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Abstract: In this paper, the interactions between two parallel cracks are investigated experimentally
and numerically. Finite element models have been established to obtain the stress intensity factors and
stress distributions of the parallel cracks with different positions and sizes. Fatigue crack growth tests
of 304 stainless steel specimens with the single crack and two parallel cracks have been conducted to
confirm the numerical results. The numerical analysis results indicate that the interactions between the
two parallel cracks have an enhancement or shielding effect on the stress intensity factors, depending
on the relative positions of the cracks. The criterion diagram to determine the enhancement or
shielding effect between two parallel cracks is obtained. The changes of the stress fields around the
cracks have been studied to explain the mechanism of crack interactions.
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1. Introduction

Fatigue damage of ships, aircrafts, pressure vessels, and other engineering components will be
caused by fluctuation loadings during their service time [1]. The accumulation of the fatigue damage
of engineering components leads to fatigue cracks [2]. Generally, multiple cracks can be found in the
damaged components [3]. Compared with the single crack, multiple cracks experience the interactions
and thus affect the remaining strength of damaged components [4]. Therefore, it is of great importance
to investigate the interactions between multiple cracks.

Previous studies have investigated multiple crack interactions and their effects on the stress intensity
factor [5–14]. Kamaya [5,6] performed the linear–elastic and elastic–plastic analysis by the finite element
method for the interactions between the semicircular and semi–elliptical surface cracks under a tensile or
bending load, and obtained the relationship between the magnitude of the interactions and the relative
positions of the cracks. Ma et al. [7] studied the interactions between an edge and an embedded parallel
crack, and they found that the normal and deviation distances as well as the relative crack sizes could
affect the value of the stress intensity factors of the two cracks. Kishida et al. [8] investigated the priority
of propagation among three parallel cracks, and they found that the longest crack did not always have the
maximum value of the stress intensity factor due to the crack interactions. Jiang et al. [9] studied two
unequal parallel cracks in a finite width plate subjected to a remote tensile load. They found that because
of the crack interactions, the stress intensity factors at the tips of two cracks simultaneously decreased. It
was also found that when the difference between the lengths of the two cracks was high, the short crack
was dormant, and its influence could be neglected. Moussa et al. [10–12] studied the interactions between
two non–coplanar, semi–elliptical surface cracks and calculated the stress intensity factors of the cracks
as a function of the crack front position, depth, shape, and plate thickness. An empirical formula was
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derived, which was related the effect of the relative positions of these cracks to the stress intensity factors.
Meng et al. [13] investigated the crack interactions between two parallel cracks and obtained the influence
coefficients of the different relative distance between the cracks. Isida et al. [14] researched the relations
between stress intensity factors and the crack number, and proposed reliable formulations of the stress
intensity factors for collinear and parallel cracks under various load conditions.

It is widely acknowledged that the stress intensity factor is an important parameter to characterize
the intensity of the stress field at the crack tip. Over the years, numerous methods and models have been
proposed to calculate the stress intensity factors of the cracks of different configurations [15–24]. Cartwright
et al. [15] presented a versatile method to obtain stress intensity factors of complex configurations. They
divided the complex configurations into some simple configurations, and the stress intensity factors of the
complex configurations could be compounded by those of the simple configurations. Kuang et al. [16]
proposed an iterative method based upon the principle of superposition and the ideas of self–consistency
to obtain the stress intensity factors of two parallel cracks. However, this method was not valid when the
distance between the two cracks was too close. Kachanov et al. [17] proposed an approximate method
to obtain the stress intensity factors of multiple cracks based on the principle of superposition. This
method decomposed the traction of each crack into a uniform component and a non-uniform component,
and the non-uniform component could be neglected. Therefore, this method was also not valid when
the distance between the two cracks was too close. Based on the Kachanov method, Li et al. [18,19]
decomposed the traction of each crack into a linear component and a nonlinear component, and Qing et
al. [20] considered the non–uniform component of the traction of cracks through the alternating technique.
These two methods were valid particularly for the situation when two cracks were close. Based on the
superposition principle of the elasticity theory, Xiao et al. [21] obtained an analytical elastic solution for
the stress intensity factors of the cracks when the distance between the two cracks was larger than the
crack length. Moreover, they calculated the stress intensity factors of two penny–shaped cracks with
different sizes in a three–dimensional elastic solid under the uniaxial tension situation. Based on the
superposition principle and integral equations, Graham et al. [22–24] calculated the stress intensity factors
of two penny–shaped cracks in an infinite or finite solid under the normal and shear loads.

