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In Eco-Metabolomics interactions are studied of non-model organisms in their natural environment and
relations are made between biochemistry and ecological function. Current challenges when processing such
metabolomics data involve complex experiment designs which are often carried out in large field
campaigns involving multiple study factors, peak detection parameter settings, the high variation of
metabolite profiles and the analysis of non-model species with scarcely characterised metabolomes. Here,
we present a dataset generated from 108 samples of nine bryophyte species obtained in four seasons using
an untargeted liquid chromatography coupled with mass spectrometry acquisition method (LC/MS). Using
this dataset we address the current challenges when processing Eco-Metabolomics data. Here, we also
present a reproducible and reusable computational workflow implemented in Galaxy focusing on standard
formats, data import, technical validation, feature detection, diversity analysis and multivariate statistics.
We expect that the representative dataset and the reusable processing pipeline will facilitate future studies
in the research field of Eco-Metabolomics.

Design Type(s)
time series design • database creation objective • process-based data
analysis objective

Measurement Type(s) metabolite profiling

Technology Type(s) Ultra High-performance Liquid Chromatography/Tandem Mass Spectrometry

Factor Type(s)
Spatial Orientation • wetness of soil • degree of illumination • substrate
type • season • scan polarity

Sample Characteristic(s)

Fissidens taxifolius • shoot system • Polytrichum strictum • Hypnum
cupressiforme • Grimmia pulvinata • Plagiomnium undulatum •
Rhytidiadelphus squarrosus • Calliergonella cuspidata • Brachythecium
rutabulum • Marchantia polymorpha
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Background & Summary
In Ecological Metabolomics (or short “Eco-Metabolomics”), metabolite profiles of organisms are studied
in order to describe ecological processes such as biotic interactions or the impact of environmental
changes on various biological species1–3. In contrast to biochemistry, wild non-model species are typically
studied in their natural environment in ecology. This often involves different individuals of one or more
species from populations growing under quite heterogeneous conditions when compared to the
controlled conditions in greenhouses or growth chambers. As a result, metabolite profiles are highly
variable when compared to each other. Moreover, profiles of non-model species contain a large number
of novel compounds (so called “unknown unknowns”) that are difficult to identify because of lacking
reference compounds, which have so far been mostly elucidated in model organisms3,4. Furthermore,
designing ecological experiments is often complex and involves multiple factors5. Thus, the metabolomics
data processing pipeline needs to be adapted in order to deal with the particular hypotheses and
idiosyncrasies of ecological experiments.

Here, we present a descriptor for a dataset that we consider representative for the research field of Eco-
Metabolomics. Our study makes use of a field campaign with a two-factorial design (seasons and species),
which includes (except Marchantia polymorpha) non-model species of bryophytes. In order to facilitate
subsequent analysis, we kept the experiment design as simple as possible. The sampling was conducted
on-site at the Botanical Garden of Martin Luther University Halle-Wittenberg once in each season over a
period of one year (see below). Metabolite profiles were acquired using untargeted liquid chromatography
coupled with mass spectrometry (LC/MS). Raw metabolite profiles are available in the metabolomics data
repository MetaboLights6 (Data Citation 1).

In biochemistry there are strict laboratory protocols that ensure reproducibility of the analytical
methods, while in bioinformatics this function is accomplished by implementing reusable computational
workflows7,8. Thus, in addition to the dataset we also address the typical bioinformatic challenges that
come with Eco-Metabolomics experiments by implementing a reproducible and reusable computational
workflow (Fig. 1). While the analysis and ecological interpretation of the study is described in
Peters et al.9, here we focus on the analytical and bioinformatic work that is required to create a
computational processing pipeline that is reproducible and that can be reused by other subsequent
studies.

We describe in detail the experimental methodology that was used to create the dataset as well as the
methodology to make the computational workflow reproducible (to give identical results in different
computational environments). By formalizing and validating the processes that led to the results10,11,
we expect that this approach can serve as a model for subsequent studies. We further expect that
Eco-Metabolomics studies use our dataset and the computational workflow to foster reuse and improve
future data processing pipelines.

Methods
These methods describe in detail the steps in producing the data, including full descriptions of the
experimental design in our related work9, data acquisition, computational processing, diversity analysis,
biostatistics and bioinformatics procedures.

Sampling campaign
Samples of the nine moss species Brachythecium rutabulum (Hedw.) Schimp., Calliergonella cuspidata
(Hedw.) Loeske, Fissidens taxifolius Hedw., Grimmia pulvinata (Hedw.) Sm., Hypnum cupressiforme
Hedw. (H. lacunosum was not differentiated), Marchantia polymorpha L., Plagiomnium undulatum
(Hedw.) T.J. Kop., Polytrichum strictum Menzies ex Brid. and Rhytidiadelphus squarrosus (Hedw.)
Warnst. were collected in the Botanical Gardens of the Martin-Luther-University Halle-Wittenberg,
Germany. Sampling was performed in summer (2016/08/08), autumn (2016/11/09), winter (2017/01/27)
and spring (2017/05/11) at relatively stable weather conditions as it is known that short-term climatic
fluctuations and rainfall can influence secondary metabolite content and ammonium uptake of
bryophytes12. Thus, the bryophytes were only collected when there was sunshine at least two days prior to
and during sampling. Furthermore, sampling was performed after mid-day between 13:00 and 15:00.

