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Abstract: Diagnostic devices, methodological approaches, and traditional constructs of clinical
pathology practice, cultivated throughout centuries, have transformed radically in the wake of
explosive technological growth and other, e.g., environmental, catalysts of change. Ushered into
the fray of modern laboratory medicine are digital imaging devices and machine-learning (ML)
software fashioned to mitigate challenges, e.g., practitioner shortage while preparing clinicians
for emerging interconnectivity of environments and diagnostic information in the era of big data.
As computer vision shapes new constructs for the modern world and intertwines with clinical
medicine, cultivating clarity of our new terrain through examining the trajectory and current scope of
computational pathology and its pertinence to clinical practice is vital. Through review of numerous
studies, we find developmental efforts for ML migrating from research to standardized clinical
frameworks while overcoming obstacles that have formerly curtailed adoption of these tools, e.g.,
generalizability, data availability, and user-friendly accessibility. Groundbreaking validatory efforts
have facilitated the clinical deployment of ML tools demonstrating the capacity to effectively aid
in distinguishing tumor subtype and grade, classify early vs. advanced cancer stages, and assist in
quality control and primary diagnosis applications. Case studies have demonstrated the benefits of
streamlined, digitized workflows for practitioners alleviated by decreased burdens.

Keywords: computer vision; digital pathology; whole slide imaging (WSI); artificial intelligence (AI);
machine learning; deep learning; diagnostics; laboratory medicine; digital workflow; informatics

1. Introduction

Nearly 2000 years have passed since Emperor Marcus Aurelius sought reinforcement
for a society decimated by the first wave of the deadliest pandemic to impact ancient
Rome. The same factors lauded as strengths for the seemingly impenetrable empire, e.g.,
expansive trade networks and large, crowded populations, were those which ultimately
led to its demise. These precarious elements had long lingered as a silent plague within
a territorial superpower fully primed to combat the fiercest of invaders, yet one which
succumbed to those overlooked behind its volcanic rock fortifications. A hidden tinderbox
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of similar proportion was ignited to plume within many pathology departments upon
inception of the 2019 coronavirus (COVID-19) pandemic [1]. New safety and practice
restrictions following the wake of the pathogen’s propagation increased the demand for
digital pathology (DP) solutions and remote services. Issues that had lingered throughout
many departments were fervently exacerbated, e.g., specialist deficits and demands of
shorter turnaround times (TAT) amidst increasing caseloads and complexity of pathology
reports for aging patient demographics harboring higher disease incidence. New solutions
were necessitated upon the exhumation of long withstanding problems [2,3]. Diagnostic
surgical pathology remains the ‘gold standard’ for cancer diagnosis despite substantial
inter-observer variability from human error, e.g., bias and fatigue, leading to misdiagnosis
of challenging histological patterns and missed identification of small quantities of cancer
within biopsy material. Digital (whole slide) imaging, now synonymous with DP, has
achieved significant milestones within the last 20 years, with whole slide image (WSI)
scanning devices evolving in tandem with challenges pervasive throughout the modern
pathology landscape. Batch-scanning and continuous or random-access processing capa-
bilities enabling the concurrent uploading of glass slides during the image capture and
digitization processes of others have improved laboratory efficiency [4,5]. Many WSI de-
vices can now handle an array of mediums cast on slides of varying dimensions, with single
slide load capacity of some devices reaching up to 1000 [2]. WSI scanning cameras and
image sensors deliver superior sensitivity, resolution, field-of-view (FOV), and frame rates
for optimal capture and digitization of glass slide specimens [2]. Newer scientific CMOS
(sCMOS) sensors are featured in many current WSI scanning devices, often as adjunctive to
multiple CCD and CMOS sensors for optimization of image quality.

The Ohio State University (Columbus, OH, USA) was among the first academic institu-
tions to invest in DP devices initially purposed for research and archival, i.e., retrospective
scanning of oncology cases [6]. Complete transition to a fully integrated digitized workflow
for primary diagnosis followed one year after initial steps toward DP adoption in 2016
(Figure 1).

Beneficial returns from the preemptive digital transformation were evidenced through-
out the first wave of the coronavirus pandemic in 2020, during which the department was
well positioned to continue educational and research activities with minimal disruption [6].
Clinical services persisted with relative fluidity with digital workflow emerging as a pillar
of stability during an otherwise catastrophic downtime event for many. Temporary remote
sign-out authority issued by the Centers for Medicare and Medicaid Services (CMS) empha-
sized a growing acknowledgment of the utility that digital practice may afford during such
times. The substantial percentage of pathologists (71.4%) who were already trained and ap-
proved for on-site WSI for primary diagnosis at the department increased to 90.6% during
the pandemic (reflecting a conglomerate percentage of pathologists using WSI exclusively
for primary diagnosis and those using WSI in conjunction with glass slides). Diagnostic
quality assurance (QA) evaluation noted little discrepancy pertaining to the percentage
of major and minor diagnostic errors accrued prior to and following the viral catalyza-
tion of digital workflow. Intraoperative consultation services also remained considerably
unaffected from digital deployment. Real-time rerouting of slides to available patholo-
gists in different locations increased staffing flexibility. Loosening of work-from-home
restrictions including sign-out fostered greater pathologist latitude. Reduction in in-person
interactions and the number of individuals handling case materials served to reduce viral
transmission while also reducing glass slide contamination potential. An aging population
of pathologists at the department, reflective of US specialist demographics, reported greater
satisfaction from improved office ergonomics following DP implementation, e.g., forward
screen-viewing fostered a more natural reading position in comparison to microscopy
techniques requiring bending movements [3]. Lastly, WSI viewing software equipped with
tools for WSI annotation, precision measurements, and side-to-side WSI viewing programs
with virtual magnification and annotation tools enabled pathologists to effectively collabo-
rate via image sharing and real-time slide examination mimicking laboratory conditions
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despite working from remote locations. WSI viewing software also facilitated comparison
of H&E images to corresponding immunohistochemistry (IHC) or special stained slides,
further aiding the ease and efficiency of intradepartmental consultations.
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Diagnostic merits of WSI are evidenced in scores of investigations reporting sig-
nificantly high concordance rates with conventional microscopy throughout numerous
disciplines and increasingly for arenas formerly posing hurdles curtailing digital adoption,
e.g., cytopathology [7–10]. Obstacles in modeling business viability for laboratory digitiza-
tion are surmounted as advanced technology enables a similar roadmap to ubiquitous DP
diagnostics already traversed by radiology [10]. The interconnectivity of pathologists, staff,
and resources observed following WSI implementation at The Ohio State University reflect
a primary endpoint of laboratory digitization. Augmentation of DP tools with artificial
intelligence (AI)-based algorithms reflect another. As the university’s primary diagnostic
novelty recedes amongst a growing global normalcy of automated workflows, increased
efforts for diagnostic quality, and the creation of integrated ecosystems supportive of
computational pathology [2,11–13], further capitalization from digital integration is now
within reach for digitized departments primed to actuate the clinical potential of predictive
diagnostic AI-technology for WSI.

