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Auditory stimulation and deep learning 
predict awakening from coma after cardiac 
arrest
Florence M. Aellen,1,2 Sigurd L. Alnes,1,2 Fabian Loosli,1 Andrea O. Rossetti,3 

Frédéric Zubler,4 Marzia De Lucia5 and Athina Tzovara1,2,6,7

Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of 
coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and 
leaves a considerable number of patients in a ‘grey zone’, with uncertain prognosis. Quantitative analysis of EEG re-
sponses to auditory stimuli can provide a window into neural functions in coma and information about patients’ 
chances of awakening. However, responses to standardized auditory stimulation are far from being used in a clinical 
routine due to heterogeneous and cumbersome protocols. Here, we hypothesize that convolutional neural networks 
can assist in extracting interpretable patterns of EEG responses to auditory stimuli during the first day of coma that 
are predictive of patients’ chances of awakening and survival at 3 months. We used convolutional neural networks 
(CNNs) to model single-trial EEG responses to auditory stimuli in the first day of coma, under standardized sedation 
and targeted temperature management, in a multicentre and multiprotocol patient cohort and predict outcome at 3 
months. The use of CNNs resulted in a positive predictive power for predicting awakening of 0.83 ± 0.04 and 0.81 ± 0.06 
and an area under the curve in predicting outcome of 0.69 ± 0.05 and 0.70 ± 0.05, for patients undergoing therapeutic 
hypothermia and normothermia, respectively. These results also persisted in a subset of patients that were in a clin-
ical ‘grey zone’. The network’s confidence in predicting outcome was based on interpretable features: it strongly cor-
related to the neural synchrony and complexity of EEG responses and was modulated by independent clinical 
evaluations, such as the EEG reactivity, background burst-suppression or motor responses. Our results highlight 
the strong potential of interpretable deep learning algorithms in combination with auditory stimulation to improve 
prognostication of coma outcome.
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Introduction
Most survivors of cardiac arrest are initially in a coma. Outcome 
prognostication has become an integral part of post-resuscitation 
care.1,2 Currently used outcome prediction techniques mainly rely 
on expert multimodal assessments of clinical variables and physio-
logical signals1 like EEG, which is routinely used to evaluate the in-
tegrity of neural functions at the patients’ bedside. EEG evaluations 
consist of visual assessments, which can be time-consuming and 
prone to subjectivity.3 In addition, current clinical markers for out-
come prognostication are unable to provide a clear prognosis for a 
considerable proportion of patients, classifying them as indeter-
minate, or part of a ‘grey zone’,2 and highlighting a clear need for 
developing novel markers of outcome.

A putative marker for assessing the integrity of neural functions 
in coma patients are EEG responses to auditory stimulation.4–7

Auditory event-related potentials (ERPs) have been previously 
linked to chances of awakening from coma,4–7 but standardized 
ERPs, assessed in a quantitative way, are not routinely used for out-
come prognosis.8 Typically, auditory ERPs are evaluated by aver-
aging hundreds of EEG responses to the same standardized 
auditory stimuli and by extracting aggregate characteristics, such 
as the presence or absence of characteristic ERP deflections, like 
the N100,9,10 their amplitude or latency9 or differential responses 
to sequences of standard and deviant sounds.9,11–13 These ap-
proaches have the disadvantage that the features used to predict 
coma outcome are selected a priori at an average ERP level, over-
looking the richness of EEG responses and neglecting potentially 
important characteristics, thus likely leading to unreliable 
prognosis.

More recent attempts to explore the prognostic value of auditory 
stimulation consist of modelling single-trial EEG responses to 
sounds, with the use of machine learning techniques to extract 
patient-specific EEG patterns that quantify auditory discrimin-
ation.14,15 These studies have shown that the progression of auditory 
discrimination from first to second day of coma is informative of pa-
tients’ chances of awakening.15–17 Moreover, the neural synchrony 
across voltage measurements of auditory EEG responses in the first 
day of coma is also predictive of awakening, further corroborating 
the early prognostic value of auditory ERPs.18 However, despite clear 
links between auditory processing in coma and patients’ outcome, 
shown over multiple studies and approaches, standardized auditory 
stimulation is not currently used in the clinical routine as a prognos-
tic marker. A major limitation for this discrepancy is that existing 
studies report findings either in small patient cohorts with highly cu-
rated features (i.e. average EEG responses over predefined time win-
dows and specific electrodes) and limited predictive power6,7,9,12,13 or 
require two EEG recordings over two consecutive days.14–17 In order 
to fully exploit the multidimensional ERP features and their 

relevance to coma outcome, there is a critical need to assess EEG re-
sponses to auditory stimulation in a more robust and straightfor-
ward way.

In recent years, advances in the field of machine learning have 
given rise to powerful tools for modelling brain signals.19,20

Convolutional neural networks (CNNs) are particularly promising 
in extracting in a data-driven way rich features of EEG data, and 
have been shown to outperform traditional techniques.19–22

Despite their huge potential, the use of CNNs in acute neuro-critical 
prognostication remains limited. One challenge in using CNNs in 
medical applications is that it is difficult to trace which features of 
the EEG data are relevant for the decisions that CNNs are making.22

The very few studies that have used CNNs to predict outcome from 
coma rely on the same continuous EEG recordings of resting state ac-
tivity that are used in the clinics via visual evaluations,23–26 and have 
shown a remarkable precision in discriminating patients who later 
survive from those who do not. It remains unknown whether 
CNNs can be applied on EEG responses to standardized auditory 
stimuli to assist in outcome prognosis and to provide additional in-
sights for those patients for whom existing clinical assessments do 
not result in a conclusive prognostication.