Sampling protocol
In each season, three composite samples of different individuals of each species were taken, leading to a
total of 3 * 9 * 4= 108 samples. Only above-ground parts of the moss gametophytes such as leaves,
branches, stems or thalloid parts were taken for sampling. From dioecious species such asM. polymorpha,
P. strictum and P. undulatum female, male and sterile gametophytes were collected in a composite
sample. Before sampling, visible archegonial and antheridial heads and any belowground parts such as
rhizoids and rooting stems were removed with a sterile tweezer. The gametophytic moss parts were put in
Eppendorf tubes and were frozen instantly on dry ice and later in the lab in liquid nitrogen.

Collecting ecological characteristics
In order to relate metabolomes of the bryophytes to ecology, several ecological characteristics were
recorded on-site and compiled from literature. The on-site characteristics type of substrate with the
nominal/categorical levels “soil”, “rock with lean soil cover” and “rock”; light conditions with the ordinal
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levels “sunny”, “half-shade” and “shade”; moisture of the substrate with the ordinal levels “dry”, “fresh”,
“damp” and wet; and exposition with the nominal levels “North”, “East”, “South”, “West”, “Northeast”,
“Northwest”, “Southeast” and “Southwest” were recorded when taking the samples in the field.

The nominal characteristics growth form, habitat type, substrate and life strategy, the ordinal life-
history characteristics spore size, gametangia distribution and sexual reproduction frequency, as well as the
ordinal Ellenberg indicator values (indices for light, temperature, continentality, moisture, reaction,
nitrogen and life-form) were collected from the literature13–17. For an overview, please refer Table 1
(available online only) in Peters et al.9 or the file m_characteristics.csv in the dataset (see Data Citation 1,
and Table 1 (available online only)).

Extraction protocol and LC/MS analysis
Frozen moss samples were homogenized by adding 200 mg ceramic beads (0.5 mm diameter, Roth) and
ribolysing (Precellys 24, 2 × 20 s at 6500 r.p.m., 5 min pause in liquid nitrogen). 1 ml ice-cold 80/20 (v/v)
methanol/water spiked with internal standards 5 μM biochanin A (Sigma-Aldrich), 5 μM kinetin (Sigma-
Aldrich) and 5 μM N-(3-indolylacetyl)-l-valine (Sigma-Aldrich) were added. Samples were vortexed and
thawed while shaking for 15 min at 1,000 r.p.m. at room temperature followed by ultrasonification for
15 min and again 15 min shaking. After 15 min centrifugation at 13,000 r.p.m. 500 μl of supernatant were
dried in a vacuum centrifuge at 40 °C and reconstituted in 80/20 (v/v) methanol/water with the volume
adjusted to the initial fresh weight of the sample to a final concentration of 10 mg fresh weight per 100 μl
extract.

Chromatographic separations were performed at 40 °C on an Acquity UPLC system (Waters)
equipped with an HSS T3 column (100 × 1 mm, particle size 1.8 μm; Waters) applying the following
binary gradient at a flow rate of 150 μL min− 1: 0 to 1 min, isocratic 95% A (water:formic acid: 99.9:0.1 [v/
v]), 5% B (acetonitrile:formic acid: 99.9:0.1 [v/v]); 1 to 18 min, linear from 5 to 95% B; 18 to 20 min,
isocratic 95% B. The injection volume was 2.0 μL (full loop injection).

Ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-
flight mass spectrometry (UPLC/ESI-QTOF-MS) was performed using a high resolution MicrOTOF-Q II
hybrid quadrupole time-of-flight mass spectrometer18. Data were acquired with the following MS
instrument settings: nebulizer gas: nitrogen, 1.4 bar; dry gas: nitrogen, 6 L min− 1, 190 °C; capillary: 5000
V (+4000 V for negative mode); end plate offset: −500 V; funnel 1 radio frequency (RF): 200 Volts peak-
to-peak (Vpp); funnel 2 RF: 200 Vpp; in-source collision-induced dissociation (CID) energy: 10 eV;
hexapole RF: 100 Vpp; quadrupole ion energy: 3 eV (−5 eV for neg-mode); collision gas: nitrogen;
collision energy: 7 eV (−7 eV for negative mode); collision cell RF: 250 Vpp (150 Vpp for negative mode);
transfer time: 70 μs; prepulse storage: 5 μs; pulser frequency: 10 kHz; and spectra rate: 3 Hz. Mass spectra

Figure 1. Computational workflow of the whole study (Data Citation 1) running in the Galaxy Workflow

Management system. Each of the modules represent a particular step in the study of Peters et al.9. The

modules have defined inputs, outputs and sets of parameters. The modules are connected to each other to give

the resulting workflow. The function of the modules is explained in Table 1 (available online only).
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were acquired in centroid mode. Calibration of the m/z scale was performed for individual raw data files
on lithium formate cluster ions obtained by automatic infusion of 20 μL of 10 mM lithium hydroxide in
isopropanol:water:formic acid, 49.9:49.9:0.2 (v/v/v) at the end of the gradient.