2. Development of Computer Vision for Pathology

Computer-aided image processing and pattern recognition, e.g., classification, of histo-
logical and cytological structures for pathology has developed from the early 1970s [14,15].

Primordial AI tools for pathology classification tasks typically find genesis at the same
vantage point from which modern machine learning (ML) tools began their evolution.
Pixel-based analysis, e.g., computer-recognition of a unique series of numerical values that
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form a shape of interest, is used for classification, e.g., segmentation, tasks that are now
among the most essential applications included within integrative workflow image analysis
(IA) tools. Traditional morphometric feature evaluation entailed calculation of object size
via computational counting of pixels occupied by an object followed by calibration for
magnification [16]. Description of object shape resulted from computer determination of a
specific shape from a rigid set of preprogrammed rules. Traditional programming directives
utilized shape descriptors, e.g., elongation factor and nuclear roundness factor, to identify
structures such as peripheral blood erythrocytes. Substantial focus has been directed
toward development of computational IA for genitourinary (GU) pathology. Prototypal
quantitative light microscopy applications for urological oncology were initially applied to
histological sections for rudimentary tumor recurrence and grading predictions [16].

As evidenced from early explorations in computer vision for pathology, traditional
programming methods were inherently prone to rapid devolution when image shapes did
not adhere to specific pre-programmed rules/definitions, thereby confounding the narrow
window of computational interpretability allotted through the ridged training modus. For
example, nuclear roundness factor (NRF), defined as the ratio of an area to a perimeter, was
observed to decrease when an object shape, e.g., ellipse, deviated from congruence with a
perfect circle. The restrictive nature of the programmed code for NRF had predisposed it to
conflating “roundness” with “circularity”.

ML techniques have widened the window of interpretability through algorithmic mod-
eling via the use of images rather than preprogrammed rules as input data for algorithm
training, allowing computers to correctly visualize shapes regardless of their size, symme-
try, or rotation. ML for computational pathology has enabled the interpretive ability of
algorithmic tools to extend beyond the limited output yielded from cast-iron programming
codes to a system that is able to deduce patterns with increasing accuracy through training.
Most current ML approaches utilize methods such as “Random Forest classification”, an
algorithmic approach developed in 2001 (the same year as the Leica Aperio T1 gained
distinction as the first WSI device released for commercial use) by which a series of decision
trees are employed to make an aggregated prediction (Figure 2) [17].

Machine learning allows computers to recognize patterns and make predictive deci-
sions without explicit, step-by-step programming. Trial, error, and extensive “practice”
are the core elements of model building for ML, the essence of which follows an iterative
approach akin to flashcard memorization. Algorithms are fashioned from a point of zero
training data through learning from an output set. A preselected group of image/shape
descriptors are chosen by a computer, initially at absolute random, to describe input data
fed into the system by a developer. An incorrect label ascribed to an input image by a com-
puter will be amended to display the correct image description from which a machine may
demonstrate its learning capacity via correct attribution of the label to a future input image.
The ML system takes account of every image pixel and its surrounding pixels with each
estimation to ultimately build its own set of rules/algorithms, progressively fashioning an
adroit apparatus for predictive accuracy and precision as the cycle continues. Predictive
classification models may be tuned and optimized via additional data input providing
more opportunities for improvement through trial-and-error for increased accuracy of
pattern recognition within new images.

Deep learning (DL) has further expounded upon the cognitive model of ML algorithms,
achieving remarkable mimicry to the neural network of the human brain. Artificial neural
networks (ANNs) consisting of weighted, interconnected nodes comprise the scaffolding
of DL modeling for pathology (Figure 3).
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Figure 2. Traditional Programming vs. Machine Learning for Computer Vision (original figures). 
Squares are representative of pixels comprised of binary graphical indicators for computer recogni-
tion, with blue squares comprising a pixelated “input” shape to be recognized by a preset formula 
that may direct the computer to correctly identifying the shape in its output determination.  Green 
circles are indicative of computer-recognized elements of the pixelated input shape per input pro-
gramming rules.  Red circles represent areas in which programming rules neglected to recognize 
blue input image elements. Computer programmed rules for defining shapes in figures (a) through 
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Figure 2. Traditional Programming vs. Machine Learning for Computer Vision (original figures).
Squares are representative of pixels comprised of binary graphical indicators for computer recognition,
with blue squares comprising a pixelated “input” shape to be recognized by a preset formula that
may direct the computer to correctly identifying the shape in its output determination. Green circles
are indicative of computer-recognized elements of the pixelated input shape per input programming
rules. Red circles represent areas in which programming rules neglected to recognize blue input
image elements. Computer programmed rules for defining shapes in figures (a) through (e) are (1)
shape is “X” if the center and corner pixels are full and “O” if the center and corner pixels are empty:
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(a) Pathologist/human interpretation of image: shape is “X”. Computer interpretation of image:
shape is “X”, as dictated by rule. Outcome: concordant with pathologist visual interpretation;
(b) Pathologist interpretation of image: shape is “O”. Computer interpretation of image: Shape is “O”,
as dictated by rule. Outcome: concordant with pathologist visual interpretation; (c,d) Pathologist
interpretation of image: shape is “X”. Computer interpretation of images: shape is “O”, as dictated
by rules. Outcome: discordant with pathologist visual interpretation; (e) Pathologist interpretation
of image: shape is “X”. Computer interpretation of image: image is not recognized, as complete
criteria are not fulfilled for either rule. Outcome: discordant with pathologist visual interpretation,
i.e., unidentifiable image.

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 26 
 

 

as dictated by rules. Outcome: discordant with pathologist visual interpretation; (e) Pathologist in-
terpretation of image: shape is “X”. Computer interpretation of image: image is not recognized, as 
complete criteria are not fulfilled for either rule. Outcome: discordant with pathologist visual inter-
pretation, i.e., unidentifiable image. 