Here, we made the hypothesis that CNNs would be able to ex-
tract patterns of EEG responses to standardized auditory stimuli 
that relate to patients’ chances of awakening from coma and sur-
vival at 3 months. We additionally hypothesized that the outcome 
prediction of CNNs would be complementary to currently used clin-
ical variables for prognostication and would have the potential to 
improve prognosis for patients with indeterminate prognosis. 
Last, we performed exploratory analyses to identify which features 
of the EEG data are relevant for the outcome prediction provided by 
the CNNs. We extracted measures of confidence of the network’s 
decisions and linked those to (i) clinical variables currently used 
for outcome prognosis27; and (ii) features of EEG responses to 
sounds that quantify neural synchrony, which have been recently 
shown to be informative of patients’ outcome.1,18,27 To this aim, 
we analysed EEG responses to auditory stimulation during the first 
day of coma, recorded in a multicentre and multiprotocol cohort of 
coma patients following cardiac arrest at four different hospitals.28

Materials and methods
Patients and procedure

We recorded data from a cohort of 145 comatose patients following 
cardiac arrest (33 females, 63.3 ± 1.2 years old, mean ± SE), admitted 
to the intensive care units of the University Hospitals Lausanne (121 
patients), Bern (18 patients), Sion (four patients) and Fribourg (two 
patients) between December 2009 and April 2017. Patients have 
been previously described.16–18 Informed written consent was 
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obtained prior to EEG recordings from a family member, legal repre-
sentative or treating clinician not involved in this study. The ethical 
committees of the Cantons of Bern, Fribourg, Valais and Vaud, 
Switzerland approved the experimental protocol.

Upon admission to the hospital, patients were in an acute coma, 
i.e. a score of <6 on the Glasgow Coma Scale (GCS) and treated with 
targeted temperature management for 24 h; 79 patients were trea-
ted with targeted temperature management at 33°C (therapeutic 
hypothermia; HT) and 55 patients at 36°C (normothermia; NT). 
Controlled temperature treatment was based on ice packs or intra-
venous ice-cold fluids together with a feedback-controlled cooling 
device (Arctic Sun System, Medivance or Thermogard XP; ZOLL 
Medical), for 24 h after cardiac arrest and was subsequently re-
moved. Propofol (2–3 mg/kg/h), midazolam (0.1 mg/kg/h) and fen-
tanyl (1.5 lg/kg/h) were administered for analgesia and sedation, 
with vecuronium, rocuronium or atracurium for controlling 
shivering.

Decisions to withdraw clinical care were based on a multidiscip-
linary approach.1 Namely, care was withdrawn if two or more of the 
following criteria were present at 72 h or more, after sedation 
weaning29,30: unreactive background EEG; epileptiform EEG and/or 
myoclonous that was resistant to treatment; incomplete return of 
brainstem reflexes; bilateral absence of N20 in somatosensory 
evoked potentials; the concomitant presence of major hypoxic/is-
chaemic lesions in structural MRI and neuron-specific enolase 
levels more than twice above 75 μg/l were additionally consid-
ered.31 Importantly, all clinical decisions were blinded to the output 
of the neural networks.

Patients’ outcome was defined at 3 months after cardiac arrest 
via a semistructured phone interview via the Cerebral 
Performance Category32 (CPC). A CPC of 1 indicates full recovery; 
of 2 return of consciousness with moderate disability; a CPC of 3 re-
turn of consciousness with severe disability; while a CPC of 4 coma 
or persistent vegetative state; and a CPC of 5 death. For our analyses 
we considered patients with CPC 1–3 at 3 months after coma onset 
as ’survivors’ (n = 79). Patients with a CPC of 5 were considered as 
patients with poor outcome (’non-survivors’, n = 55). In our cohort, 
no patient was classified with a CPC of 4, possibly due to the clinical 
practices in the participating hospitals, where the decision to with-
draw life-sustaining treatment for patients who fail to regain con-
sciousness is regularly reassessed even after the acute phase.

In accordance with previous investigations focusing on predic-
tion of outcome in coma patients following cardiac arrest,17 we 
did not analyse patients who regained consciousness during their 
stay at the hospital but later died, for example because of other co-
morbidities. This resulted in the exclusion of 11 patients, resulting 
in a cohort of 134 patients in total.

Auditory stimulation protocol

EEG recordings were conducted at the patients’ bedside, within 24 h 
after cardiac arrest while all patients were in a comatose state. 
Patients were presented with a series of pure tones as previously 
described.15–17 Tones consisted of 16-bit stereo sounds, sampled 
at 44.1 kHz, with a 10 ms linear amplitude envelope applied at 
stimulus onset and offset to avoid clicks. Between each sound, 
there was a 700 ms interstimulus interval. Standard sounds were 
presented in 70% of the trials and had a pitch of 1000 Hz and dur-
ation of 100 ms. Deviant sounds differed from the standards in dur-
ation (150 ms), interaural time difference, with left ear leading with 
700 μs, or pitch at 1200 Hz. Stimuli were presented in a 
pseudo-randomized order, in a way that at least one standard 

sound was presented between two deviant ones. The auditory 
stimulation protocol consisted in total of 1500 tones, split into three 
blocks, each lasting ∼7 min. Similar to a previous study investigat-
ing neural properties of auditory processing in coma,18 in the pre-
sent study we focused on responses to standard and duration 
deviant sounds, as they have been previously shown to be highly 
informative of coma outcome.15,18 A detailed evaluation of the pre-
dictive value of EEG responses to all sound types is provided in the 
Supplementary material.