Quality control
In order to validate the instrument performance and to detect batch effects between the instrument runs,
the following quality control (QC) protocol was realized. Samples with a lab-internal standard mix
(MM8) were interspersed before and after 7 bryophyte samples in the MicrOTOF18. The following
substances were used in the MM8: 2-Phenylglycine (Fluka), Kinetin (Roth), Rutin (Acros Organics),
O-Methylsalicylic acid (Sigma), Phlorizin dihydrate (Sigma), N-(3-Indolyacetyl)-L-valine (Sigma), 3-
Indolylacetonitrile (Fluka) and Biochanin A (Sigma). Substances in the MM8 were selected based on their
ionization properties (ionization in both positive and negative mode and the differential adduct
formation) and a wide coverage of known retention times throughout the gradient with our instrumental
setup. Known ionization properties were used to detect shifts and effects in mass-to-charge ratios (m/z)
and retention times (RT) of the respective batches and to validate RT correction made by XCMS (see
below).

Raw data acquisition
Raw LC/MS data were converted to the open data format mzML19 with the software CompassXPort 3.0.9
from Bruker Daltonics (available at http://www.bruker.com/service/support-upgrades/software-down-
loads.html). In compliance with the minimum information guidelines for Metabolomics studies20,
metadata were recorded to ISA-Tab format21 using ISAcreator 1.7.10 (ref. 22) (available at https://github.
com/ISA-tools/ISAcreator/releases) and uploaded together with the raw data to the metabolomics
repository MetaboLights6 (Data Citation 1). Profiles of positive mode were used for the data analyses as
many important and known secondary metabolites classes in bryophytes such as flavonoids,
phenylpropanoids, anthocyans, glycosides and previously characterized compounds such as Marchantins,
Communins and Ohioensins ionize well in positive mode with our instrumental setup.

Peak detection
Chromatographic peak picking was performed in R 3.4.2 (available at https://cran.r-project.org) with the
package XCMS 1.52.0 (ref. 23) using the centWave algorithm and the following parameters: ppm= 35,
peakwidth= 4,21, snthresh= 10, prefilter= 5–50, fitgauss=TRUE, verbose.columns=TRUE. Grouping
of chromatographic peaks was performed with two factors (in XCMS called “phenoData”): seasons with
the levels summer, autumn, winter and spring; and species with the levels Brarut, Calcus, Fistax, Gripul,
Hypcup, Marpol, Plaund, Polstr and Rhysqu. The following parameters were used for grouping:
mzwid= 0.01, minfrac= 0.5, bw= 4. To improve subsequent data analyses, intensities in the peak table
were log transformed before grouping. For further analysis, only features between the retention times 20 s
and 1020 s were kept. Retention time correction was performed using the function retcor in XCMS using
the parameters method= loess, family= gaussian, missing= 10, extra= 1, span= 2. The parameters were
additionally optimized using the R package IPO 1.3.3 (ref. 24), but better alignment precision was
achieved with manual control and knowledge of instrument settings25.

Figure 2. Plots of sets of the MM8 profiles to assess the performance of the technical setup. Green= spring,

yellow= summer, red= autumn, blue=winter. n= 28. (a) Plot of the four sets of MM8 profiles against each

other. X axis: Retention time [s]. Y axis: Logarithmic total ion current. (b) Stacked plot of the sets of MM8

profiles next to each other. X axis: Retention time [s]. Y axis: Logarithmic total ion current. (c) Density plot

(histogram) of log intensities of the sets of MM8 profiles. X axis: Sample size. Y axis: Estimated kernel density.
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Peak annotation
Adduct annotation was performed with the R package CAMERA 1.33.3 (ref. 26) by using the following
functions: xsAnnotate, groupFWHM, findIsotopes, groupCorr, findAdducts; with the following
parameters: perfwhm= 0.6, ppm= 5, mzabs= 0.005, calcIso=TRUE, calcCiS=TRUE, calcCaS=TRUE,
graphMethod= lpc, pval= 0.05, cor_eic_th= 0.75. In order to improve subsequent statistical analyses
instead of the CAMERA function getPeaklist the function getReducedPeaklist was written that aggregates
the adducts of putative compounds into a feature list with singular components (see pull request in
GitHub: https://github.com/sneumann/CAMERA/pull/16). Since version 1.33.3 the function getRedu-
cedPeaklist is officially part of CAMERA. The parameter method=median was chosen for the study.