Machine learning allows computers to recognize patterns and make predictive deci-
sions without explicit, step-by-step programming. Trial, error, and extensive “practice” 
are the core elements of model building for ML, the essence of which follows an iterative 
approach akin to flashcard memorization. Algorithms are fashioned from a point of zero 
training data through learning from an output set. A preselected group of image/shape 
descriptors are chosen by a computer, initially at absolute random, to describe input data 
fed into the system by a developer. An incorrect label ascribed to an input image by a 
computer will be amended to display the correct image description from which a machine 
may demonstrate its learning capacity via correct attribution of the label to a future input 
image. The ML system takes account of every image pixel and its surrounding pixels with 
each estimation to ultimately build its own set of rules/algorithms, progressively fashion-
ing an adroit apparatus for predictive accuracy and precision as the cycle continues. Pre-
dictive classification models may be tuned and optimized via additional data input 
providing more opportunities for improvement through trial-and-error for increased ac-
curacy of pattern recognition within new images. 

Deep learning (DL) has further expounded upon the cognitive model of ML algo-
rithms, achieving remarkable mimicry to the neural network of the human brain. Artificial 
neural networks (ANNs) consisting of weighted, interconnected nodes comprise the scaf-
folding of DL modeling for pathology (Figure 3).  

 
Figure 3. Artificial Neuron Model (ShadeDesign/Shutterstock.com, accessed on 27 April 2022). 

Powerful neural networks contain up to millions of nodes arranged in layers includ-
ing input layers, hidden layers, and output layers (Figure 4). 

Figure 3. Artificial Neuron Model (ShadeDesign/Shutterstock.com, accessed on 27 April 2022).

Powerful neural networks contain up to millions of nodes arranged in layers including
input layers, hidden layers, and output layers (Figure 4).

Outputs from one layer of a neural network act as inputs which feed into the nodes
of another layer. Convolutional neural networks (CNNs) are a complex derivative from
the ANN model fashioned for outcome prediction from WSI data inputs without the
assistance of a predefined output set. CNNs for WSI analysis have demonstrated substantial
capacity to effectively aid in primary diagnostic and quality control (QC) applications.
Other DL models such as the recurrent neural network (RNN) may be used to enhance
CNN analysis through provision of spatial and contextual modeling enabled from a bi-
directional framework equipped to process high-resolution gigapixel WSIs without image-
patch modeling techniques suggested to compromise overall tumor size and sub-structures
present within a WSI (Figure 5).
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CNN models may use WSIs ascribed individual diagnostic target-labels per associated
pattern, e.g., Gleason grade, or up to millions of unlabeled WSI image-patches for auto-
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didactic training during which the AI-model will learn to identify and extract important
features without developer assistance (Figure 6).
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“End-to-end” methods for training DL models for WSI have greatly mitigated and out-
performed highly supervised, effort-intensive methods of algorithmic training dependent
upon manually annotated, pixel-based feature extraction techniques (Figure 7).

Algorithm development is typically divided into a series of steps beginning with
procurement of clinically annotated samples followed by WSI annotation. An algorithm is
developed via a training set and tested via an independent validation set (Figure 8).

A clinical cause pertaining to a relevant population of interest formulates the origin
and endpoint for algorithm development driven by a computational pathology team.
Pathologists act to direct the genesis and culmination of clinical algorithms while data
scientists, e.g., statisticians and bio-informaticians, assist in algorithm design and training.
Engineers maintain hardware and software for the operating environment. Pathologists
invoke downstream development though providing context through clinically relevant
questions that spearhead algorithmic solutions. They are essential for the verification and
validation processes for application and monitoring of the algorithm prior to and following
clinical deployment, such that feedback is relayed to developers for optimization (Figure 9).
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3. Realizing the Clinical Potential of AI

The potential for AI to catalyze clinical transformation has been exemplified through
recent research, academic, and translational investigations in algorithm development for
predictive diagnostic and prognostic analysis made directly from H&E-stained WSIs [18].
Such studies, indicative of the potential for AI to enhance pathologist understanding of dis-
ease and improve patient quality of care, encourage further investigations where algorithms
may be deployed and evaluated within standardized settings. AI for primary diagnostic
and quality control applications may be optimized through clinical trials. Algorithmic
development for prostate cancer needle biopsies [19–28], radical prostatectomies [29,30],
and tissue microarrays [21,31–33], has held the brunt of focus for the transition of such tools
into utilization within clinical forums thus far. Though such investigations have shown
promise for AI-assisted grading for prostate cancer and pathologist-review, many have been
susceptible to biases and limitations during both development and validation processes,
many of which affect the clinical translatability of algorithms developed within non-clinical,
e.g., research, settings. The most prominent hurdles affecting clinical implementation of
ML and DL tools stem from data availability, generalizability, and transparency (“black
box”) concerns (Figure 10).
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3.1. Overcoming Inter-Observer Variability for Challenging Diagnosis with AI

Challenging histology and morphology is often met with enduringly high rates of inter-
and intra-observer variability and increased time-to-diagnosis from pathologists using light
microscopy [34]. Discordance is further emphasized within the focuses of genitourinary
and renal pathology, where interpretation of complex grading systems, e.g., Fuhrman and
Gleason, and prognostic patterns, e.g., cribriform and glomerulosclerotic, is concerningly
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incongruent even amongst specialists [35–48]. Inter-pathologist grading assessments for
prostate cancer grading have elicited concerning results, with kappa values reported as
low as 0.3 [38,49]. The last 7 years of ML development for prostatic adenocarcinoma has
yielded results demonstrating potential for greater diagnostic objectivity.

2016 marked the first account of DL network development for the detection of prostate
adenocarcinoma in core needle biopsy (CNB) tissue. Slide patches extracted from H&E-
stained prostate biopsy tissue slides from 254 patients were separated into training, testing,
and validation sets. Mean ROC for the median analysis was 0.98–0.99 for the 90th percentile
analysis [19].

An advanced CNN derivative was trained for prostate cancer grading using 0.6 mm
diameter cores from primary prostate carcinomas in TMAs from 641 patients and tested
using TMA cores from 245 prostatectomy cases from another cohort graded indepen-
dently by two pathologists. Agreement between the DL model and each pathologist was
0.75 and 0.71, respectively, per Cohen’s quadratic kappa statistic, with an inter-pathologist
agreement of 0.71. Furthermore, the model demonstrated significantly greater accuracy in
distinguishing low-risk from intermediate-risk (p = 0.098) cancer than either pathologist
(p = 0.79 and p = 0.29, respectively) [32].