Recently, several researchers have investigated the effects of the crack interactions on the fatigue
crack behavior [25–29]. It was found that the crack interactions could influence the crack growth path and
crack growth rate of materials. Jiang et al. [25] studied the fatigue propagation behavior of two parallel
edge–cracks in a finite plate. They found that the cracks had a tendency to go away from the original
propagation path and this tendency increased with the increasing crack length and decreasing crack
distance. Hui et al. [26] found that the crack growth rates of multiple cracks deviated from those of the
single crack. They introduced a new parameter ∆Kn as a new driving force for fatigue growth based on
the net section stress range ∆σn. Kamaya [27–29] studied the interactions between two parallel surface
cracks by means of the fatigue tests and finite element method. They found that the inner crack tips of
the two surface cracks changed their growth direction so that they approached each other. The growth
direction of the outer crack tips was almost straight, perpendicular to the load direction.

It is commonly accepted that two adjacent cracks may interact with each other in terms of the
enhancement or shielding effect. As the geometric configuration with two cracks is complicated, no
accurate theoretical solutions for their interactions are available except collinear cracks. In this study,
the interactions between two parallel cracks were investigated both numerically and experimentally.
Concentration was placed on the determination whether and how the stress intensity factors of the
two cracks were affected.

2. Numerical Simulations

2.1. Geometrical Model

A finite element model of a plate with two through-thickness parallel cracks under uniform
remote tension σ of 125 MPa is established, as shown in Figure 1. The plate model is 500 mm × 500 mm
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× 6 mm in size. The length of the long crack and the short crack is 2a1 and 2a2, respectively. The ratio
of the short crack length to the long crack length, a2/a1, is denoted by Ra, and the long crack length a1 is
3 mm. Since the crack size is significantly smaller than the plate size, the plate can be considered as an
infinite plate. Particularly, as shown in Figure 1, the crack tips of the long crack and the short crack are
represented with symbols A, B, C, and D. The deviation and normal distances between the two cracks
are denoted by s and h, respectively. Specially, if the deviation distance s equals zero, two cracks share
the same perpendicular bisector. If the normal distance h equals zero, two cracks are considered to
be collinear. The material adopted in this model is 304 stainless steel with the Young’s modulus of
195 GPa and the Poisson’s ratio of 0.3 [30]. Linear–elastic analysis is performed to calculate the stress
intensity factors at the crack tips.
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Figure 1. Geometric model of a plate with two parallel cracks.

2.2. Mesh Model

The eight-node plane element, with the software ANSYS (version 18.0, ANSYS Inc, Pennsylvania,
U.S.A) is used to generate meshes. In the region around the crack tips, meshes are refined to improve
the calculation accuracy as shown in Figure 2. The stress intensity factors of the crack tips are calculated
by the displacement extrapolation method [31]. A special command in ANSYS, the KSCON (key point
stress concentration) command, is executed to generate the singular elements [32] at the crack tips.
The midnodes near the crack tip of the singular elements are skewed to the 1/4 point. The dimension
of singular elements at crack tips is 1/20 of the crack length. The PLANE 183 element is chosen and
twenty singular elements are created at each crack tip. The total numbers of elements and nodes are
85,799 and 258,460, respectively.

2.3. Simulation Results of the Interactions between the Parallel Cracks

2.3.1. Stress Intensity Factors at the Crack Tips

As shown in Figure 1, the plate model is subjected to the uniform tensile loading. Figure 3
illustrates the changes of stress intensity factors at the four crack tips with the increasing s at h = 2.5 mm
for Ra = 1.0. Although both the two cracks are mixed mode I and II, it can be seen from Figure 3 that
the mode II stress intensity factor, KII, is much smaller than the mode I stress intensity factor, KI, for a
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given s and h. Therefore, only KI is considered to evaluate the interactions between the parallel cracks.
In addition to the crack sizes, the crack relative distances, i.e., the deviation s and normal distance h,
should be considered to affect the crack interactions.Materials 2019, 12, x FOR PEER REVIEW 4 of 16 
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Figure 4 shows that the stress intensity factors at the four crack tips change with crack length ratio
Ra and deviation distance s at h = 2.5 mm.