Figure 3. Quality control plots to assess shifts in retention time (RT) and mass-to-charge ratio (m/z) in the

four sets of MM8 profiles. Green= spring, yellow= summer, red= autumn, blue=winter. n= 28. (a) Median

retention time deviation for the sets of MM8 profiles. X axis: Name of MM8 profile. Y axis: Retention time

deviation [s]. (b) Retention time deviation plotted against retention time. X axis: Retention time [s]. Y axis:

Retention time deviation [s] per profile. (c) Median mass-to-charge deviation for each profile. X axis: MM8

profile. Y axis: m/z deviation. (d) Mass-to-charge deviation plotted against retention time. X axis: Retention

time [s]. Y axis: m/z deviation per profile.
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Exemplary compound annotation
Compounds were putatively annotated for the follow-up validation and biochemical interpretation with
the software Bruker Compass IsotopePattern 4.4. Annotation was performed by calculating accurate
masses (mass-to-charge values) from known compounds inM. polymorpha and other liverworts found in
PubChem, the KNApSAcK database and Asakawa et al.27,28. In the software Bruker Compass
DataAnalysis 4.4 the mass-to-charge was matched to device-specific retention times in the metabolite
profile. To validate whether the known compound was present in the profile, Extracted Ion
Chromatograms (EIC) and area-under-curve (integrated intensities) were checked manually.

Diversity analysis
Statistical analyses were performed using the additional R packages: multtest, RColorBrewer, vegan,
multcomp, multtest, nlme, ape, pvclust, dendextend, phangorn, Hmisc, gplots and VennDiagram. A
presence-absence matrix was generated from the feature matrix to determine the differences in metabolite
features between the experimental factors species and season. In accordance with the minfrac parameter
in the alignment step in XCMS (see above), a feature was considered present when it was detected at least
in two out of three replicates. The presence-absence matrix was used for measuring the metabolite
richness for each species and season by calculating the Shannon diversity index (H’) for each sample i
using the function diversity in vegan with the parameter index= shannon29. The following equation was
used for calculation:

H0 ¼
Xt

i¼1

pi In pið Þ

where t represents the number of samples in the particular group.
The total number of features and the number of unique features were calculated from the presence-

absence matrix accordingly. To test factor levels for significant differences, the Tukey HSD on a one-way
ANOVA was performed post-hoc using the multcomp package.

Variability was calculated with the Pearson Correlation Coefficient (PCC, Pearson’s r) using the
function rcorr in the package Hmisc. Venn diagrams were created for each species separately using the
package VennDiagram. Each set in the Venn diagram represents one season and shows distinct and
shared features in all possible combinations between the sets.

Multivariate statistical analysis
Variation partitioning was performed using the function varpart in the package vegan to analyze the
influence of the factors species and seasons on the metabolite profiles. Distance-based redundancy
analysis (dbRDA) using the function capscale with Bray-Curtis distance and multidimensional scaling in

Figure 4. The eight compounds used for the internal lab standard mix (MM8) plotted next to each other.

Shown are the regions of the respective compounds in the raw chromatograms before the alignment of XCMS.

Green= spring, yellow= summer, red= autumn, blue=winter. X axis: Retention time [s]. Y axis: Logarithmic

total ion current. n= 28.
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the package vegan was chosen to analyse the relation of the ecological characteristics with the species
metabolite profiles30,31. Ordinal and categorical ecological characteristics were transformed to presence-
absence matrices for the ordination. The optimal model for the dbRDA was chosen with forward and
backward selection using the function ordistep in the package vegan. Ecological characteristics were
added to the plots as post-hoc variables using the function envfit in the package vegan.

Chemotaxonomic comparison to phylogeny
Relationships between metabolite profiles and phylogeny were analysed by calculating dissimilarities for
phylogeny and the feature matrix using Bray-Curtis distance (function vegdist in vegan) followed by
hierarchical clustering using the function hclust and the complete linkage method. In order to improve
the visual comparison between the two trees, the chemotaxonomic plot was reordered using the function
order.optimal (package cba) and leaves of Polstr and Plaund were swapped using the function reorder in
vegan. The similarity of the two trees was determined with the normalized Robinson-Foulds metric
(function RF.dist in package phangorn). The similarity of the distance matrices was determined with the
Mantel statistics (function mantel in vegan).

Computational workflow
For the computational workflow, the required software tools, their dependencies, as well as software
libraries and R packages were containerized using Docker technology32. The container was based on
Linux and Ubuntu 16.04 and included R version 3.4.2 from the R apt repository. The commands for
building the container can be found in the Dockerfile (Table 1 (available online only)). The resulting
container image was made available at DockerHub (https://hub.docker.com/r/korseby/mtbls520/).

The computational workflow was constructed with the Galaxy workflow management system33. It
consists of 20 modules and each individual module represents one or more dedicated steps in the Peters
et al. study9, e.g. data retrieval, feature detection, alignment or statistical analysis (Fig. 1). For the
workflow, individual Galaxy modules were written in XML format. Each Galaxy module executes a shell
or R script with defined inputs and outputs. Scripts are only executed inside the software container. Thus,
code execution is encapsulated and all required software dependencies were resolved in the software
container. In order to comply with the Interoperability criterion in the FAIR guidelines34, the
PhenoMeNal cloud e-infrastructure was used to test the workflow in different computational
environments (https://phenomenal-h2020.eu). To ensure that the workflow generates the same results
in different computational environments, continuous automatic workflow testing was implemented with
wft4galaxy35.