A total of 752 tissue biopsies from multiple sites were used to train a DL system for
Gleason grade (GG) identification. Model agreement with pathologists was 72% (68–75%)
for specialists and 58% (54–61%) for general pathologists. The model was less likely to
over-grade WHO grade group 1 than grade group 2 and more likely to undergrade higher
grades in comparison to general pathologists. ROC curves distinguished model-based
grade groups 1 and 2 from grade groups 3 through 5 (AUC = 0.97) [50].

Another study in which a CNN was trained for GG classification using 5759 biopsies
from 1243 patients yielded a kappa value of 0.85 when compared to three genitourinary
pathologists, superior to the kappa of 0.82 obtained from a pathologist panel [51].

Corroborating the potential for AI to improve pathologist grading of prostate biopsies,
Bulten et al. recruited fourteen genitourinary specialists to evaluate 160 biopsies with and
without assistance of AI algorithms. Using AI, the panel of pathologists demonstrated
significantly greater agreeability, yielding kappa values of 0.87 vs. 0.799 when graded
independently [52].

ML tools have recently seen development for the automated detection of cribriform
pattern in prostate WSIs [41,46,47]. The first instance of ML applications applied to inves-
tigate the prognostic utility of invasive cribriform adenocarcinoma (ICC) within specific
Gleason grade groups provided insight on the strong prognostic role of ICC morphology
fraction of tumor area (cribriform area index(CAI)) in patients with Gleason grade 2 cancer
due to the morphology conferring a higher concordance index for biochemical recurrence
than patients without evidence of ICC. A CAI increase by a factor of two was determined to
be prognostic in patients with ICC morphology after controlling for Gleason grade, surgical
margin positivity, preoperative prostate-specific antigen level, pathological T stage, and
age (hazard ratio: 1.19) [47].

AI-approaches have demonstrated the capacity identify subtle morphological differ-
ences, e.g., sarcomatoid vs. spindle cell pattern, in clinical groups of patients with clear cell
renal cell carcinoma (ccRCC) [34]. ML-models have demonstrated the ability to classify
early vs. advanced stages of ccRCC, with recent algorithms using gene expression profiling
to classify ccRCC stages. One study analyzed gene expression of 523 samples to identify
genes differentially expressed in early and late stages of ccRCC, achieving a maximum
accuracy of 72.64% and 0.81 ROC using 64 genes on validation dataset [53].

Fenstermaker et al. [54] developed a CNN model to detect, grade (Fuhrman 1–4), and
distinguish RCC subtypes (clear cell, chromophobe, papillary). The model was trained on
3000 normal and 12,168 RCC H&E-stained tissue samples of RCC from 42 patients (acquired
from the Cancer Genome Atlas). The model classified normal parenchyma vs. RCC tissue
with 99.1% accuracy, demonstrating an additional 97.5% accuracy in distinguishing RCC
subtypes. Model accuracy in predicting Fuhrman grade was 98.4%.
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Two studies using ML models developed from features extracted from single and multi-
omics data for classification of early and late stages of papillary RCC emphasized the utility
of model-training from multiple data sources. Gene expression and DNA methylation data
were used in the later (2020) study, demonstrating slightly better predictive performance
than the former (2018) study (MCC 0.77, PR-AUC 0.79, accuracy 90.4) [55–57]. A total of
104 genes from Cancer Genome Project expression profiles of 161 patients were used as
data in both studies.

Misdiagnoses may lead to delays in appropriate treatment regimens for patients pre-
senting with challenging morphology that is often misidentified. The subtle morphologic
characteristics which differentiate the TFE2 Xp11.2 translocation variant of RCC (TFE3-RCC)
from other RCC subtypes often leads to the misdiagnosis of this aggressively progressive
form of RCC and was the basis for a recent ML development for its identification. An
automated ML pipeline was developed to extract TFE3-RCC features and used to differen-
tiate subtle morphological differences between TFE3-RCC and ccRCC with high accuracy.
AUCs ranged from 0.84 to 0.89 when evaluating classification models against an external
validation set [58].

3.2. Exploring AI Development for Nephropathology Applications

Glomerulosclerosis and IFTA are histologic indicators of irreversible kidney injury,
with cortical fibrosis holding distinction as the single greatest morphologic predictor of
chronic kidney disease, regardless of disease etiology [59]. Quantification of glomeruli and
glomerulosclerosis on kidney biopsy are among the constituents of a standard renal pathol-
ogy report, yet the prevailing methods for glomerular assessment remain manual, labor
intensive, and non-standardized [60]. Although manual evaluation of glomerulosclerotic
percentage has consistently demonstrated high inter-observer concordance, traditional
visual quantitation of renal cortical involvement incurred by IFTA results in higher vari-
ability among pathologists due to the innately complex histology and diverse morphology
of the region [59].

The first CNN fashioned for multiclass segmentation of digitized periodic acid-Schiff
(PAS) stained nephrectomy samples and transplant biopsies indicated the necessity for more
studies interrogating quantitative diagnostic tools for routine kidney histopathology [61].
Significant correlation between pathologist-scored histology vs. the CNN was noted
for glomerular counting in whole transplant biopsies (0.94 mean intraclass correlation
coefficient). The CNN yielded the best segmentation results for glomeruli in both internal
and external validation sets (Dice coefficient of 0.95 and 0.94, respectively), with the model
detecting 92.7% of all glomeruli in nephrectomy samples.

The nephropathology landscape has provided fertile grounds for the development of
ML tools fashioned to parse and delineate various complex morphological structures, as
demonstrated in a slew of recent investigations suggesting the clinical merit of AI within the
medical kidney arena [62]. CNN-directed segmentation of morphologically complex image
structures, e.g., interstitial fibrosis and tubular atrophy (IFTA), has improved throughout
recent years as advances in annotation speed, predictive capacity, and breadth of utility
have provided strong arguments for clinical applicability [59].