Recording setup and preprocessing

As the data of this study were multicentre and multiprotocol, EEG 
was recorded at the patient’s bedside with 19 or 62 electrodes, de-
pending on the original study design,15–17 positioned according to 
the international 10–20 system. EEG data were collected with a 
sampling frequency of either 1000 or 1200 Hz. For consistency, 
data recorded with 1200 Hz were downsampled to 1000 Hz and 
data recorded with 62 electrodes were downsampled to the over-
lapping set of 19 electrodes. Across all channels the impedance 
was kept below 10 kΩ. The online reference for the electrodes was 
set as Fpz. In the course of preprocessing electrodes were re- 
referenced to a common average reference. Epochs were extracted 
from 50 ms before stimulus onset to 500 ms after. Artefacts were re-
jected with a criterion of ±100 μV on all electrodes. Noisy electrodes 
were interpolated using three-dimensional splines.33 After re- 
referencing, the data were filtered from 0.1 to 40 Hz, and in a control 
analysis, to ensure that our findings are not driven by muscle activ-
ity, from 0.1 to 20 Hz. Additionally, the EEG epochs were visually 
inspected and noisy epochs were manually removed. After prepro-
cessing, we obtained 347.22 ± 9.23 trials (mean ± SE) per patient, 
204.76 ± 8.66 in response to standard sounds and 142.46 ± 1.42 in re-
sponse to duration deviants.

Training of convolutional neural network

For training the neural network we adopted a 10-fold cross- 
validation procedure, i.e. we split the patients 10 times into 3 differ-
ent sets of train, validation and test patients, in a way that data 
from each patient were included in only one of the three sets. The 
train set had 60% of patients (80 patients), the validation set 20% 
(27 patients) and the test set 20% (27 patients). The single trials of 
all patients from the train set were used to train the neural network 
and the trials from the validation set were used to evaluate any hy-
perparameters (e.g. learning rate, early stopping, etc.). The test set 
was used only after training and optimizing the network, for an ob-
jective evaluation of the model’s performance on unseen patients.

We trained a CNN called EEGNet21 to predict patients’ outcomes, 
which has been designed specifically for EEG data. The overall net-
work size is moderate, giving smaller training times while still 
achieving robust results. The original network architecture was 
changed slightly for the purpose of our study. First, according to 
the recommendations as in the original study21 the filter length of 
the first convolutional layer was changed to 512, instead of the ori-
ginal 64. Consequently, the number of temporal, spatial and point-
wise filters were increased to 16, 4 and 64, respectively, while the 
activation function was set to ReLu. These changes were made as 
preliminary analysis on a small subset of patients showed a more 
stable training.

For optimizing the model we used the binary cross-entropy loss 
function and the Adaptive Moment Estimation (Adam),34 with a 
learning rate of 5 × 10−6. All other parameters were unchanged 
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from the default suggestions. We trained the network for a max-
imum of 100 epochs, but employed early stopping after 30 epochs 
if the validation loss of two consecutive epochs was smaller than 
a threshold, as is standard practice in the field.35 To evaluate the 
network performance we additionally used the area under the 
curve (AUC).36

Outcome prediction based on network’s output

As the neural network was trained on single-trial EEG responses to 
sounds (Fig. 1), it classified single-trial EEG responses as belonging 
to a survivor versus a non-survivor. To link the network’s output 
to coma outcome at the single patient level, for each patient we 
computed the mean classification performance across all trials, 
which we term ‘confidence of predicting survival’. The confidence 
score ranged between zero and one and indicated the confidence 
of the model’s prediction of coma outcome, as the mean label 
that the model assigned across single-trial EEG responses to sounds 
of a given patient. If that score was above 0.5, then a patient was 
classified as a survivor, while below 0.5 as a non-survivor, as per 
convention based on a sigmoid function (Fig. 1).

For evaluating the network’s performance, for all metrics we re-
port mean ± SE values obtained across the 10 folds of cross- 
validation. We additionally plot the network’s output in relation 
to patients’ outcome for the best model, defined as the one with 
the highest AUC score of the validation set. The reported final re-
sults remain objective, as they concern the test set of patients 
which was not used to train, optimize or select the best model. 
We additionally evaluated the positive and negative predictive va-
lues (PPV and NPV, respectively), as the ratio of correctly predicted 
survivors among all predicted survivors (PPV) or correctly predicted 
non-survivors among all predicted non-survivors (NPV).