Data Records
The primary access site for the dataset is MetaboLights (Data Citation 1), which includes the 108
metabolite profles of the bryophytes in positive and negative mode, QC profiles, ecological data and
meta-data (see Table 2 (available online only) for an overview of sample names and associated factor

Figure 5. Boxplots of the variation in the intensities of the eight compounds used in the internal lab

standard mix of all the MM8 profiles. X axis: Compound. Y axis: Logarithmic total ion current. n= 28 for

each box.
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levels). Table 1 (available online only) provides an overview of data files, formats and functions in the
computational workflow.

Code Availability
The source code (also deposited at https://github.com/korseby/container-mtbls520/) was published36 and
made available under the terms of APACHE license 2.0. Please refer Table 1 (available online only) for an
overview of the function of each file of the source code.

Code for building the software container image and the workflow including Galaxy modules and
scripts that are executed inside the container were published under Open Access36. A pre-built binary
software container image was made available at DockerHub (retrievable at https://hub.docker.com/r/
korseby/mtbls520/).

Technical Validation
Quality control
Four sets of 27 bryophyte samples were generated in the experiment. One set for each season was
analyzed with UPLC/ESI-QTOF-MS (see methods below) which resulted in a total of 108 bryophyte
metabolite profiles. In order to validate the instrument performance and to detect batch effects between
the four instrument runs, a quality control (QC) protocol was implemented. Sets of 27 species samples
were interspersed by samples of a lab-internal standard mix (MM8) before and after 7 bryophyte samples.
Peak detection in these MM8 profiles was performed with the identical parameters as for the bryophyte
samples.

The four sets containing the MM8 metabolite profiles were checked visually for differences by plotting
them against each other (Fig. 2a) and stacked next to each other (Fig. 2b). The density distribution of the
intensities within the sets of MM8 profiles were also checked and compared to each other with a density
plot (histogram) (Fig. 2c).

Mass-to-charge ratio and retention time deviation (in seconds) and correction made by XCMS were
checked with diagnostic plots made by XCMS (Fig. 3). We found maximum retention time deviations
within 2 s (Fig. 3a and b) which are in the expected range of the analytical setup18. The determined mass-
to-charge deviations (Fig. 3c and d) are within instrument specification as well18.

The variation in the intensities of the internal lab standards was also checked for each reference
compound individually as shown in Figs. 4 and 5. In general, the variation for each reference compound
and the deviations between MM8 profiles are both well within the typical range of 10 to 15% (ref. 18).

We conclude that there are no significant batch effects in the technical replicates to overlap with the
factor seasons of the experiment. Thus, the automatic retention time correction made by XCMS is
validated for the parameters used in the peak detection process.

Figure 6. Total Ion Count (TIC) chromatogram obtained from the extracts of Marchantia polymorpha.

This exemplary chromatogram was obtained from the third sample of summer. Values of the retention times

(RT values), accurate masses and sum formulas are available in Table 3 (available online only).
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Exemplary annotation of Marchantia polymorpha profile
With known accurate masses (m/z values) and calculated retention time values (see methods), we
confirm the annotation of many known compounds which are described in literature for the model
species Marchantia polymorpha27,28 (Fig. 6). Many of these known compounds also constitute the most
abundant features in the profile of M. polymorpha (Fig. 6).

Computational workflow
We have implemented the computational workflow in the Galaxy workflow management system33 and
have made the workflow and underlying code available as Open Source36. The Galaxy workflow
represents the entire computational processing pipeline that is used in the Peters et al. study9 (Fig. 1).
Each of the individual modules represents a particular step in the workflow and has defined inputs (e.g.
pre-processed peak table data matrix) and outputs (e.g. PDF containing the plot of a particular statistical
method) (Fig. 1). We used data standards and minimum information criteria for constructing the
modules of the workflow20,22. Continuous automatic testing of the workflow was performed with
wft4galaxy35 in the PhenoMeNal e-infrastructure (https://phenomenal-h2020.eu) to ensure that the
workflow generates the same results in different computational environments.

We proceeded according to the FAIR guiding principles34 in order to implement a reusable
computational workflow. The acronym FAIR stands for Findable, Accessible, Interoperable and Reusable
and encompasses several criteria to support the reuse of scholarly data. So far, the FAIR guidelines have
only been aspired to make data reusable. However, as the conceptual formulation within FAIR are quite
generalized37, these principles can also be applied to computational workflows. Nonetheless, there are
some computational challenges involved. For example, software runs in different software environments
and software dependencies need to be resolved. We tackle this by creating software containers which can
be run on multiple systems and contain the software tools, all required libraries and R packages32,38. As
dependencies in the container have already been resolved, sharing the container image greatly facilitates
to allow the software to be run in multiple environments.

We have chosen the Galaxy Workflow Management system33,39 to implement the whole data
processing pipeline (Fig. 1) as it is already known to facilitate reproducible results40. Several processing
modules were constructed that represent the individual steps of the Peters et al. study9. Software tools are
invoked from the Galaxy modules and are executed inside the container, thus, adding a level of
encapsulation and eliminating the need for the user to install additional software41. Galaxy has a
graphical user interface that hides the technical complexity from the end user and does not need intensive
bioinformatic background knowledge to run the particular modules and workflows. This greatly
contributes to the adoption by the end users (biochemists and ecologists) and facilitates future studies in
the research field of Eco-Metabolomics.