Recent studies have studied predictive AI-modeling for morphologically complex
structures of the kidney using WSIs of human renal biopsy samples [62]. One such study
explored the use of CNNs in semantic segmentation of glomerulosclerosis and IFTA from
renal biopsies, in which assessment of CNN performance spanned three morphologic
areas: IFTA, non-sclerotic glomeruli, and sclerotic glomeruli [59]. Per these respective areas,
CNN demonstrated a balanced accuracy of 0.82/0.94/0.86 and MCC of 0.6/0.87/0.68 for
intra-institutional holdout cases. For inter-institutional holdout cases, balanced accuracy
was 0.70/0.93/0.84 with MCC of 0.49/0.79/0.64 per respective area. Investigators noted
the CNN model demonstrating the best performance used a smaller network and low reso-
lution for image analysis. In multiple cases, the CNN demonstrated the capacity to learn to
predict IFTA boundaries with greater precision than the ground-truth annotations used for
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its training. Significant correlation was noted when comparing IFTA and glomerulosclero-
sis estimations via CNN with ground truth annotations, with IFTA yielding a correlation
coefficient of 0.73 (95% CI [0.31, 0.91]) and glomerulosclerosis that of 0.97 (95% CI [0.9, 0.99]).
No substantial difference was noted in score agreement concerning comparisons of IFTA
grades as per visual assessment conducted by pathologists vs. CNN predictions against
ground truth annotations, with inter-rater reliability for pathologists measured to have a
kappa value of 0.69 with 95% CI [0.39, 0.99] and that of the CNN to have a kappa value of
0.66 with 95% CI [0.37, 0.96]. The CNN also demonstrated learning capacity in identifying
segmental sclerosis, despite having not been trained to identify findings of this nature.
Results strongly indicate the feasibility of DL-tools for high-performance segmentation of
morphologically complex image structures, e.g., IFTA, by CNN.

Another CNN developed for the identification and segmentation of glomeruli on WSI
of human kidney biopsies demonstrated accurate discrimination of non-glomerular images
from glomerular images that were either normal or partially sclerosed (NPS) or globally
sclerosed (GS) (Accuracy: 92.67% ± 2.02%, Kappa: 0.8681 ± 0.0392) [60]. The segmentation
model derived from the CNN classifier demonstrated accuracy in marking GS glomeruli
on test data (Matthews correlation coefficient = 0.628).

As tissue volume requirements and annotation quality often mar adoption of CNN
training for quantitative analysis, investigators seeking to reduce annotation burden ex-
perimented with development of a Human AI Loop (H-AI-L), e.g., “human-in-the-loop”
pipeline for WSI segmentation. Annotation speed and accuracy were noted to perform
faster than traditional methods limited by data annotation speed [63].

Another ML pipeline was developed for glomerular localization in whole kidney sec-
tions for automated assessment of glomerular injury [64]. Average precision for glomerular
localization was reported as 96.94%, with an average recall of 96.79%. The localizer did
not demonstrate bias in identifying healthy or damaged glomeruli nor did it necessitate
manual preprocessing.

Reduced variability from AI-assisted analysis of fine pathologic structures at high reso-
lution may provide accurate quantitative assessment of WSIs for IFTA grade prediction, as
demonstrated by a DL framework developed at the Ohio State University Wexner Medical
Center using trichrome-stained WSIs. Strong inter-rater reliability was noted regarding IFTA
grading between the pathologists and the reference estimate (κ = 0.622 ± 0.071). The accuracy
of the DL model was 71.8% ± 5.3% on The Ohio State University Wexner Medical Center
and 65.0% ± 4.2% on Kidney Precision Medicine Project WSI data sets (from which model
performance was evaluated) [65].

The first CNN-based model relevant to kidney transplantation within the literature
was developed to address significant intra- and inter-observer variability reported during
donor biopsy evaluation [66]. The DL model is the first to have been developed for the
identification and classification of non-sclerosed and sclerosed glomeruli in WSI of donor
kidney frozen section biopsies. When trained on only 48 WSIs, the model demonstrated
slide-level performance in evaluation that was noted to be on par with expert renal pathol-
ogists. The model also significantly outperformed, in both accuracy and speed, another
CNN model trained using only image patches of isolated glomeruli. Investigators noted
that while model training with WSI patches has demonstrated efficacy in WSI classification
tasks, this is only when applied to the classification of WSI patches and did not work as
effectively for WSI segmentation in the setting of their study. Authors postulated, per
results achieved from this CNN model, a future in which its utilization is deemed essential
for clinical evaluations of donor kidney biopsies.

A recent publication explored the development of a pipeline for the classification and
segmentation of renal biopsies from patients with diabetic nephropathy [67]. The pipeline
consisted of a CNN used to detect glomerular features reflective of glomerulopathic struc-
tural alteration and a Recurrent Neural Network (RNN) used for analysis of glomerular
features for final diagnosis of the biopsy. The pipeline was designed to be extendable to
any histologically interpreted glomerular disease, e.g., IgA nephropathy, lupus nephritis,
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and is trainable for the prediction of any label with a numerically associated indicator of
severity such as proteinuria. Strong comparison to traditional, e.g., visual classification
methods was noted. The pipeline detected glomerular boundaries from whole slide images
with 0.93 ± 0.04 balanced accuracy, glomerular nuclei with 0.94 sensitivity and 0.93 speci-
ficity, and glomerular structural components with 0.95 sensitivity and 0.99 specificity.
Results were congruent with ground truth classifications annotated by a senior pathologist
(κ = 0.55 with a 95% confidence interval (0.50, 0.60) and two additional renal pathologists
κ1 = 0.68, 95% interval (0.50, 0.86) and κ2 = 0.48, 95% interval (0.32, 0.64).

Percentage assessment for normal and sclerotic glomeruli is vital in determining
renal transplant eligibility, with percentage of normal and sclerotic regions serving as,
respectively, good or poor indicators for transplant outcome [68]. DL has been leveraged to
improve stratification of kidney disease severity via combining patient-specific histologic
images with clinical phenotypes of chronic kidney disease (CKD) stage, serum creatinine,
and nephrotic-range proteinuria at time of biopsy and afterward [69]. CNN models were
demonstrated to outperform score assessments for pathological fibrosis undertaken by
pathologists for all clinical CKD phenotypes. In comparison to pathologist estimation, CNN
prediction for CKD stage yielded greater accuracy (κ = 0.519 vs. 0.051). CNN demonstrated
an AUC of 0.912 vs. an AUC of 0.840 measured for pathologist estimations for creatinine.
For proteinuria estimation, CNN AUC was 0.867 vs. 0.702. CNN estimations for 1-, 3-, and
5-year renal survival yielded respective AUC values of 0.878, 0.875, and 0.904 vs. 0.811,
0.800, and 0.786 via pathologist assessment.

Histopathological images are ripe with information exploitable for clinical survival and
therapy response prediction. Such information may be buttressed with supplementation of
categorical pathology-report data, as indicated in the previous examples. Histopathological
data typically analyzed from WSIs for the prediction of survival and therapy response
may also be effectively supplemented with pathology images from multiple sources, as
demonstrated in a recent study evaluating an AI-pipeline developed for the prediction of
neoadjuvant chemotherapy (NAC) response for patients with breast cancer.

