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Active particle feedback control 
with a single‑shot detection 
convolutional neural network
Martin Fränzl & Frank Cichos*

The real-time detection of objects in optical microscopy allows their direct manipulation, which 
has recently become a new tool for the control, e.g., of active particles. For larger heterogeneous 
ensembles of particles, detection techniques are required that can localize and classify different 
objects with strongly inhomogeneous optical contrast at video rate, which is often difficult to achieve 
with conventional algorithmic approaches. We present a convolutional neural network single-shot 
detector which is suitable for real-time applications in optical microscopy. The network is capable of 
localizing and classifying multiple microscopic objects at up to 100 frames per second in images as 
large as 416× 416 pixels, even at very low signal-to-noise ratios. The detection scheme can be easily 
adapted and extended, e.g., to new particle classes and additional parameters as demonstrated for 
particle orientation. The developed framework is shown to control self-thermophoretic active particles 
in a heterogeneous ensemble selectively. Our approach will pave the way for new studies of collective 
behavior in active matter based on artificial interaction rules.

Optical microscopy can provide structural information but also allows us to follow dynamical processes from 
single molecules and nanoparticles to cells and organisms. Images with high spatial, temporal, and also spectral 
resolution may be obtained. Especially the ability to see dynamic processes opens the possibility to influence 
these processes in real-time via feedback control. In the field of single-molecule detection, this has been dem-
onstrated with the electrokinetic or the thermophoretic trap1–3. In both cases, the optical images are analyzed 
in real-time to extract particle or molecule positions to control electric or temperature fields for positioning 
purposes. Similarly, feedback control can explore new physics in optical tweezers4 or control active particles by 
specific rules5–7. Such synthetic active particles mimic the active propulsion of biological species like bacteria or 
larger organisms8. While the biological species are able to exchange signals to form collective states like swarms 
or to break the action–reaction principle, their synthetic counterparts are still missing these features. Feedback 
control of active particles introduces the possibility to respond to external events or neighboring active particles 
by complex behavioral rules allowing a completely new approach to study the consequences of sensorial inter-
actions in biological species. This field is of quickly growing interest9–11 yet the control is still focused on active 
particles of the same size and shape due to the lack of more advanced real-time image processing algorithms. New 
algorithms which can localize and classify a large amount of active species of different size, shape and signal-to-
noise ratio and will pave the way to new studies. The main requirements for those new approaches are (1) to be 
able to process images at video rate, (2) the ability to differentiate between multiple species, (3) to work at different 
optical contrasts and signal-to-noise ratios (SNR). These requirements are often met by algorithmic approaches 
using thresholding and centroid calculation or even more advanced versions. Yet, the more complex the image 
is, e.g., having particles with different contrasts, the bigger is the computational effort thathas to be spend at the 
cost of speed12–14. Recently, machine learning methods have been introduced to the field of optical microscopy 
and single-particle detection. Those methods are used for image segmentation, holographic reconstruction, or 
also particle tracking15–20. Methods for particle and object tracking currently employed in digital microscopy are 
based on convolutional neural networks designed for post-processing, i.e., they are optimized for accuracy, not 
speed. Their approach is limited by the fact that they often slide smaller regions of interest over a larger image 
to detect multiple objects of the same class. The network, therefore, has to be called multiple times per frame, 
which is time consuming. The detection of different object classes then even requires separate networks to be 
trained, which hampers their use for real-time detection considerably. Using neural networks which detect and 
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classify objects in a single step would therefore be of considerable interest for the above mentioned feedback 
control applications.

We present a single-shot convolutional neural network enabling the detection and classification of objects in 
optical microscopy images in real-time. The network is employed in an optical microscopy setup for the manipu-
lation of microparticles propelled by laser-induced self-thermophoresis. The actuation of these active particles is 
based on a feedback control of a steerable, focused laser beam and hence requires a detection of the positions of 
the particles as fast as possible. A single-shot neural network architecture21,22 together with a GPU implementa-
tion in LabVIEW allows us to perform the particle localization and classification in real-time at a speed of up to 
100 frames per second (fps) for 416× 416 pixel sized images where the processing speed is not limited by the 
number of objects available in the image. With the help of this approach we are able to actuate active particles in 
mixed samples with passive particles and at very low SNRs previously not accessible by algorithmic approaches.