Statistical analyses
With untargeted metabolomics analysis in ecology, diversity analysis is typically used to characterize the
richness and the abundance of biochemical features in the metabolite profiles of biological species42. Metabolite
richness is a simple measure that counts the individual biochemical features in the metabolite profiles of the
species43. The abundance of features in the metabolite profiles is usually calculated by diversity indices such as
the Shannon diversity index (H’) in order to characterize simple relationships with regard to the study factors44.

Ordination methods such as Redundancy Analysis (RDA) and distance-based Redundancy Analysis
(dbRDA) are frequently used in Ecology30. They allow to derive correlations of specific variables between
the matrix of predictors containing the measurements (X matrix) and the response matrix with the
ecological traits (Y matrix)30,45. These methods are also suitable for Eco-Metabolomics data as they allow
the use of multiple (non-categorial) variables in a single model and allow to calculate the amount of
explained variance of the model. We have chosen the dbRDA, which can also be regarded as a
constrained version of metric scaling (MDS)46,47. We have implemented dedicated modules for these
statistical operations in our computational workflow (see Methods section and Fig. 1).

Usage Notes
Building the container image
Following are instructions to manually build the container image. The file Dockerfile in Table 1 (available
online only) contains the ruleset. The container has been built using Docker version 17.05-ce under Linux
Ubuntu 16.04. The following commands were run to generate the image:

sudo apt-get install apt-transport-https ca-certificates git
sudo echo deb http://apt.dockerproject.org/repo ubuntu-xenial main
>>/etc/apt/sources.list
sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80
--recv-keys 58118E89F3A912897C070ADBF76221572C52609D
sudo apt-get update && sudo apt-get install docker
git clone https://github.com/korseby/container-mtbls520
cd container-mtbls520
docker build -t korseby/mtbls520.
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Installing and using Galaxy to run the workflow
The workflow was tested with Galaxy version 17.09. Instructions how to install Galaxy can be found in the
training material of the Galaxy project (accessible at https://galaxyproject.github.io/training-material/).
However, it is recommended that an official Galaxy server is used, such as those from the PhenoMeNal
infrastructure (available at https://public.phenomenal-h2020.eu/).

After being logged into Galaxy, a click on “Workflow” in the menu bar on the top and then a
click on the “Upload” button opens up a new page. In the field “Galaxy workflow URL:” enter
the following address “https://raw.githubusercontent.com/korseby/container-mtbls520/develop/galaxy/
mtbls520_workflow.ga” or upload the .ga file from the GitHub repository (Table 1 (available online only))
and then clicking on the button “Import”. This will import the workflow of the study into Galaxy. The
workflow will now be available in Galaxy under Workflows as “Metabolights 520 Eco-Metabolomics
Workflow”. From there, clicking on the drop-down menu there are options to “Edit” (visually view the
complete workflow in the Galaxy workflow editor) or to “Run” the workflow. Required data can be
downloaded from MetaboLights with the Galaxy module “mtbls520_01_mtbls_download” (Table 1
(available online only)). Once the download has been completed, data can be extracted with the Galaxy
module “mtbls520_02_extract” (Table 1 (available online only)). The workflow can be directly run once
the inputs have been assigned to the extracted data files. Processing will take approx. 40 min depending
on the work load of the computational infrastructure.

References
1. Sardans, J., Peñuelas, J. & Rivas-Ubach, A. Ecological metabolomics: overview of current developments and future challenges.
Chemoecology 21, 191–225 (2011).

2. Jones, O. A. H. et al. Metabolomics and its use in ecology: Metabolomics in Ecology. Austral Ecol. 38, 713–720 (2013).
3. Peters, K. et al. Current Challenges in Plant Eco-Metabolomics. Int. J. Mol. Sci 19, 1385 (2018).
4. van Dam, N. M. & van der Meijden, E. A Role for Metabolomics in Plant Ecologyin Annual Plant Reviews Volume 43
(ed. Hall, R. D.) 87–107 (Wiley-Blackwell, 2011).

5. Rivas-Ubach, A. et al. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and
plant-folivore coevolutionary processes? Ecol. Evol 6, 4372–4386 (2016).

6. Haug, K. et al. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data.
Nucleic Acids Res. 41, D781–D786 (2013).

7. Gil, Y. et al. Examining the Challenges of Scientific Workflows. Computer 40, 24–32 (2007).
8. Peng, R. D. Reproducible Research in Computational Science. Science 334, 1226–1227 (2011).
9. Peters, K., Gorzolka, K., Bruelheide, H. & Neumann, S. Seasonal variation of secondary metabolites in nine different bryophytes.
Ecol. Evol. https://doi.org/10.1002/ece3.4361 (2018).

10. Sandve, G. K., Nekrutenko, A., Taylor, J. & Hovig, E. Ten Simple Rules for Reproducible Computational Research. PLoS Comput.
Biol. 9, e1003285 (2013).