Outcome prediction in patients with indeterminate 
prognosis

To assess the additional utility of our method for the current clinic-
al practice, we evaluated the network’s predictions for a subset of 
coma patients whose outcome prognosis was inconclusive based 
on existing clinical tests. Based on previous literature and recom-
mendations, we considered the motor response, EEG reactivity, 
EEG continuity and brainstem reflexes.1,2 If the above-mentioned 
variables showed a discrepancy (e.g. present motor response and 
brainstem reflexes, but a discontinuous and irritative EEG), a 

patient was defined as being in a ‘grey zone’. For this definition, 
we did not include patients where only brainstem reflex was pre-
sent and all other variables predicted a negative outcome, due to 
the low positive predictive power of brainstem reflex for good out-
come.1 This resulted in 48 patients fulfilling the criteria for a clinical 
‘grey zone’ (32 survivors, 16 non-survivors). Because of their rela-
tively low number, for this analysis we merged patients from train, 
validation and test sets, and examined the overall distribution of 
the outcome prediction resulting from the CNN. Moreover, we per-
formed two control analyses to further evaluate the generalizability 
of the network on ‘grey zone’ patients. First, we curated this split of 
patients to train, validation and test sets, to ensure that a fixed but 
high number of ‘grey zone’ patients are part of the test set 
(Supplementary material). Second, we trained one network using 
exclusively patients with determinate outcomes for training and 
validation, and kept all ‘grey zone’ patients as a test set, to evaluate 
generalization of outcome prediction results (Supplementary 
material).

Exploring links between network’s output and 
electrophysiological features of EEG responses

To explore the features of EEG responses related to the network’s 
decisions, we explored (i) measures of neural synchrony and com-
plexity, previously shown to relate to patients’ outcome and pres-
ence of consciousness, respectively18; and (ii) well established 
clinical variables currently used for outcome prognosis.1,2

We first computed the phase-locking value (PLV), which quanti-
fies the synchrony of EEG responses to auditory stimuli.37 The PLV 
was computed for electrode pairs in the alpha range, which has 
been recently shown to be predictive of patients’ outcome in two 
different cohorts of patients undergoing HT.18 Here, we calculated 
the mean PLV per patient across electrode pairs, applying the 
same procedure as previously reported, based on a subset of pa-
tients included in the present study.18 The neural complexity was 
quantified via the Lempel–Ziv (LZ) complexity, which measures 
the number of unique patterns present in a signal.38 Both PLV and 
LZ were calculated on single-trial EEG responses, similar to the 
neural network, to capture trial-by-trial characteristics of EEG re-
sponses to the auditory stimuli. Here, we expanded the analysis 
that was recently reported18 for both measures on a larger patient 
cohort. Our goal on the one hand was to link these measures to 
the network’s output (via Pearson correlation coefficient, Pcorr < 
0.01, Bonferoni corrected) and on the other hand, to validate these 

Figure 1 Schematic description of the deep learning algorithm for predicting outcome from coma. Auditory stimulation and EEG recordings are per-
formed on the first day of coma, shortly after a cardiac arrest. Single-trial EEG responses are then given as input to a CNN which classifies them as be-
longing to a survivor versus a non-survivor. The average of all single-trial predictions provides the network’s confidence of predicting survival. Survival 
is defined at 3 months via the CPC score.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac340#supplementary-data
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measures in patients treated with targeted temperature manage-
ment at 36°C, as they were previously only reported for patients 
treated at 33°C. We excluded two patients that were part of a previ-
ous study,18 because they awoke in the hospital but subsequently 
died before the CPC assessment at 3 months (see the ’Patients 
and procedure’ section).

Second, we compared predictions of the network in subgroups of 
patients defined according to the following binary markers: presence 
of brainstem reflexes (pupil and corneal reflexes present), presence 
of motor response (motor GCS ≥ 4), reactive EEG background (change 
in amplitude and/or frequency after stimulus, judged visually), dis-
continuous or suppressed EEG background39 and irritative EEG (pres-
ence of electrographic seizures or status epilepticus, sporadic 
epileptiform discharges, spiky or sharp periodic discharges or rhyth-
mic spike waves), using Mann–Whitney tests (Pcorr < 0.01), and 
Bonferroni correction for multiple comparisons. We additionally ex-
plored correlations between the network’s confidence and time to 
return of spontaneous circulation (ROSC), with a Pearson correlation 
coefficient, as well as links between confidence and hospital site or 
CPC at 3 months with Kruskal–Wallis H-tests.

Data availability

Because of the sensitive nature of the clinical data, data and mate-
rials can be made available from the corresponding authors upon 
reasonable request.

Results
Outcome of coma patients

Of the 134 patients analysed, 79 (59%) survived, where survival was 
defined as CPC 1 (46 patients), 2 (22 patients) and 3 (11 patients) at 3 
months. Of 134 patients, 55 (41%) had a poor outcome, correspond-
ing to a CPC of 5, and no patient was in a vegetative state (CPC of 4).

Prediction of outcome based on the neural network

The neural networks trained to discriminate auditory EEG re-
sponses of patients that later survived from those who did not 
reached a mean AUC score of 0.81 ± 0.00 on the train, 0.75 ± 0.03 
on the validation and 0.70 ± 0.04 on the test sets (Fig. 2 and 
Table 1). On the test set we obtained a PPV of 0.83 ± 0.03 and an 
NPV of 0.57 ± 0.04 (Table 1). For patients treated with targeted tem-
perature management at 33°C, the average PPV was 0.83 ± 0.04 and 
for those treated at 36°C 0.81 ± 0.06. The difference in PPV over the 
two treatments over the 10 cross-validation folds was not signifi-
cant (P = 0.67, Wilcoxon signed rank test), implying that the net-
works performed at similar levels for patients treated with 
targeted temperature management at 33°C and 36°C. The AUC 
scores were also replicated with a control analysis where the neural 
networks were trained with EEG data filtered between 0.1 and 
20 Hz, resulting in a mean AUC score of 0.74 ± 0.03, PPV of 0.86 ± 
0.02 and NPV of 0.62 ± 0.03 on the test set.