Results
Network structure, training and deployment.  The used single-shot detection approach is based on 
the TinyYOLOv2 network architecture22. It consists of 9 convolutional layers (Supplementary Section  1.1), 
where the first layers take an input RGB image of the size of 416× 416 pixels. The input image is divided into 
13× 13 grid cells (Fig. 1a). For each grid cell the network predicts 5 bounding boxes. For each bounding box the 
position and size of an object as well as the confidence of detection and a probability for each class are predicted 
(Fig.  1b). Bounding boxes with confidence values above an object threshold are used for further evaluation 
(Fig. 1c). A non-maximum suppression (NMS) algorithm with a threshold value is used to remove overlapping 
bounding boxes that belong to the same object. The object class is assigned according to the maximum value 
of the predicted class probabilities. A more detailed description of the output decoding can be found in Sup-
plementary Section 1.2.

The network is trained in Python/Keras using the TensorFlow backend23–25 on a GeForce GTX 1660 Ti GPU 
without any pre-trained weights. The corresponding Python scripts for the training of the network and the 
generation of synthetic training data are supplied with Supplementary Code 1 and explained in detail in Sup-
plementary Sections 2–4. While the synthetic datasets used in this work resemble darkfield microscopy images 
of nano- and microparticles, Janus-type as well as rod-like and elliptical microparticles, any other training set 
may be used. Note that all images are assumed to be in focus without changing the contrast of diffraction pat-
terns when defocusing. We train the network with a training set of 25,000 images and a validation set of 5,000 
images for 10 epochs and a batch size of 8. The image generation takes about 30 min on an Intel Core i7 9700 K 
8× 3.60GHz CPU and the training process about 1 h on a GeForce GTX 1660 Ti GPU.

The trained network graph is exported and deployed to a LabVIEW program developed in the lab which 
is controlling our microscopy setup. The LabVIEW implementation comprises dynamic link libraries (DLLs) 
written in C that take an RGB image as input and deliver the decoded output. To get the fastest possible image 
processing the DLLs are using the GPU supported TensorFlow C API. The details concerning the software can be 
found in Supplementary Code 1 and Supplementary Section 4. Using a GeForce GTX 1660 Ti GPU an inference 
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Figure 1.   Detection principle. (a) The network takes an input RGB image of size 416× 416 pixel and 
divides it into a G × G grid with G = 13 . (b) For each grid cell it predicts B bounding boxes, confidence for 
those boxes and C class probabilities. Here, we use B = 5 and C = 2 . These predictions are encoded in a 
G × G × B · (4+ 1+ C) output tensor. The line thickness of the bounding boxes in (b) depicts the object 
confidence whereas the color of the bounding box is selected according to the highest class probability. (c) Only 
bounding boxes with an object confidence larger than a certain object threshold are retained. A non-maximum 
suppression (NMS) algorithm and a NMS threshold value is used to remove overlapping bounding boxes that 
belong to the same object. Typical values are 0.6 and 0.45 for the object and NMS threshold, respectively.
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time of about 10 ms is achieved for RGB images with a size of 416× 416 pixels. This inference time might be 
further improved by employing a faster GPU or smaller input image sizes.

Evaluation of the network performance.  The performance of the network is evaluated for various syn-
thetic datasets and is discussed in detail in Supplementary Section 6. We evaluate the accuracy of the position 
detection for single objects, close encounters, and the number of false/true positive and negative detections for 
multiple objects within an image. These parameters are evaluated for single and multiple class training data sets 
as a function of the SNR. The SNR of an image is defined as the ratio of the particles mean signal to the standard 
deviation of the signal. The details of the investigated datasets (Dataset 1–3) are provided in Supplementary 
Sections 3.1–3.3.