It is found that for different Ra, the stress intensity factor KI at tips A and D shows the same
trend, as shown in Figure 4. Initially, KI at tips A and D decreases with the increasing s and falls to the
minimum values. Then KI increases sharply and reaches the maximum values. After that, KI gradually
decreases, and finally becomes stable. The stress intensity factor KI at tips B and C also shows the same
trend. Initially, KI at tips B and C increases with the increasing s and reaches the maximum values.
Then, KI gradually decreases and finally becomes stable. From Figure 4a to Figure 4d, it is observed
that KI at tips C and D decreases with the decreasing Ra at the same s. In addition, for the same s but
different Ra, the value of KI at the crack tip C is always less than that at the crack tip B, and the value of
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KI at the crack tip D is always less than that at the crack tip A, implying that the long crack is more
“dangerous” than the short crack.Materials 2019, 12, x FOR PEER REVIEW 5 of 16 
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Figure 5a–d show the changes of KI with the increasing h at s = 7 mm for Ra = 1.0, Ra = 0.9, Ra = 0.7,
and Ra = 0.5, respectively. It seems that KI at tips A and D decreases almost linearly with the increasing
h, while KI at tips B and C decreases in a parabola manner with the increasing h, implying that h
affects the near crack tips and remote crack tips to different degrees. In addition, KI decreases with the
decreasing Ra for the same h, which means that the relative crack sizes influence their interactions.
It is also found that the value of KI at the short crack tip is less than that at the long crack tip, and the
difference of KI between two cracks increases with the decreasing Ra.

In order to illustrate the enhancement or shielding effect of the two parallel cracks more clearly, a
single crack is modeled as the reference. The stress intensity factor at the single crack tip is denoted by
KI

0. The ratio of stress intensity factor of the parallel cracks to the stress intensity factor of the single
crack, KI/KI

0, is introduced to characterize the crack interactions. Specially, if the value of KI/KI
0 is

more than one, the crack interaction is considered to be enhanced, and if the value of KI/KI
0 is less than

one, the crack interaction is shielded.
As indicated before, for the two parallel cracks with different lengths under the fatigue loading,

the long crack is usually regarded as to be more "dangerous". Thus, in the following analysis, we focus
on the effect of the short crack on the stress intensity factors of the long crack.
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Figure 6 shows the values of KI/KI
0 at tips A and B changing with s/a1 at h = 2.5 mm for different

Ra. It is observed that if the value of s/a1 is small, the corresponding value of KI/KI
0 is less than one,

which means that the influence of the short crack on the long crack is shielding. As s/a1 increases, the
value of KI/KI

0 increases to be larger than one, meaning that the shielding effect of short crack turns into
the enhancement effect. When the value of s/a1 is more than five, the value of KI/KI

0 approaches one,
indicating that the interactions between two cracks vanish. These results illustrate that the deviation
distance between two parallel cracks plays a key role in the crack interactions. As shown in Figure 6, it
is observed that the crack length ratio, Ra, also affects the crack interactions. Actually, a larger Ra tends
to pose a greater enhancement or shielding effect.

2.3.2. Determination of the Enhancement, Shielding, or no Interaction Effect between Cracks

It is of great importance in engineering and academic research if we can determine the enhancement,
shielding, or no interaction effect between the cracks without concrete numerical calculation. To achieve
this goal, a large number of numerical simulations with different crack configurations are carried out.
Here, for the convenient judgment of numerical computation, it is set that if the value of KI/KI

0 is
greater than 1.025, the stress intensity factor of the crack is considered to be enhanced and if KI/KI

0 is
smaller than 0.975, the stress intensity factor of the crack is considered to be shielded. Otherwise, the
crack interactions are neglected or in other words, the cracks do not interact with each other.
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With sufficient numerical results, the criterion diagram to determine the enhancement, shielding,
or no interaction effect between two parallel cracks is obtained, as shown in Figure 7. To make the
criterion expression more concise and universal, two dimensionless numbers H and S are introduced.
Here, H represents the ratio of the normal distance to the half of the crack length, i.e., h/a, and S
represents the ratio of the deviation distance to the half of the crack length, i.e., s/a. Specially, to
determine the effect of the short crack on the long crack, a in H and S is the half of the short crack
length, a2. Likewise, to determine the effect of the long crack on the short crack, a in H and S is the half
of the long crack length, a1.