We next focused on one single fold of the cross-validation, and 
evaluated the confidence scores assigned by the network to individ-
ual patients (Fig. 2), as our goal was to investigate the neural prop-
erties of EEG signals that may mediate the network’s outcome 
prediction. In the validation and test sets, we obtained a sensitivity 
of 84% for survivors and a specificity of 82% for non-survivors. Out 
of all the patients classified as survivors in the train set (n = 42 pa-
tients), 36 awoke from coma, resulting in a PPV of 86%, while in 
the validation/test sets 27 of 31 patients that were predicted as 

survivors awoke, resulting in a PPV of 87%. These results were 
largely similar for patients treated with different temperature 
treatments (Fig. 2 HT, NT and Table 1).

Outcome prediction for patients in a ‘grey zone’

We next focused on patients who, from a clinical viewpoint, were 
part of a ‘grey zone’, i.e. cases where currently used outcome pre-
dictors indicated indeterminate outcome. Forty-eight patients ful-
filled these criteria (n = 32 survivors and n = 16 non-survivors, 
Fig. 3). The distribution of confidence values assigned by the net-
work in this subset of patients followed the distribution of the full 
cohort (Figs 2 and 3). For this subset of patients we obtained a PPV 
of 0.86, an NPV of 0.60 and an AUC score of 0.75, based on the 
CNN. These scores were at similar levels as those obtained with 
the full cohort, suggesting that although this group of patients 
had indeterminate prognosis based on existing clinical tests, they 
were not ‘peculiar’ cases for the neural network (see the 
Supplementary material for additional analyses on ’grey zone’ 
patients).

Investigating the interpretability of the neural 
network’s outcome prediction

We next evaluated the electrophysiological properties of EEG signals 
that the network’s output may be reflecting while providing a predic-
tion about patients’ outcome. We first evaluated the PLV of EEG re-
sponses to sounds, previously shown to be predictive of patients’ 
outcome when treated with hypothermia.18 Here, we first replicated 
these results for patients in NT. The mean PLV for survivors treated 
with hypothermia was 0.75 ± 0.01 and for survivors treated with nor-
mothermia 0.72 ± 0.02. For non-survivors, we found a mean PLV of 
0.55 ± 0.02 and 0.57 ± 0.03 for patients treated with hypothermia 
and NT, respectively. When statistically tested, we found a signifi-
cant main effect of outcome on PLV (F = 101.68; Pcorr < 0.01), while nei-
ther the main effect of temperature treatment (F = 4.07; Pcorr = 0.046) 
nor the outcome by temperature interaction were significant (F = 
2.17; P = 0.14). Next, we explored the predictive power of the PLV in pa-
tients treated with NT, as done previously for the subset of patients 
treated with hypothermia (partially overlapping with those included 
in our previous study18). For patients in hypothermia, the PLV pro-
vided a PPV of 0.85 and an NPV of 0.83, as previously reported.18 For 
patients in NT, the PLV resulted in a PPV of 0.77 and an NPV of 0.80 
(Fig. 4A).

Importantly, the confidence of survival assigned by the network 
to each patient strongly correlated with the mean PLV across elec-
trodes (r = 0.76; Pcorr < 0.01; Fig. 4B). This correlation was not trivially 
driven by the fact that both measures predict outcome, as it re-
mained significant when tested for survivors (r = 0.49; Pcorr < 0.01) 
and non-survivors (r = 0.65; Pcorr < 0.01) separately.

Next, we computed the LZ complexity of EEG responses to 
sounds, which by itself has been shown not to be predictive of out-
come when only including patients treated at 33°C.18 We confirmed 
this previous finding for patients of the present study who were trea-
ted at 36°C, whose distribution of LZ values was similar to the distri-
bution of LZ values for patients treated at 33°C (Fig. 4C).

Interestingly, although LZ complexity by itself was not predict-
ive of outcome, it showed a significant negative correlation with 
the network’s confidence (r = −0.57; Pcorr < 0.01; Fig. 4D), so that 
the higher the network’s confidence in predicting survival, the low-
er the complexity of EEG responses to sounds. A strong correlation 
between network’s confidence and EEG complexity was also 
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observed for survivors (r = −0.48; Pcorr < 0.01) and non-survivors 
(r = −0.76; Pcorr < 0.01) separately. PLV and LZ complexity were also 
negatively correlated, albeit with a weaker correlation than each 
of these measures did with the confidence of the neural network 
(Pearson’s r = −0.39; Pcorr < 0.01).

Overall, these results suggest that the network assigned higher con-
fidence scores for awakening for patients with high PLV and low com-
plexity, or in other words, with stronger neural synchrony and 
temporal structure in their EEG responses. Exemplar EEG traces of these 
responses for a correctly classified survivor and a misclassified non- 
survivor show rather smooth EEG responses to the sounds, compared 
to exemplar traces of a correctly classified non-survivor and misclassi-
fied survivor, where the EEG responses are more ‘stochastic’ (Fig. 4B).