When trained with a single class dataset a root-mean-square error (RMSE) of the localization of about one 
pixel is obtained (Supplementary Figs. S16a, S17a). We achieve subpixel resolution using a class-dependent 
offset correction (see Supplementary Section 5 for details). For increasing SNR, the error decreases and satu-
rates at a constant value of about 0.5 pixel after offset correction. This is contrary to algorithmic approaches, 
where the RMSE scales with the inverse of the SNR26. Thus, algorithmic approaches will yield better accuracy 
for high SNR for single class detection but also a stronger dependence on the SNR. For low SNRs in the range of 
1–10 our network compares well to the localization accuracy of advanced, algorithmic methods26. While recent 
machine learning approaches have shown even better performance in terms of the localization accuracy18, their 
approach for multiple particle, multiple species detection is commonly more time consuming due to sliding 
window approaches, which require the network to be run multiple times for a single frame. This often precludes 
the application of these networks in situations where real-time information is required. For a two-class training 
dataset, the RMSE slightly increases and saturates for high SNRs at about 1 pixel (Supplementary Fig. S18a). 
For the identification of separate particles in close encounters Supplementary Figs. S16b and S17b illustrate that 
the predicted distance nicely reflects the true distance down to a value of 2σ . Here, 2σ is the size of the particle. 
Remarkably, for ring-like particles, it is even possible to detect overlapping particles (Supplementary Fig. S17b). 
Furthermore, it is shown that even when one particle is by a factor of 10 darker than the other, the network still 
detects the two particles with the same accuracy as for equal contrast (Supplementary Figs. S16c, S17c). For 
more than two particles within an image, the detection performance is evaluated in terms of the percentage of 
true positive, false negative, and false positive detections (Supplementary Fig. S18c). The number of true positive 
detections starts to drop at SNR < 3 at the cost of false negatives. At SNR = 1 , about 50% of the objects are still 
detected, while only about 1% are detected false positive. This is remarkable since at a SNR level of 1 it is even 
difficult to identify objects by eye (see Supplementary Fig. S16a for reference). Notably, no classification errors 
have been observed when tested on synthetic images.

The number of classes to be localized and classified in an image can be easily extended to more than two 
classes. In principle, the network can be trained for several thousand object classes22. Situations with multiple 
classes are very challenging for conventional algorithmic localization and classification12–14,26–32 even if the indi-
vidual particles have a high SNR. As a demonstration, we have trained our network with a dataset containing five 
different particle classes: spots, ring-shaped and Janus-type particles as well as rod-like and elliptical particles 
(Dataset 5, Supplementary Section 3.5). Figure 2 illustrates the performance of the model. The different particle 
classes are accurately identified despite their different sizes, orientations, and intensities. Even rod-like particles 
are properly distinguished from elliptical particles. The latter two particles are very difficult to separate in algo-
rithmic approaches. The proposed neural network-based detection technique will, therefore, be advantageous, 
especially in cases with multiple species and heterogeneous optical contrast.

Experimental feedback control of active particles.  Considering the inference time of 10 ms and the 
localization RMSE of about 1 pixel as well as the independence of the processing speed on the number of par-
ticles in the image, the above-presented network is well suitable for real-time detection and feedback control of 
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Figure 2.   Multiple training classes. Predicted locations, sizes and classes for a test image for a model trained 
with five different particle classes.
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active particles. To demonstrate the capabilities of the network, we studied the feedback-controlled actuation of 
microparticles confined in a thin liquid film. The experimental test should also verify the model that has been 
trained with synthetic data under real experimental conditions, which may differ from the ideal training situa-
tion (reality gap). The particle suspension contains 2.2µm diameter melamine formaldehyde (MF) particles as 
well as 0.5µm diameter polystyrene (PS) particles. The surface of the MF particles is uniformly covered with 
gold nanoparticles of about 10 nm diameter with a surface coverage of about 10% (Fig. 3a). The particles are 
observed using darkfield illumination with an oil-immersion darkfield condenser and a 100× oil-immersion 
objective. Details of the experimental setup and the sample preparation are available in Supplementary Sec-
tions 7 and 8. The MF particles appear with a ring-shaped intensity profile whereas the smaller PS particles have 
an approximately Gaussian intensity profile.

Illuminating the gold nanoparticles at the MF particle surface asymmetrically with a highly focused laser 
beam with a wavelength close to their plasmon resonance ( � = 532 nm ) generates an inhomogeneous surface 
temperature. This inhomogeneous surface temperature is resulting in a self-thermophoretic propulsion away 
from the laser focus (Fig. 3a)6,7. To control the active particle motion direction the laser focus needs to be 
placed at the circumference of the particle in real-time requiring the detection of the particle center position 
with sufficient accuracy and speed. This actuation scheme, which is similar to the photon nudging of Janus-type 
particles5,6,33,34, is achieved with the help of our neural network.