The expressions of the boundaries of a–f can be obtained by the least square method [33]. The
diagram is divided into three regions by these boundaries.

The enhancement region can be express by the inequalities shown in Equations (1) and (2):
−0.100H3 + 0.655H2

− 0.440H + 0.511 ≤ S < 5.833
for 0 ≤ H < 2.333 (1)

−0.100H3 + 0.655H2
− 0.440H + 0.511 ≤ S < −0.600H2 + 2.703H + 2.795

for 2.333 ≤ H < 3.167 (2)

The shielding region can be express by the inequalities shown in Equations (3) and (4):{
0 ≤ S < −0.100H3 + 0.655H2

− 0.440H + 0.511 for 0 ≤ H < 3.167 (3)
0 ≤ S < −0.049H3 + 0.579H2

− 2.256H + 5.385 for 3.167 ≤ H < 7.167 (4)

Accordingly, the no interaction region can be express by the inequalities shown in Equations
(5)–(8): 

S ≥ 5.833 for 0 ≤ H < 2.333 (5)
S ≥ −0.600H2 + 2.703H + 2.795 for 2.333 ≤ H < 3.167 (6)
S ≥ −0.049H3 + 0.579H2

− 2.256H + 5.385 for 3.167 ≤ H < 7.167 (7)
S ≥ 0 for H ≥ 7.167 (8)

From Figure 7 it can be found that if the two cracks are close and share the same perpendicular
bisector, i.e., s = 0, only the shielding effect exists. This result implies that for two cracks sharing the same
perpendicular bisector, it would be too conservative and even irrational to simply merge them into a bigger
crack by applying the enveloping method, or in other words, it is safe to just consider the long crack.

On the other hand, if the two cracks are close and collinear, i.e., h = 0, only the enhancement effect
exists. Of course, when the two cracks are not close, either in deviation or in normal distance, their
interactions can be neglected.
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It is noted that in Figure 7, both S and H are dimensionless, and this means that the determination
of the enhancement or shielding effect of the two parallel cracks is independent of the absolute length of
the cracks. This result is of importance in engineering since it can be applied in the practical structures
with the similar multi–crack configurations.

3. Experiments

3.1. Specimen Preparation

The hot–rolled plates of 304 stainless steel are machined into the suitable dimensions (260 mm ×
48 mm × 6 mm). The chemical composition (wt%) of the steel is listed in Table 1 [34].

Table 1. Chemical composition of S30408 (wt.%).

Material C Mn P S Si Cr Ni

304 ≤0.08 ≤2.00 ≤0.045 ≤0.03 ≤1.00 18.0–20.0 8.0–10.5

The through-thickness notches are made using the wire electrical discharge method, and the
diameter of the wire used is 0.2 mm. Table 2 lists the positions and sizes of the notch cracks in different
specimens. In order to verify the crack interactions studied in the above section, five specimens are
specially designed, namely the single crack specimen (SC), the parallel crack specimen with Ra = 0.9
and s = 0 (PC0.9S0), the parallel crack specimen with Ra = 0.9 and s = 7 (PC0.9S7), the parallel crack
specimen with Ra = 1.0 and s = 0 (PC1.0S0), and the parallel crack specimen with Ra = 1.0 and s = 7
(PC1.0S7), as shown in Figure 8.

Table 2. Positions and sizes of the notch cracks in the specimens.

