbiota not only in the 
small intestine but also in the colon. By testing fecal 
samples, the ELISA revealed an overall deficiency of 
this secreted α-defensin in the intestine of the IL10-null 
mouse, a mouse model of colitis, which is consistent with 
decreased α-defensin levels reported in CD patients [74]. 

Fig. 2. Bactericidal activities of native (oxidized) cryptdin4 and 
reduced cryptdin4 against commensal bacteria and pathogenic 
bacteria.
The survival rates of twenty commensal bacteria and eleven 
pathogenic bacteria when each bacterium was exposed to either 
native cryptdin4 or reduced cryptdin4 are shown. Cryptdins 
regulate the intestinal microbiota by eliciting potent bactericidal 
activities against pathogenic bacteria and less potent bactericidal 
activities against most commensal bacteria. (Modified from the 
study of Masuda et al. [20].) *p<0.05. NS: not significant.
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Furthermore, the ability of this ELISA system to quantify 
total secreted cryptdin4 in feces may contribute to a 
better understanding of the relation of luminal α-defensin 
levels to diverse diseases, including inflammatory bowel 
disease (IBD), infectious diseases, diabetes and obesity.

PANETH CELL DISRUPTION INDUCES DYSBIOSIS 
AND IS LINKED TO CERTAIN DISEASES

Dysbiosis, disruption of the composition of the 
intestinal microbiota, has been associated not only 
with infectious diseases but also with the pathogenesis 
and pathophysiology of diverse diseases. Because of 
recent rapid advances in methods of genetic analysis of 
microbes such as terminal-restriction fragment length 
polymorphism (T-RFLP) analysis and metagenomic 
analysis targeted at bacterial 16S rRNA in addition to the 
gold-standard culture methods, the possible relationship 
between the microbiota and diseases has become a major 
topic in the biomedical sciences. For example, the relative 
proportion of Bacteroidetes and Firmicutes in obese 
people differs markedly from that of lean individuals, 
suggesting that obesity is associated with a particular 
microbial component [75, 76]. Since then, the number 
of reports regarding the composition of the microbiota 
determined by metagenomics analysis and diverse 
diseases has grown continuously. Such diseases include 
type II diabetes mellitus [77], metabolic syndrome [78, 
79], atherosclerosis [80], nonalcoholic steatohepatitis 
[81, 82], autism [83], liver cirrhosis [84], liver cancer 
[85], IBD [86–88] and more [89, 90]. Moreover, fecal 
microbiota transplantation has therapeutic efficacies for 
recurrent Clostridium difficile infection, indicating that 
microbiota alteration also may be beneficial for other 
diseases such as IBD and metabolic syndrome [91]. 
However, the mechanisms underlying how dysbiosis is 
linked to these diseases have yet to be fully determined. 
We are currently working on a simplified model to 
understand possible mechanisms of the “intestinal 
environment,” which we hypothesized is associated 
with three factors: Paneth cell α-defensins, the intestinal 
microbiota and dietary factors (Fig. 3).

Mice lacking IL10 or IL2 induce colitis spontaneously; 
however, these mice have no or mild colitis if they are kept 
under germ-free conditions [92–94]. It is common for 
patients with IBD to frequently suffer local or systemic 
infection with bacterial overgrowth or dysbiosis [95]. 
The microbiota of patients with Crohn’s disease (CD) 
shows less diversity of Firmicutes than healthy subjects 
[86]. CD is a young-onset IBD that affects the entire 
digestive tract, especially the small intestine and causes 

transmural enteritis, longitudinal ulcers and stenosis of 
the intestine. Many CD patients suffer relapse frequently 
after achieving remission through therapy, and the 
disease persists chronically, so the patients’ quality of life 
is poor and a big problem. Although our understanding 
of the pathogenesis of CD is still incomplete, it has been 
revealed that some of the many CD risk factors and 
susceptibility genes are related to recognition receptors 
of pathogen-associated molecular patterns, autophagy, 
molecular chaperones and ER stress response, many 
of which are expressed in Paneth cells. Furthermore, 
genetic defects of NOD2 [96–100] or genes related to 
autophagy and ER stress affect Paneth cells selectively 
and contribute to IBD pathogenesis. In mice with genetic 
defects for the autophagy gene, Atg16L1, Paneth cells 
showed morphological abnormalities and were defective 
in secretion [101]. It was also reported that such Paneth 
cell disruption is dependent both on the mutated Atg16L1 
and on infection with a specific strain of norovirus as a so-
called second hit [102]. This is taken as a clear example 
showing that a combination of both a genetic risk factor 
and an environmental factor, such as a specific infectious 
agent, is necessary for onset of IBD. Furthermore, 
deletion of Xbp1 leads to an abnormal unfolded protein 
response and induces Paneth cell apoptosis and severe 
ileitis in the mouse [103]. Also, mice with deletion of the 
Anterior Gradient 2 gene, a protein disulfide isomerase, 
have goblet cells depleted of Mucin 2, a disrupted 
Paneth cell morphology and severe terminal ileitis and 
colitis induced by ER stress [99, 104–106]. These results 