3.3. Optimizing Machine Learning for Neoadjuvant Chemotherapy Response

Immunohistochemistry (IHC) WSIs are replete with data that may be utilized as a
powerful adjunctive to histopathology WSIs. IHC images may be quantified for biomarker
results, e.g., PD-L1, ER, PR, HER2, Ki67, and distribution of biomarker expression, e.g., PD-
L1 (tumor and inflammatory cells), CD8 (cytotoxic tumor-infiltrating lymphocytes/TILs),
and CD163 (type 2 macrophages), both metrics of which are important in predicting tumor
response to chemotherapy.

3.3.1. Modeling Predictive Response for Neoadjuvant Chemotherapy in Breast Cancer

Up to 50% of HER2-positive breast cancers and a subset of triple-negative breast
cancers (TNBCs) achieve pathologic complete response (pCR) following neoadjuvant
chemotherapy (NAC), thereby allowing NAC response to act as corollary for disease-free
survival in TNBC and HER2+ breast cancer patients [70–72]. Many factors are associated
with pCR in breast cancer, e.g., higher mitotic activity and tumor (Nottingham) grade
are associated with higher frequency of pCR [73]. Tumor-associated lymphocytes (TIL)
occur with greater frequency in TNBC and HER2+ breast cancer subtypes [74]. PD-L1
expression, particularly in HER2+ patients, has demonstrated association with pCR in
breast cancer [75,76]. Hormone receptor level is also associated with pCR, with ER-/PR-
/HER2+ breast cancers demonstrating the greatest likelihood for pCR amongst all HER2+
tumors [77]. Higher intensity of HER2 IHC expression is associated with significantly higher
likelihood for pCR in HER2+ breast cancer than for cases with incomplete pathological
response [78]. Intratumoral heterogeneity is independently associated with incomplete
response to anti-HER2 NAC in HER2+ breast cancer.

A recent groundbreaking effort compiled multiple image-based features extracted
from multiple sources, i.e., H&E-stained WSIs and IHCs (PD-L1, CD8, CD163), quantita-
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tive and qualitative breast cancer biomarker results (ER, PR, HER2), and patient demo-
graphic and clinical features, e.g., age, to develop a predictive ML model for NAC response
in TNBCs and HER2+ breast cancers. An automatic WSI feature extraction pipeline in
which H&E-stained WSI tissue segmentation utilized a well-trained neural network model
(DeepLabV2) to generate stromal, tumor, and aggregated lymphocyte areas (distinguished
by computerized colorization). Multiplexed IHC WSI (CD8, CD163, PD-L1) segmenta-
tion was performed using color-based K-means segmentation, in which entire WSIs were
segmented into three different IHC areas, then followed by an automatic, multi-step, and
non-rigid (changing image size, but not shape) histological image alignment (“registration”)
of H&E and IHC, upon which an algorithm selected the best non-rigid transformations.
Three categories of quantitative IHC image features (CD8, CD163, PD-L1) were extracted
from the registered WSIs for subsequent evaluation of expression and distribution within
different cellular components/regions (stroma, tumor, lymph) including an overall evalu-
ation of all tissue components. Area ratio, proportion, and purity of IHC image features
within cellular regions was evaluated. Breast biomarker results, e.g., positivity/negativity,
percentage, were evaluated within inclusion of additional demographic characteristics
in relation to different IHC markers, with data pooled from individual and combined
H&E/IHC sources.

The ML model predicted NAC outcomes using the various extracted image features
using a form of logistic regression. Four groups of image features were compared using
AUC, F-1 score, precision, and recall measurements for HER2+ and TNBC patient cohorts:

1. All pipeline-extracted features (36 total) and clinical data patient features, e.g., includ-
ing biomarker results, age, and additional demographic factors)

2. Automated/pipeline-extracted H&E-stained WSI and clinical patient data features
3. Automated/pipeline-extracted IHC WSI and clinical patient data features
4. Pathologist-extracted WSI features and clinical patient data features

Algorithmic models were developed per each group of pipeline-extracted WSI fea-
tures/clinical features (with the ML model from the fourth group trained using manually
extracted features by pathologists). For both the HER2+ and TNBC cohort, the first group
performed best in each measurement, especially for the HER2+ cohort. A feature impor-
tance analysis was conducted in which favorable and unfavorable features predictive of
pCR or residual tumor, respectively, were determined for both patient cohorts. Favorable
features for the HER2+ cohort were determined by the ML model as the independent ratios
of CD8, CD163, and PD-L1 in the lymphocytic region, CD163 ration in the tumor area, and
the HER2/CEP17 ratio. Unfavorable features for the HER2+ cohort included age, ER and
PR ratios, PR positivity, and the stromal CD8 proportion. Overall results demonstrated the
effective capacity of the AI-pipeline to automatically extract H&E and IHC image features
with accuracy. ML models developed based upon the pipeline-extracted WSI features and
clinical features demonstrated the potential for NAC response prediction in breast cancer
patients while outperforming the algorithm trained by pathologist-extracted features. The
AI-pipeline also generated image features that could be used to predict residual cancer
burden in breast cancer cases with residual tumor.

3.3.2. ML for Subspecialty Practice Survival Modeling

Tabibu et al. [34] provided encouraging data following the development of a CNN for
the automated subtype classification of renal cell carcinoma (RCC) and identification of
features predictive of patient survival outcome. A total of 1027 ccRCC, 303 Papillary RCC,
and 254 Chromophobe WSIs with corresponding clinical information were selected for
model training from the Cancer Genome Atlas, with 379, 47, and 83 normal tissue images
per each respective RCC subtype. An accuracy of 99.39% and 87.34% was recorded for
classification of ccRCC from normal tissue and chromophobe RCC from normal tissue,
respectively. The AI-model classified ccRCC, chromophobe, and papillary RCC with
94.07% accuracy. High-probability tumor regions identified by the CNN were targeted for
morphological feature extraction used for prediction of ccRCC patient survival outcome.
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Significant association with patient survival was found after generated risk index was
derived based upon tumor shape and nuclei from the extracted regions.

Prediction of RCC recurrence following nephrectomy has also seen focus for ML
development, as outlined in a recent study assessing recurrence probability 5- and 10-years
post-nephrectomy. Analytical data from 2814 RCC patients were used for model testing,
which yielded AUC values of 0.836 and 0.784 5- and 10-years following nephrectomy [79].