The Shielding Effect The Enhancement Effect
SC PC0.9S0 PC1.0S0 PC0.9S7 PC1.0S7

a1 (mm) 3 3 3 3 3
a2 (mm) — 2.7 3 2.7 3
s (mm) — 0 0 7 7
h (mm) — 2.5 2.5 2.5 2.5
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Figure 8. Geometry of the test specimens: (a) the single crack specimen; and (b) the parallel crack specimen.

3.2. Settings of the Fatigue Test

An INSTRON 8800 fatigue testing machine with the Single Axis MAX software (Boston,
Massachusetts, U.S.A) is used to carry out the fatigue crack growth tests. A constant amplitude load
with stress ratio R of 0.1, the maximum load of 40 kN, and loading frequency of 45 Hz is employed.
A digital microscope system is used to monitor and record the crack length during the fatigue tests.
The experimental setups are shown in Figure 9.
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3.3. Results of the Tests

3.3.1. Crack Growth Paths

Figure 10a–e show the crack growth paths in the SC, PC0.9S0, PC1.0S0, PC0.9S7, and PC1.0S7
specimens, respectively.Materials 2019, 12, x FOR PEER REVIEW 11 of 16 
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For the SC specimen, as shown in Figure 10a, the paths are perpendicular to the loading direction.
For the PC0.9S0 and PC1.0S0 specimens, the crack paths of the tips A and B are perpendicular to the
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loading direction but the cracks do not grow at the tips C and D due to the shielding effect caused by
the adjacent crack, as shown in Figure 10b,c. For the PC0.9S7 and PC1.0S7 specimens, the crack growth
paths of the tips B and C are perpendicular to the loading direction, but the cracks growth paths of the
tips A and D are no longer perpendicular to the direction of the loading, clearly also because of crack
interactions, as shown in Figure 10d,e.

3.3.2. Stress Intensity Factors

The stress intensity factors at the crack tips along the crack growth paths are calculated numerically.
Corresponding to the range of the fatigue load, both the Mode I stress intensity factor range, ∆KI, and
the Mode II stress intensity factor range, ∆KII, are obtained.

Figure 11 shows ∆KI and ∆KII at the crack tip B changing with the horizontal growth length ax in
different specimens. Clearly, ∆KI increases almost linearly with the increasing ax for all the specimens.
∆KII, however, fluctuates around a very small value, which means that the cracks propagate in Mode
I. Compared with ∆KI in the single crack, ∆KI at tip B in the two parallel cracks with the deviation
distance (PC0.9S7 and PC1.0S7) increases significantly while that in the two parallel cracks without
the deviation distance (PC0.9S0 and PC1.0S0) decreases in some extent. Obviously, these results are
consistent with those obtained in Section 2.3.1.
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3.3.3. Crack Growth Rates

Figure 12 shows crack growth rates at the crack tip B changing with the horizontal growth length
ax in different specimens. It is found that at the same ax, the crack growth rates in the PC0.9S7 and
PC1.0S7 specimens are higher than those in the SC specimen. In contrasts, the growth rates in PC0.9S0
and PC1.0S0 specimens are lower than those in the SC specimen. For the specimens with the same
deviation distance, the crack growth rates in the PC1.0S7 specimen are larger than those in the PC0.9S7
specimen, while the crack growth rates in the PC1.0S0 specimen are smaller than those in the PC0.9S0
specimen. Combined with the simulation results in Section 2.3, it can be found that crack growth
rates are influenced by the enhancement or shielding effect. Specifically, the crack growth rates in
the parallel crack specimen increase with the increasing enhancement effect while decrease with the
increasing shielding effect.
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4. Discussion on the Mechanism of the Crack Interactions

It seems that the two parallel close cracks present their interactions in two opposite ways. One is
that the crack causes material discontinuity, thereby weakening the stress field around cracks. The other
is effective crack length, which is defined as the overall projected length of the cracks on the surface
perpendicular to the first principal stress. The increase of the effective crack length can strengthen the
stress field around the cracks. How the two cracks interact with each other depends on the resultant
effect of the two influences. Of course, if the two cracks are remote from each other, i.e., a large s or h,
the stress field is not considered to be affected.