For the experimental detection the network was trained with a two-class dataset: Gaussian spots, as observed 
for the 0.5µm PS particles and ring-shaped intensity profiles as observed for the 2.2µm particles. Different 
magnifications are taken into account by training the network for different scales, e.g., different sizes of the two 

Figure 3.   Experimental real-time detection for feedback optical microscopy. (a) Sketch of a self-thermophoretic 
active particle composed of a 2.2µm diameter melamine formaldehyde (MF) particle ( R = 1.1µm ) 
covered with 10 nm gold nanoparticles with a surface coverage of about 10%. When asymmetrically heated 
with a focused laser ( � = 532 nm ) an inhomogeneous surface temperature is generated resulting in a self-
thermophoretic motion away from the laser focus. The velocity of the particle vth depends on the incident laser 
power and on the displacement of the laser focus δ from the particle center. The highest velocity is observed 
for δ ≈ 0.5R . (b) The particle velocity derived from an experiment driving the particle between two target 
positions (Supplementary Video 1). With increasing laser power the particle velocity saturates at about 12µm/s 
(dashed curve). The non-linear dependence (solid curve) is analyzed elsewhere7. The upper illustration shows 
the recorded trajectories for a power of 0.2 mW. (c) The control accuracy as function of the laser power derived 
from an experiment confining a single particle for a certain time at a target position (Supplementary Video 
2). The dashed and dotted curves are the contributions from the 2D sedimentation (dashed) and the particle 
overshooting (dotted). The sum of both contributions is represented by the solid curve. The left inset depicts 
a sample detection and the right inset the 2D position distribution for a power of 0.1 mW. (d) Experimental 
feedback control of nine individual active particles in a grid pattern at low SNR (Supplementary Video 3). (e) 
Threshold representation of the image shown in (d) pre-processed with a 3× 3 median filter. (f) Experimental 
feedback control of six individual active particles in a hexagonal pattern (Supplementary Video 4) surrounded 
by passive 0.5µm diameter polystyrene particles.
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classes (Dataset 4, Supplementary Section 3.4). The laser in our setup is steered by an acousto-optic deflector. 
The camera was set to acquire images with a size of 512× 512 pixels at an inverse frame rate of 40 ms (25 fps). 
To match the network input size the monochrome images from the camera are rescaled to 416× 416 pixels and 
converted to grayscale RGB images. The inference of particle positions requires only about 10 ms. Additional 
30 ms are needed for the processing of the particle positions and writing the uncompressed image data to disk.

We first evaluate the accuracy of the feedback control of a single active particle. To extract the dependence of 
the particle velocity on the laser power the particle is driven between two target positions (Fig. 3b, Supplementary 
Video 1). We find a non-linear scaling as the particle slips out of the laser focus during the time τ corresponding 
to the inverse frame rate. The origin of the nonlinearity is analyzed in detail elsewhere7. Here, we fit an empirical 
function v = vmax(1− exp(−bP)) , where P is the power and vmax , b are fitting parameters (Fig. 3b, solid curve). 
A maximum velocity of vmax = 12µm/s is found for τ = 40ms . The maximum velocity decreases exponentially 
with τ , pointing out the significance of our network’s fast execution speed. To extract the dependence of the 
control accuracy on the heating power a single particle is confined at a target position for a certain time (Fig. 3c, 
Supplementary Video 2). We characterize the confinement by the positioning error σ =

√

�(r − rt)
2� , where r 

and rt are the coordinates of the particle and the target, respectively. The positioning error has two regimes. If 
the particle displacement during the inverse frame rate τ due to the self-thermophoretic propulsion is smaller 
than the displacement due to the diffusion, the positioning error is represented by a simple sedimentation model: 
the particle is radially driven towards the target with a velocity v against its diffusive motion with the diffusion 
coefficient D. In the steady state the characteristic length scale is σ =

√
6D/v as indicated by the dashed curve 

in Fig. 3c. With increasing particle velocity the positioning error gets defined by an overshooting of the particle 
over the target position7. This is due to the finite sampling of the particle position with the inverse frame rate τ . 
The overshooting distance is the traveled distance within the inverse frame rate τ and increases with increasing 
power as shown by the dotted curve in Fig. 3c. The sum of both contributions is σ =

√

6D2/v2 + v2τ 2 depicted 
as solid curve in Fig. 3c. The minimum in the positioning error is found as σmin = 140 nm for vmin = 1.8µm/s . 
To achieve a control accuracy as high as possible the inverse frame rate τ needs to be as small as possible, again, 
highlighting the demand for fast image processing in active particle feedback control.