11. Leipzig, J. A review of bioinformatic pipeline frameworks. Brief. Bioinform.18, 530–536 (2017).
12. Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A. & During, H. J. Comparative Cryptogam Ecology: A Review of Bryophyte

and Lichen Traits that Drive Biogeochemistry. Ann. Bot. 99, 987–1001 (2007).
13. Urmi, E. Bryophyta (Moose) in Flora indicativaEcological Indicator Values and Biological Attributes of the Flora of Switzerland

and the Alps 283–310 (Haupt, 2010).
14. During, H. J. Ecological classification of bryophytes and lichens in Bryophytes and lichens in a changing environment

1–31 (Clarendon Press, 1992).
15. Frisvoll, A. A. Bryophytes of Spruce Forest Stands in Central Norway. Lindbergia 22, 83–97 (1997).
16. Smith, A. J. E. The liverworts of Britain and Ireland (Cambridge University Press, 1990).
17. Smith, A. J. E. The Moss Flora of Britain and Ireland (Cambridge University Press, 2004).
18. Böttcher, C. et al. The Multifunctional Enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) Converts Cysteine-Indole-3-

Acetonitrile to Camalexin in the Indole-3-Acetonitrile Metabolic Network of Arabidopsis thaliana. Plant Cell. 21,
1830–1845 (2009).

19. Martens, L. et al. mzML—a Community Standard for Mass Spectrometry Data. Mol. Cell. Proteomics 10(R110): 000133 (2011).
20. Spicer, R. A., Salek, R. & Steinbeck, C. Compliance with minimum information guidelines in public metabolomics repositories.

Sci. Data 4, 170137 (2017).
21. Sansone, S.-A. et al. Toward interoperable bioscience data. Nat. Genet. 44, 121–126 (2012).
22. Rocca-Serra, P. et al. ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the

community level. Bioinformatics 26, 2354–2356 (2010).
23. Tautenhahn, R., Bottcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9,

504 (2008).
24. Libiseller, G. et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics 16, 118 (2015).
25. Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep

6, 29033 (2016).
26. Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: An Integrated Strategy for Compound Spectra

Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal. Chem. 84, 283–289 (2012).
27. Nakamura, Y. et al. KNApSAcK Metabolite Activity Database for Retrieving the Relationships Between Metabolites and Biological

Activities. Plant Cell Physiol. 55, e7 (2014).
28. Asakawa, Y. et al. Chemical constituents of bryophytes: bio- and chemical diversity, biological activity, and chemosystematics

(Springer Verlag, 2013).
29. Li, D., Heiling, S., Baldwin, I. T. & Gaquerel, E. Illuminating a plant’s tissue-specific metabolic diversity using computational

metabolomics and information theory. Proc. Natl. Acad. Sci 113, E7610–E7618 (2016).
30. Legendre, P. & Legendre, L. Numerical ecology Volume 243rd edn, (Elsevier, 2012).
31. Legendre, P. & Anderson, M. J. Distance-based Redundancy Analysis: Testing Multispecies Responses In Multifactorial Ecological

Experiments. Ecol. Monogr. 69, 24 (1999).
32. Miksa, T., Rauber, A. & Mina, E. Identifying impact of software dependencies on replicability of biomedical workflows. J. Biomed.

Inform. 64, 232–254 (2016).
33. Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids

Res. 44, W3–W10 (2016).

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180179 | DOI: 10.1038/sdata.2018.179 10

https://galaxyproject.github.io/training-material/
https://public.phenomenal-h2020.eu/
https://raw.githubusercontent.com/korseby/container-mtbls520/develop/galaxy/mtbls520_workflow.ga
https://raw.githubusercontent.com/korseby/container-mtbls520/develop/galaxy/mtbls520_workflow.ga
https://doi.org/10.1002/ece3.4361


34. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
35. Piras, M. E., Pireddu, L. & Zanetti, G. wft4galaxy: a workflow testing tool for galaxy. Bioinformatics 33, 3805–3807 (2017).
36. Peters, K., Gorzolka, K., Bruelheide, H. & Neumann, S. Code for the computational workflow to study the seasonal variation of

secondary metabolites in nine different bryophytes using the MTBLS520 dataset (Version v1.1). Zenodo https://doi.org/10.5281/
zenodo.1284246 (2018).

37. Dunning, A. C., De Smaele, M. M. E. & Böhmer, J. K. Evaluation of data repositories based on the FAIR Principles for IDCC 2017
practice paper TU Delft https://doi.org/10.4121/uuid:5146dd06-98e4-426c-9ae5-dc8fa65c549f (2017).

38. Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux Journal https://www.
linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment (2014).