Fig. 3. Factors affecting the intestinal environment: a working 
hypothesis.
A simplified model: Three factors, innate immunity, microbiota 
and food, cross talk with each other and contribute to the intestinal 
environment in both the short and long term. Innate Immunity: 
Paneth cell α-defensins act as major effectors in innate immunity. 
Microbiota: Commensal bacteria form the normal intestinal 
microbiota. Food (dietary factors): Food and dietary factors act as 
orally administered extrinsic factors.
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indicate that genetic defects that lead to disruption of 
Paneth cell homeostasis could weaken innate enteric 
immunity by reducing α-defensin production and 
secretion. In addition, importantly, Paneth cell disruption 
could also eliminate or modify the stem cell niche, which 
is necessary for regeneration and differentiation of the 
entire intestinal epithelial monolayer via communication 
between Lgr5-positive CBC stem cells and Paneth cells 
to maintain small intestinal integrity [44].

Reduced mRNA expression of intestinal tissue HD5 
compared with healthy subjects has been reported in 
some CD patients [107]. In addition, the HD5 precursor 
was reported to be reduced in certain CD patients [108]. 
Reduced pro-HD5 was sensitive to degradation by 
trypsin, a processing enzyme for HD5, and resulted in 
a diminished production of mature HD5. These results 
suggest that potent protease resistance of α-defensins 
due to their three disulfide bonds may contribute to the 
maintenance of a healthy intestinal environment and 
the pathogenesis of diseases such as IBD. Changes 
in Paneth cell α-defensin expression and/or secretion 
may contribute to CD, and changes in the intestinal 
microbiota may mediate the pathogenesis [109]. To 
test this, it is important to monitor sequential changes 
in the levels of α-defensins secreted into the intestinal 
lumen. Secreted cryptdin4 levels in feces were reduced 
significantly in IL10-null mice compared with wild type 
mice [72], suggesting that diminished Crp4 secretion 
led to dysbiosis. Failure of cryptdin production and/or 
cryptdin secretion in IL10-null mice may contribute to the 
reduction in secreted cryptdin. Whether or not decreased 
production or secretion of α-defensins in CD patients is 
an independent event in CD or secondary event due to 
severe inflammation with massive loss of small intestinal 
epithelia, including Paneth cells, is still controversial.

Paneth cells are selectively depleted during graft-
versus-host disease (GVHD), resulting in a marked 
reduction in expression and secretion of α-defensins, 
which selectively kill pathogenic bacteria while 
preserving the commensal population [110]. In the 
mouse GVHD model, the diversity of the intestinal 
microbiota is lost, an overwhelming expansion of 
Escherichia coli occurs, and the GVHD mice die of E. 
coli septicemia [110]. These results revealed a direct 
link between Paneth cell loss in GVHD and a dramatic 
shift in the microbiota composition from commensals 
to specific pathogens. Thus, Paneth cell depletion with 
subsequent loss of α-defensins leads to vital dysbiosis 
[111, 112]. Furthermore, obese subjects reportedly 
show increased HD5 mRNA expression and decreased 
HD5 protein in comparison with healthy subjects [113]. 

Although it is not yet clear whether Paneth cells of 
obese people actually secrete less α-defensins relative to 
lean subjects, α-defensins and the intestinal microbiota 
composition may have a pathophysiological link with 
obesity. In addition, ischemia/reperfusion injury of the 
small intestine [106] and Toxoplasma infection [114] in 
mice have been shown to induce Paneth cell depletion, 
leading to dysbiosis and severe infection.

From recent advances regarding the roles of Paneth 
cells and their α-defensins, a consensus view has emerged 
that suggested that a reduction or excess of α-defensins 
or disruption of the α-defensin tertiary structure results 
in dysbiosis due to Paneth cell dysfunction. Paneth cells 
also have a critical role in establishing the stem cell 
niche contributing directly to epithelial regeneration and 
differentiation [115]. Thus, we suggest that varied Paneth 
cell abnormalities and their production and release 
of α-defensins are associated with various diseases 
including infectious diseases, IBD and obesity and that 
they may also contribute to morbidity in other diseases 
by failing to maintain eubiosis, thereby disrupting the 
intestinal environment. Further studies are necessary 
to understand Paneth cell biology and to prove links 
among Paneth cells, the intestinal microbiota and diverse 
diseases.
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