To control multiple particles they are addressed by quickly multiplexing the laser focus with �t = 10µs 
between the different particle positions within the inverse frame rate time τ . Therefore, the incident laser power 
is available for a time τ/N to each of the N particles decreasing the average laser power per particle. Figure 3d 
and Supplementary Video 3 demonstrate the control of nine individual active particles (yellow boxes) in a grid 
pattern at low SNR. Initially, the particles were randomly distributed in the field of view. When the feedback 
control is enabled each particle is driven towards its nearest target and eventually confined there. As the resulting 
arrangement is constantly actuated the structure is dynamic as can be seen from Supplementary Video 3. The 
structure can be maintained even at very low SNR were a real-time detection of the particles with algorithmic 
approaches is already quite challenging. Figure 3e shows a threshold representation of Fig. 3d, pre-processed 
with a 3× 3 media filter for reference. Figure 3f and Supplementary Video 4 demonstrate the control of six active 
particles (yellow boxes) with a background of passive PS particles (cyan boxes/trajectories). Here, in addition 
to Fig. 3d, a classification of the particles was required. Despite their lower intensity, the PS particles are still 
detected by the network and all particles are properly classified. Two additional control patterns are provided 
with Supplementary Videos 5 and 6. Notably, for all experiments, the same trained network (Dataset 4) was used 
and no fine-tuning of any parameters was required.

Extension to additional parameters—orientation detection.  While the discussion so far referred 
to particle positions and particle classes, one may extend the network also to include other parameters. The ori-
entation of objects becomes particularly interesting when particles lack spherical symmetry or have anisotropic 
optical properties. As can be seen for the elliptical and rod-like particles in Fig. 2 the orientation of objects with 
a 180◦ rotational invariance can be partly retrieved from the aspect ratio of the detected bounding boxes. Nev-
ertheless, this yields an ambiguity of 90◦ since one cannot distinguish between, e.g., −45◦ and 45◦ . In the case of 
objects with no rotational invariance and a quadratic bounding box, an orientation detection via the aspect ratio 
of bounding boxes is not possible at all. This is the case for Janus particles. Janus particles, when consisting of a 
hemispherical gold layer on top of a spherical polymer particle (Fig. 4a) result in moon-shaped darkfield images 
(Fig. 4b). The image, therefore, allows for detection of the particle orientation but not from the bounding box.

To allow also for the prediction of the orientation, the network needs to be modified and a new parameter, 
e.g., an angle ϕ , needs to be introduced to the loss function and the annotation format (Supplementary Section 9 
and Code 2). Figure 4c shows the detection output of the extended network trained for Janus type particles5,6,31. 
An extension of the network to detect even more parameters such as the z-position of the particle or the out-
of-plane rotation is easily possible emphasizing the flexibility of the network architecture35,36. A more detailed 
description of the extended network can be found in Supplementary Section 9.

Summary
In summary, we have shown that the adaption of a single-shot convolutional neural network allows us to localize 
and classify objects in optical microscopy images with an inference time of about 10 ms. The speed of the clas-
sification and localization is independent of the number of particles and the complexity of the image. While algo-
rithmic approaches will be faster and more accurate for simple images and particle shapes including one species 
and high signal-to-noise ratio (SNR > 10), our method is suitable for multiple species detection with large signal-
to-noise variations in the image. We analyzed the network performance with synthetic images and demonstrated 
its experimental application to feedback actuated self-thermophoretic active particles while tracking individual 
gold nanoparticles in the background. Feedback controlled active particle systems deliver a unique possibility 
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to create artificial interactions between synthetic active particles to mimic sensorial interactions in living spe-
cies which break the action–reaction principle in physics. Using this approach we envision further applications 
in the control of active matter and a combination with other machine learning techniques, e.g., reinforcement 
learning for adaptive control and particle navigation37. The real-time localization and classification capability of 
the network presented here is an important step towards active particle systems that are fully self-regulated by 
machine learning techniques where the feedback control and image detection are interconnected. Autonomous 
systems have the potential to explore new emergent phenomena in heterogeneous active particle ensembles and 
might be even employed to discover spatial and temporal feedback policies that also drive group formation in 
living matter. Furthermore, our work has the potential to control processes in even more challenging imaging 
situations such as in biological species. The source code and scripts of our framework are open source and can 
be easily adapted and extended for these applications.
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