Comparison with clinical variables

Lastly, we compared the confidence of the network’s prediction 
with clinical variables currently used for outcome prognosis. We 
found a significant difference (Pcorr < 0.01; Mann–Whitney U-test) 
in the network’s confidence values between patients with and 

without presence of brainstem reflex, motor response, reactive 
EEG background, discontinuous or suppressed EEG background 
and irritative EEG (Fig. 5A–E). Patients with brainstem reflex, motor 
response or reactive EEG, all of which are considered indicators of 
good outcome, had significantly higher confidence scores com-
pared to patients without (Fig. 5A–C). The opposite was observed 
for patients with discontinuous or irritative EEG, which are consid-
ered indicators of poor outcome (Fig. 5D and E). Interestingly, EEG 
reactivity, which has a prognostic value for good outcome,27 pro-
vided similar levels of predicting awakening as the neural network 
(PPV = 0.88). It is worth noting, however, that the prognostic per-
formance of EEG reactivity is likely biased, as this score is used in 
the clinical interventions to influence outcome.

Last, the network’s confidence did not correlate with ROSC (r = 
−0.13; P = 0.12, Fig. 5F), while no significant difference was found 
in confidence scores across the four hospital sites (Kruskal– 
Wallis, H = 3.48; P = 0.32, Fig. 5G). As expected based on the outcome 
prediction results, there was a main effect of CPC on network’s con-
fidence when testing for CPC 1–5 (Kruskal–Wallis, H = 61.91; 
Pcorr < 0.01; Fig. 5H). However, there was no significant difference 

Figure 2 Prediction of outcome based on the CNN. Confidence scores were computed for each patient by averaging the network’s outcome prediction 
for all single-trial EEG responses to sounds of a given patient. A patient was predicted to be a survivor if the confidence score was above 0.5, otherwise a 
non-survivor. Data from patients of the train set (empty circles) were used to train the network, while data from patients in the validation set (shaded 
circles) were used to evaluate hyperparameters. The predictive value of the network was evaluated on a separate test set of patients (full circles), whose 
data were never used to train or optimize the network. For each of the sets, we split patients into HT (hypothermia, targeted temperature management 
at 33°C) and NT (patients with targeted temperature management at 36°C). For the numerical performance scores see Table 1.
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of confidence within the survivors group, for CPC 1, 2 and 3 
(Kruskal–Wallis, H = 4.35; P = 0.11).

Discussion
We studied the prognostic value of EEG responses to auditory stimu-
lation, combined with deep learning in predicting coma outcome 
after cardiac arrest. We showed that CNNs are powerful in extracting 
single-trial information from auditory ERPs on the first day of coma, 
and at predicting survival 3 months later, with a positive predictive 
power of 0.83 ± 0.03, negative predictive power of 0.57 ± 0.04 and an 
overall AUC of 0.70 ± 0.04. These results were not available to clini-
cians treating the patients and did not influence patients’ outcome. 
Predicting patients’ chances of awakening was at similar levels for 
patients receiving targeted temperature management at 33 and 36° 
C. The performance of the neural network was separately evaluated 
on patients in a ‘grey zone’, where clinical variables gave inconclusive 
results, reaching a PPV of 0.86, suggesting that neural networks might 
have the potential to assist in prognostication in these currently inde-
terminate cases. Lastly, we showed that the confidence scores of the 
neural network in predicting survival were strongly correlated to the 
phase locking and complexity of auditory EEG responses to the audi-
tory stimuli, so that patients that were confidently characterized as 
survivors had high synchrony and low complexity in their neural 
responses.

Auditory stimulation for predicting outcome from 
coma

The main novelty and advantages of our approach of combining 
auditory stimulation with deep learning to predict coma outcome 
are 3-fold: (i) it is semi-automatic, based on a single EEG recording 

performed within 24 h after cardiac arrest and, if confirmed 
in other data sets, can be objectively used to assist in predicting pa-
tients’ chances of awakening from coma; (ii) it relies on the auditory 
pathway, which is currently not actively used in the clinical routine 
for outcome prediction, and can therefore provide additional clinic-
al insights for patients in a ‘grey zone’, whose outcome is indeter-
minate based on existing techniques; and (iii) the output of the 
neural network is not a simple binary prediction of outcome, but 
exploits a continuum of confidence values, which are then directly 
linked and strongly correlated to interpretable features of EEG 
responses.

Our work follows a large body of literature showing links be-
tween neural responses to auditory stimulation in comatose or un-
responsive patients and patients’ outcome.4–7 Standardized 
auditory stimulation in particular has been proposed to be inform-
ative of patients’ chances of awakening.9–13 However, to date it is 
not regularly used in the clinical routine, as the majority of existing 
techniques are not robust enough, rendering a clinical implemen-
tation challenging.15–17 Here, we overcame this challenge by focus-
ing on one single EEG recording of ∼20 min, and analysed EEG 
responses to auditory stimulation with CNNs. These networks 
have the strong advantage that they can detect discriminative pat-
terns even in heterogeneous data sets, with minimal a priori as-
sumptions and preprocessing.19,20,22–24,26 Importantly, all steps of 
the presented method are automatic, apart from visual inspection 
of the data and manual rejection of artefacts, which were done to 
ensure high-quality data. Future studies can investigate whether 

Table 1 Prediction of outcome, PPV and NPV for awakening 
based on the neural network