4. Actuating Clinical Implementation through Achieving Generalizability

The essence of generalizable AI for clinical pathology lies within the capacity for an
AI-tool to remain robust in its precision, accuracy, and efficiency in executing a diagnostic
function when confronted with a broad range of tissue variations potentially encountered
within a daily clinical workload.

Small, localized cohorts, insufficient ground-truth determination from expert patholo-
gists, non-standardization of training methods and materials and lack of external validation
are only some of many risks which have hampered the clinical generalizability of studies
that have otherwise presented highly encouraging data. Circumvention of this key barrier
to achieving deployment of AI within clinical practice requires equal applicability of an
ML tool to different patient populations, pathology labs, WSI scanning device models, and
reference standards derived from intercontinental specialist pathologist panels [80].

The largest collective effort for generalizable AI for prostate cancer diagnostics was
reached during the Prostate Cancer Grade Assessment (PANDA) challenge, in which
12,625 prostate biopsy WSIs sourced from six international sites were used for model-
development, performance evaluation, internal, and external validation [80]. Histological
preparation and scanning of WSI data used for external validation was performed by
multiple independent laboratories and was compared to pathologist reviews. On United
States and European external validation sets, the algorithms achieved agreements of 0.862
(quadratically weighted κ, 95% confidence interval (CI), 0.840–0.884) and 0.868 (95% CI,
0.835–0.900) with expert uropathologists [80].

Well documented accounts of AI-model development for pathology during the last
two years have involved large numbers of patient cases for training, testing, and validation
data sets, interpretations by multiple expert pathologists to establish ‘ground truth’ for
diagnosis, use of slides from multiple institutions, and use of differing scanners including
scanners from external institutions [23,26,28,30,81].

WSIs of 12,132 prostate needle core biopsies digitized by two different WSI device
models at Memorial Sloan Kettering (MSK) were used to train a DL system that was tested
on 12,727 prostate needle core biopsies from institutions around the world [23]. Inves-
tigators found that approximately 10,000 slides were necessary for effective training of
their system [82]. Authors noted a 3% difference in AUC recorded between WSI devices
used for image capture and digitization attributed to variations in brightness, contrast,
and sharpness between the devices. Investigators postulated that the AI-model could
remove >75% of slides from a standard pathologist workload without compromising sensi-
tivity and facilitate an increased user-base of non-subspecialized (non-GU pathologists)
who may diagnose prostate cancer with greater confidence and efficacy when aided by
the algorithmic tool. Weakly supervised AI-model training linking every WSI to synop-
tic data elements, e.g., benign vs. adenocarcinoma, provided a scalable mechanism of
dataset creation circumventing data limitations which often mar the capacity and clinical
implementation of highly supervised DL algorithms. Through using only label-based
diagnoses for training WSIs, investigators were able to eschew any form of labor-intensive
and time-consuming data curation including pixel-wise manual annotations used in highly
supervised model training.

High-volume model training using 36,644 WSIs, 7514 of which had cancerous foci,
was used in early development of diagnostic software for prostate adenocarcinoma recently
granted de novo marketing authorization for in vitro diagnostic (IVD) use, signifying the
first ever FDA-approved AI product for clinical pathology [83]. A total of 304 expertly-
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annotated prostate CNB WSIs were used to establish ground truth for evaluation of the DL
system (Paige Prostate Alpha®, Paige AI, New York, NY, USA) [27]. An average diagnostic
sensitivity of 74% and specificity of 97% was recorded for general pathologists prior to
use of the DL system. When aided by the AI-tool, sensitivity increased to 90% while
specificity remained the same. Results suggested the utility of the tool for second-read
applications, e.g., quality assurance. Such a device could be deployed in settings where
GU pathology subspecialists are not commonly, if at all, present, e.g., underserved climates
with substantial healthcare disparity.

The Paige Prostate® system, successor to prototypal version Paige Prostate Alpha®,
was subject to extensive multinational validation spanning ≥150 different institutions
and a diversity of clinical and demographic characteristics from ≥7000 patients including
differing tumor sizes, grades, and patient ethnicities [23,83–87]. The system achieved a
sensitivity of 97.7% and a specificity of 99.3% in detecting cancer in 1876 prostate CNB
WSIs, also demonstrating 99% sensitivity and 93% specificity at part-specimen level while
upgrading pathologist-ascribed benign/suspicious patient diagnosis to malignant after
identification [84,85].

The strengths of many high-volume studies for the validation of Paige Prostate®

and other software systems which have since seen clinical deployment throughout the
globe now may serve as guidelines for appropriate model evaluation for clinical general-
izability. Large cohort sizes, testing sections containing substantial pre-analytic artifacts,
e.g., thick cuts, fragmentation, and poor staining, abundance of challenging histological
patterns including those seen in benign-mimicking malignant prostatic adenocarcinoma,
e.g., pseudo hyperplastic and atrophic pattern variants, along with benign histology that
may be mistaken for prostatic adenocarcinoma, all are variables which may confound
the appropriate detection and grading of prostatic adenocarcinoma for an insufficiently
trained AI-model, yet did not pose hurdles for the DL-models that would later see clinical
implementation [88–90].

Clinical Integation of AI

AI tools have demonstrated real-world merit for quality control (QC) support and first
read applications for primary diagnostic use within clinical settings. The Paige Prostate®

solution notably reduced time-to-diagnosis by 65% when applied to diagnostic histopatho-
logic data from 682 TRUS prostate needle biopsy WSIs acquired from 100 consecutive
patients at a laboratory unassociated with its original development and validation [87].
The AI-system notably demonstrated 100% sensitivity and negative predictive values for
patient-level diagnostics.

CorePlus (CorePlus Servicios Clínicos y Patológicos LLC, a high complexity CLIA-
certified clinical and anatomic pathology laboratory is the first U.S. laboratory to integrate
an AI-platform for diagnostics, lab efficiency, and quality control [91]. The Galen™Prostate
solution (CE-marked; Ibex Medical Analytics) was integrated into the fully digitized
laboratory for routine clinical second-read diagnostic applications. The AI-solution was
previously clinically validated for routine clinical diagnostics involving detection, grading,
and evaluation of clinically relevant findings within WSIs of prostate CNBs in an extensive
study demonstrating the utility of the AI-solution for routine clinical practice [28].