To prove this viewpoint, the changes of the stress fields around the cracks caused by crack
interactions are obtained. Figure 13 shows the stress distributions in the vicinity of the crack tips for
the single crack (SC), the two equal parallel cracks with s = 7 and h = 2.5 (PCS7), s = 17 and h = 2.5
(PCS17), and s = 0 and h = 2.5 (PCS0). In order to avoid the stress singularity at the crack tip, a circle
with the center at tip A and the radius, r, of a1/10 is chosen, as shown in Figure 14, to compare the
stress distributions in the vicinity of tip A for different crack configurations.
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Figure 15 shows the stress distributions in the vicinity of the crack tip A for the SC, PCS7, PCS17
and PCS0. It is found that the stress magnitude in the vicinity of tip A of PCS7 is larger than that of SC,
while the stress magnitude of PCS0 is smaller, compared with that of SC. For PCS17, however, since the
two cracks are far deviated from each other, the stress field is not clearly affected. These results indicate
that if the two parallel cracks are close and deviated, the stress field can be strengthened, and if the two
parallel cracks are close and share the same perpendicular bisector, the stress field is weakened.

Materials 2019, 12, x FOR PEER REVIEW 14 of 16 

 

Figure 13. Von Mises stress distributions in the vicinity of the crack tips: (a) SC, (b) PCS7, (c) PCS17, 
and (d) PCS0. Points A-D are the four crack tips shown in Figure 1. 

 
Figure 14. A circle defined to show stress distributions. 

 
Figure 15. Von Mises stress distributions in the vicinity of tip A. 

Figure 15 shows the stress distributions in the vicinity of the crack tip A for the SC, PCS7, PCS17 
and PCS0. It is found that the stress magnitude in the vicinity of tip A of PCS7 is larger than that of 
SC, while the stress magnitude of PCS0 is smaller, compared with that of SC. For PCS17, however, 
since the two cracks are far deviated from each other, the stress field is not clearly affected. These 
results indicate that if the two parallel cracks are close and deviated, the stress field can be 
strengthened, and if the two parallel cracks are close and share the same perpendicular bisector, the 
stress field is weakened. 

5. Conclusions 

In this paper, the interactions in terms of enhancement or shielding between two parallel cracks 
with different sizes and positions have been investigated numerically and experimentally. 
Conclusions are obtained as follows: 
1. If the two parallel cracks are close and share the same perpendicular bisector, only the shielding 

effect exists. In this case, it would be too conservative and even irrational to simply merge them 
into a bigger crack by applying the enveloping method. 

2. If the two parallel cracks are close and deviated, whether the stress intensity factors are enhanced 
or not depends on the deviation and normal distance between the two cracks. Specifically, if the 
two parallel cracks are collinear, only the enhancement effect exists. 

3. The criterion diagram to determine the enhancement, shielding, or no interaction effect between 
two parallel cracks is obtained, which can be applied in practical structures with similar multi-
crack configurations.  

Figure 15. Von Mises stress distributions in the vicinity of tip A.

5. Conclusions

In this paper, the interactions in terms of enhancement or shielding between two parallel cracks
with different sizes and positions have been investigated numerically and experimentally. Conclusions
are obtained as follows:

1. If the two parallel cracks are close and share the same perpendicular bisector, only the shielding
effect exists. In this case, it would be too conservative and even irrational to simply merge them
into a bigger crack by applying the enveloping method.

2. If the two parallel cracks are close and deviated, whether the stress intensity factors are enhanced
or not depends on the deviation and normal distance between the two cracks. Specifically, if the
two parallel cracks are collinear, only the enhancement effect exists.

3. The criterion diagram to determine the enhancement, shielding, or no interaction effect between
two parallel cracks is obtained, which can be applied in practical structures with similar
multi-crack configurations.

4. Fatigue crack growth test results indicate that the cracks grow in Mode I. The crack growth rates
are influenced by the enhancement or shielding effect. Specifically, the crack growth rates in the
parallel crack specimens increase with the increasing enhancement effect while decrease with the
increasing shielding effect.
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5. The crack interaction phenomenon can be explained by the changes of the stress fields around
cracks. If the two parallel cracks are close and deviated, the stress field is strengthened and
if the two parallel cracks are close and share the same perpendicular bisector, the stress field
is weakened.
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