All Hypothermia Normothermia

Mean over 10 folds
AUC train 0.81 ± 0.00 0.81 ± 0.01 0.80 ± 0.01
AUC validation 0.75 ± 0.03 0.72 ± 0.04 0.72 ± 0.05
AUC test 0.70 ± 0.04 0.69 ± 0.05 0.70 ± 0.05
PPV train 0.90 ± 0.01 0.92 ± 0.02 0.87 ± 0.01
PPV validation 0.85 ± 0.02 0.86 ± 0.02 0.71 ± 0.10
PPV test 0.83 ± 0.03 0.83 ± 0.04 0.81 ± 0.06
NPV train 0.70 ± 0.01 0.65 ± 0.02 0.70 ± 0.02
NPV validation 0.66 ± 0.04 0.56 ± 0.08 0.66 ± 0.06
NPV test 0.57 ± 0.04 0.53 ± 0.05 0.57 ± 0.05
Best fold
AUC train 0.79 0.72 0.88
AUC validation 0.83 0.93 0.68
AUC test 0.83 0.91 0.73
PPV train 0.86 0.82 0.93
PPV validation 0.83 0.90 0.75
PPV test 0.92 1.00 0.75
NPV train 0.71 0.60 0.83
NPV validation 0.89 1.00 0.67
NPV test 0.71 0.67 0.75

Prediction of outcome of the trained neural network. We report the mean ± SE over 

all 10 trained folds, as well as the performance of the best fold. We report the AUC, 
PPV and NPV, with respect to survival, of the train, validation and test sets, for all 

patients and separately the subcohorts of patients treated with hypothermia and 

NT. The performance of the best fold is also visualized in Fig. 2.

Figure 3 Confidence of survival assigned by the network for patients 
with uncertain outcome prognosis based on existing outcome predic-
tors. Confidence scores for patients in this subset followed the distribu-
tion of confidence scores in the entire patient cohort (Fig. 2). The empty 
circles show patients in the train set, shaded circles patients in the val-
idation and full circles patients in the test set. The left side of the figure 
represents survivors and the right side non-survivors.
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this step can also be automated and replaced with existing algo-
rithms for rejection of EEG artefacts.40

Neural networks assisting prognostication of coma 
outcome

Neural networks have been used in several fields showing an aston-
ishing potential to automate and improve prognostication of vari-
ous neurological disorders,19,20 but their use in neuro-critical care 
and coma outcome prognosis remains limited. The few existing 
studies using neural networks to predict coma outcome are based 
on EEG recordings in the absence of external stimulation. These 
have shown a remarkable performance (AUC = 0.8924; AUC at 24 h 
= 0.8823; best AUC at 24 h = 0.8925), in predicting outcome. In our 
study, we obtained a mean AUC score of 0.70 ± 0.04 and 0.83 for 
the best fold (Table 1), and a mean PPV of 0.83 ± 0.03 and 0.92 for 
the best fold (Table 1). The AUC values we obtained are slightly low-
er than previous studies. However, it is worth noting that our study 

relies on a complementary piece of information to what is currently 
used in the clinical routine, that is, standardized auditory stimula-
tion. Our approach is predictive of awakening and not of overall 
outcome, and therefore the most informative measure of perform-
ance is the PPV and not the AUC.

As such, we could show that neural networks have the potential 
to provide concrete diagnostic information for patients in a clinical 
‘grey zone’, for whom currently available clinical tests are inconclu-
sive. The PPV for these patients was at similar levels as for the full 
cohort. Moreover, control analyses confirmed that the network’s 
prediction generalizes to ‘grey zone’ patients, even when it has 
been trained with few or no ‘grey zone’ patients (Supplementary 
material). Future studies with larger patient cohorts can evaluate 
the clinical applicability of neural networks and confirm these 
results.

One main limitation of our approach, and also of most previous 
studies (with few exceptions, such as Juan et al.41), is that we 
only predict a binary outcome of survival versus non-survival. 

Figure 4 Investigating the interpretability of the neural network’s output. (A) PLV for survivors (left) and non-survivors (right). The horizontal line cor-
responds to a threshold PLV of 0.69, identified and already evaluated in a subset of patients, previously reported in Alnes et al.18 The previously reported 
distribution of PLV values was replicated in a new cohort, predominantly treated with NT. (B) Correlation of network confidence to PLV. The network’s 
confidence of survival was strongly correlated to the average PLV (Pearson’s r = 0.76; Pcorr < 0.01). Exemplar EEG responses to sounds have been plotted 
for two survivors and two non-survivors, one correctly and one incorrectly classified based on the neural network. (C) LZ complexity of auditory ERPs 
for each patient. As previously reported in a subset of patients,18 LZ complexity was not informative of patients’ outcome. (D) Correlation between LZ 
complexity and the network’s confidence of survival for the entire patient cohort (r = −0.53; Pcorr < 0.01). The correlation values are also plotted separ-
ately for survivors (bottom plot) and non-survivors (top plot). The highlighted circles with borders mark the patients whose exemplar EEG responses are 
shown in B.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac340#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac340#supplementary-data
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Survivors are defined as patients with a CPC 1–3, which corresponds 
to varying levels of autonomy and quality of life.32,42 Although a 
CPC of 1–2 generally represents a satisfactory quality of life, a CPC 
of 3 can be a heterogeneous class. Because we trained the network 
to specifically discriminate between patients with CPC 1–3 versus 
patients with a CPC of 5 (death), we could not find a more fine- 
grained link between the network’s output and the state of survival 
at 3 months. Future studies, expanding on larger patient cohorts, 
could use the CPC score already during network training to evaluate 
whether auditory responses in the acute coma phase can be in-
formative not only of survival, but also of its quality.