39. Goecks, J., Nekrutenko, A. & Taylor, J. & Galaxy Team, T. Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

40. Giacomoni, F. et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioin-
formatics 31, 1493–1495 (2015).

41. Piccolo, S. R. & Frampton, M. B. Tools and techniques for computational reproducibility. GigaScience 5, 30 (2016).
42. Richards, L. A. et al. Phytochemical diversity drives plant–insect community diversity. Proc. Natl. Acad. Sci 112,

10973–10978 (2015).
43. Ristok, C. et al. Leaf litter diversity positively affects the decomposition of plant polyphenols. Plant Soil 419, 305–317 (2017).
44. Tewes, L. J., Michling, F., Koch, M. A. & Müller, C. Intracontinental plant invader shows matching genetic and chemical profiles

and might benefit from high defence variation within populations. J. Ecol. 106, 714–726 (2018).
45. von Wehrden, H., Hanspach, J., Bruelheide, H. & Wesche, K. Pluralism and diversity: trends in the use and application of

ordination methods 1990-2007. J. Veg. Sci. 20, 695–705 (2009).
46. Field, K. J. & Lake, J. A. Environmental metabolomics links genotype to phenotype and predicts genotype abundance in wild plant

populations. Physiol. Plant. 142, 352–360 (2011).
47. Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515,

108–111 (2014).

Data Citation
1. Peters, K., Gorzolka, K., Neumann, S. & Bruelheide, H. MetaboLights MTBLS520 (2018).

Acknowledgements
K.P. acknowledges funding from the European Commission PhenoMeNal Grant EC654241. Further, we
like to thank the Leibniz Foundation for supporting this study, the PhenoMeNal e-infrastructure for
supplying the cloud environment for testing the Galaxy workflow, Stefanie Döll for helping with
annotation, Sylvia Krüger and Julia Taubert for technical assistance and Dierk Scheel for advice and
corrections to the manuscript.

Author Contributions
K.P.: Design of the experiment, Field sampling, Statistics, Quality Control, Code, Galaxy workflow,
Docker container image, Writing the first draft of the manuscript K.G.: Extraction protocol and LC/MS
data acquisition H.B.: Advice on multivariate statistics S.N.: Advice on the Quality Control with XCMS
All authors contributed to the final version of the manuscript.

Additional Information
Tables 1, 2 and 3 are available only in the online version of this paper.

Competing interests: The authors declare no competing interests.

How to cite this article: Peters, K. et al. Computational workflow to study the seasonal variation of
secondary metabolites in nine different bryophytes. Sci. Data 5:180179 doi: 10.1038/sdata.2018.179
(2018).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/
zero/1.0/ applies to the metadata files made available in this article.

© The Author(s) 2018

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180179 | DOI: 10.1038/sdata.2018.179 11

https://doi.org/10.5281/zenodo.1284246
https://doi.org/10.5281/zenodo.1284246
https://doi.org/10.4121/uuid:5146dd06-98e4-426c-9ae5-dc8fa65c549f
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
http://identifiers.org/metabolights:MTBLS520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

	Computational workflow to study the seasonal variation of secondary metabolites in nine different bryophytes
	Background & Summary
	Methods
	Sampling campaign
	Sampling protocol
	Collecting ecological characteristics
	Extraction protocol and LC/MS analysis

	Figure 1 Computational workflow of the whole study (Data Citation 1) running in the Galaxy Workflow Management system.Each of the modules represent a particular step in the study of Peters et�al.9.
	Quality control
	Raw data acquisition
	Peak detection

	Figure 2 Plots of sets of the MM8 profiles to assess the performance of the technical setup.Green�=�spring, yellow�=�summer, red�=�autumn, blue�=�winter.
	Peak annotation

	Figure 3 Quality control plots to assess shifts in retention time (RT) and mass-to-charge ratio (m/z) in the four sets of MM8 profiles.Green�=�spring, yellow�=�summer, red�=�autumn, blue�=�winter.
	Exemplary compound annotation
	Diversity analysis
	Multivariate statistical analysis

	Figure 4 The eight compounds used for the internal lab standard mix (MM8) plotted next to each other.Shown are the regions of the respective compounds in the raw chromatograms before the alignment of XCMS.
	Chemotaxonomic comparison to phylogeny
	Computational workflow

	Data Records
	Figure 5 Boxplots of the variation in the intensities of the eight compounds used in the internal lab standard mix of all the MM8 profiles.X axis: Compound.
	Code Availability
	Technical Validation
	Quality control

	Figure 6 Total Ion Count (TIC) chromatogram obtained from the extracts of Marchantia polymorpha.This exemplary chromatogram was obtained from the third sample of summer.
	Exemplary annotation of Marchantia polymorpha profile
	Computational workflow
	Statistical analyses

	Usage Notes
	Building the container image
	Installing and using Galaxy to run the workflow

	REFERENCES
	REFERENCES
	K.P. acknowledges funding from the European Commission PhenoMeNal Grant EC654241. Further, we like to thank the Leibniz Foundation for supporting this study, the PhenoMeNal e-�infrastructure for supplying the cloud environment for testing the Galaxy workf
	ACKNOWLEDGEMENTS
	Design Type(s)time series design &#x02022; database creation objective &#x02022; process-based data analysis objectiveMeasurement Type(s)metabolite profilingTechnology Type(s)Ultra High-performance Liquid Chromatography/Tandem Mass SpectrometryFactor Type
	Additional Information