Electrophysiological features contributing to the 
network’s confidence in outcome prediction

One major concern for the use of neural networks in a clinical envir-
onment is that of interpretability, i.e. tracing features in the data 
that were important for decisions made by a network. Here, we ad-
dressed this concern by showing that the output of the neural net-
work was strongly correlated to features of EEG activity like the 
phase locking, previously shown to reflect coma severity,18,43,44

and also to clinical evaluations.27,45 The phase locking of EEG re-
sponses to sounds, recently shown to be predictive of patients’ 
chances of awakening from coma,18 was strongly correlated to 
the networks’ confidence in predicting survival, such that the high-
er the phase locking, the stronger the network’s confidence. 

Crucially, this link was observed not only across survivors and 
non-survivors, which might be considered trivial as both measures 
predict outcome, but also within the groups of survivors and non- 
survivors separately. This suggests that the decisions made by 
the neural network for assessing the confidence of survival are 
strongly linked to the strength of neural synchrony across EEG elec-
trodes. Importantly, not only did we observe a strong correlation 
between PLV and network’s output, but we also replicated previous 
findings about the predictive value of PLV18 in a new patient cohort, 
treated with targeted temperature management at 36°C.

The advantage of using CNNs over hand-crafted and prese-
lected features, such as the PLV, is that the network automatically 
extracts multivariate features of the ERP response, which are most 
discriminant between patient outcomes. This approach is fully 
data-driven, and the input signal is minimally preprocessed, as op-
posed to computing the PLV, where one needs to have strong a priori 
assumptions about the electrode pairs, frequency bands and spe-
cific measure to be used (see the supplementary material in Alnes 
et al.18).

More surprisingly, we also observed a strong negative correl-
ation between the network’s confidence of predicting survival 
and the complexity of EEG responses to sounds. Neural complexity 
per se, at the single-patient level, was not predictive of patients’ out-
come. This finding has been previously reported for patients trea-
ted with targeted temperature management at 33°C,18 and here 
we replicated it for patients treated at 36°C. Neural complexity 

Figure 5 Links between network’s confidence in predicting survival and clinical variables currently used for outcome prognosis. The network’s con-
fidence scores were statistically compared for patients with and without: (A) brainstem reflex (Pcorr < 0.01); (B) motor response (Pcorr < 0.01); (C) reactive 
EEG (Pcorr < 0.01); (D) discontinuous EEG (Pcorr < 0.01); and (E) irritative EEG (Pcorr < 0.01). (F) Correlation of the network’s confidence of survival and time to 
return of spontaneous circulation (ROSC, r = −0.13; P = 0.12). (G) Absence of link between hospital sites and the network’s confidence scores (H = 3.48; P = 
0.32). (H) Differences in the network’s confidence scores across CPC outcomes. The main effect of CPC was significant when considering all outcomes 
(CPC 1, 2, 3, 5) (H = 61.90; Pcorr < 0.01), but not within the group of survivors (CPC 1–3, H = 4.36; P = 0.11).
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can be considered a proxy to neural ’noise’, of how structured EEG 
responses are across time.46 Interestingly, here we found that the 
higher the network’s confidence for a patient to survive the coma, 
the lower the complexity of the patient’s EEG responses to auditory 
stimulation. This effect was particularly strong for non-survivors. 
This finding suggests that although complexity per se is not inform-
ative of coma outcome, the network is extracting some features in 
EEG responses that relate to the levels of neural ’noise’ or structure 
in the EEG signal, which are in turn informative of coma outcome.

Finally, we also found significantly higher confidence in the 
network’s predictions of survival assigned to patients that have 
intact brainstem reflexes, motor responses and reactive EEG, com-
pared to those who do not (Fig. 5A–C). All these features are con-
sidered to be markers of preserved neural functioning and to 
indicate good outcome.1 Interestingly, when focusing on reactive 
EEG, which has a prognostic value for good outcome,27 we found 
that it provided similar levels of predicting awakening as the neur-
al network (PPV = 0.88). Notably, unlike the EEG reactivity, the 
neural network was not used to inform clinical decisions about 
these patients. By contrast, the network’s confidence of survival 
was significantly lower for patients with discontinuous EEG and ir-
ritative EEG than patients without (Fig. 5D and E), which are con-
sidered signs of poor outcome .27

In summary, the strong links between the network’s output and 
clinical or electrophysiological features across patients strengthen 
the view that the neural network’s decisions (i) are based on clinic-
ally relevant features; and (ii) can provide similar levels of perform-
ance as currently used techniques,27 but with higher level of 
automation and objectivity47 and minimal preprocessing in the 
EEG data.

Conclusions
In summary, we show, for the first time, the strong potential of 
standardized auditory stimulation in combination with deep learn-
ing to predict awakening from coma. Our approach provides an ob-
jective and semi-automatic way to quantify a patient’s chances of 
awakening and surviving at 3 months, already from the first few 
hours after coma onset. For two different patient cohorts, treated 
with controlled temperature management at 33°C and 36°C and re-
corded across four different hospitals, the neural network provides 
a high PPV of awakening, of 0.83 ± 0.04 and 0.81 ± 0.06, respectively. 
This finding was also confirmed for a subgroup of patients whose 
outcome prognosis was indeterminate with currently used diag-
nostic criteria. Importantly, we could show strong links between 
the output of the neural network and electrophysiological charac-
teristics of the EEG responses to sounds reflecting neural synchrony 
and complexity, which have been previously associated with the 
presence of consciousness from a theoretical point of view. Our 
work calls for a more systematic use of standardized auditory 
stimulation in the clinical routine, in combination with 
state-of-the-art deep learning algorithms, to assist and improve 
early prognostication of coma outcome.
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