The study was the first to evaluate the performance of a prostate histopathology algo-
rithm deployed within routine clinical practice for assessment of cancer detection, Gleason
grading (GG), and proportion of tumor extent in addition to detection of perineural inva-
sion, demonstrating the multifaceted merits of the AI-solution which may fulfil a gamut of
clinical reporting needs. Algorithmic interpretation of perineural invasion (PNI) within
CNB WSIs, a typically small and relatively uncommon finding bearing large clinical and
prognostic significance, presented unique focus for investigators as previous studies had
not reported AI-based detection for the feature. The algorithm’s capacity to simultane-
ously evaluate CNBs for PNI (AUC: 0.96 external validation dataset) while interpreting a
battery of standard metrics for prostate CNB, e.g., cancer detection, grading, and tumor
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extent, highlighted the ability of the AI-platform to execute a multitude of functions with
high performance.

The second-read application of the AI-platform was again clinically validated for a
unique patient population bearing high rates of prostate cancer-specific mortality at the
CorePlus laboratory and assessed via comparison to pathologists diagnoses for ground
truth, yielding encouraging results including accurate identification of benign vs. cancerous
tissue (AUC: 0.994; Specificity: 96.9%; Sensitivity; 96.5%) and GG 1 vs. GG 2+ (AUC: 0.901;
Specificity: 81.1%; Sensitivity: 82.0%).

Following clinical implementation of the Galen™Prostate solution at the CorePlus
laboratory for primary application in QC, the AI-tool has discovered and corrected 1.97%
of over 4000 cases (encompassing over 54,000 WSIs since deployment of the AI platform
in June 2020) incorrectly identified as false-negatives. During this period, the second-read
application identified 51.4% of cases as benign, 18.16% as GG1, 29.83% as GG2+, while
providing technical alert notifications for 1.79% of WSIs. In total, 100% of PCNBs at the
laboratory are analyzed with the assistance of AI prior to sign-out.

The Galen™ platform (including Galen™Prostate and Galen™Breast, CE-marked for
clinical breast cancer diagnostics) was also integrated into the clinical workflow for second-
read applications at Maccabi Healthcare Services (Israel), a large, centralized pathology
institute that receives samples from 350 surrounding clinics and hospitals. A significant
proportion of yearly histopathology workload at the institution consists of PCNBs (700 cases
per year; >8000 slides). Alerts from the second-read application, viewable from the case list
and outlined by heatmaps displayed in a slide-viewing module, were raised in 10.1% of
PCNB WSIs (583) taken from 232 cases initially given benign diagnoses by pathologists.
Gleason 7+ alerts were raised in 5.3% of slides (93) taken from 137 cases initially given
diagnoses of Gleason grade 3 + 3. Alerts from the AI-system significantly streamlined the
review process and required minimal review time from pathologists (approximately 1%
of FTE).

The value of AI-assisted QC was again demonstrated in an earlier study assessing the
performance of the Galen™ Prostate algorithm after its validation at Maccabi [92]. Results:
Following deployment in four laboratories within the Medipath network, the largest system
of pathology institutes in France (averaging an annual workload of 5000 PCNB cases), the
AI-solution was noted to have identified 12 cases misdiagnosed as benign, some of which
the system identified as having high-grade cancer.

AI-assistance for first read applications offered by the Galen™Prostate solution under-
went clinical validation in which superior outcomes were yielded from pathologists using
the AI-tool in comparison to those using only light microscopy during interpretation of
100 PCNBs. Results demonstrate a 32% reduction in major discrepancy rate with use of the
first read application [93].

Improvements in productivity, clinical-grade accuracy, TAT, and case-level discrepancy
resolution were observed after clinical integration of the Galen™first read AI-system at
Maccabi Healthcare Services. A 27% overall reduction in time-to-diagnosis and 37% overall
gain in productivity compared to manual microscopy followed deployment of the AI-
tool, which yielded a 32% reduction in time-to-diagnosis for benign cases and a 25%-time
reduction for those with prostate cancer [94]. Diagnostic accuracy did not suffer from
increased efficiency, as results for case-level diagnostic accuracy were congruent between
AI and manual microscopy. A similar trend was also observed for resolution of case-level
discrepancies, of which the Galen algorithm was able to deliver a 97.8% agreement with
ground truth following discrepancy resolution in comparison to the almost equivalent 97.5%
for diagnosis via microscopy [94]. In total, 160 cases (1224 slides) were used to evaluate
case-level agreement for primary diagnosis. A 95.3% agreement was noted between the
AI-solution and microscopy diagnosis for 378 cancerous and 789 benign WSIs in a study
evaluating the performance of the AI-solution against 310 PCNB cases (totaling 2411 H&E
slides) [94]. A total of 99.7% of pathologists using AI-assistance in the study agreed with
classifications provided by the adjunctive tool, including reclassifications of three false-
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negative slides initially classified as benign. It was observed that the use of AI did not
yield any false negative diagnosis throughout the duration of the study. Examples of cases
misdiagnosed via manual microscopy and detected with AI included high-grade prostate
adenocarcinoma (GG4 + GG3) and a case in which only one slide demonstrated findings of
prostate cancer [94].

Turnaround time, e.g., total time from first to last review and sign out of one pa-
tient case, was also demonstrably reduced with AI-assistance, markedly reducing TAT by
1–2 days while enabling a single review for almost all cases. A total of 80% of cases analyzed
via standard microscopy included additional ordering of IHC. Only 0.6% of cases inter-
preted via AI involved additional IHC ordering to those already automatically pre-ordered
based upon AI-classification. In evaluation of 238 cases interpreted via microscopy vs.
AI-assistance, the mean sign out time for pathologists using standard microscopy was
reported as 1.8 days in comparison to 9.4 min via AI.

5. Discussion

DP technology has revolutionized laboratory practices through enabling the digitiza-
tion and viewing of entire laboratory histopathological glass slide workloads at microscope
resolution. Four generations of WSI scanning instruments have passed since the 2001
release of the Leica Aperio T1, with each generation marking successive improvements in
scanning speed, image quality, and batch scanning capacity. Yet, although mature tech-
nology to support WSI and laboratory digitization is now readily available, supportive of
high-volume laboratory integration, and more cost-effective for implementation than ever
before, few laboratories to date have undergone complete digital transformation for routine
clinical practice [11,95]. Commercial AI-tools for diagnostic pathology are primed for
adoption, offering “plug-and-play”, user-friendly systems which now include applications
for case triaging, worklists, slide viewing, IHC pre-ordering, tumor grading, sample mea-
surements, reporting, and identification of non-cancerous findings. An increasing number
of vendors offer dedicated software with algorithms for WSI image analysis, e.g., estrogen
receptor, progesterone receptor, and human epidermal growth factor receptor 2 scoring,
including automated multi-class segmentation of H&E stained WSIs demonstrated via
‘heatmapping,’ i.e., colorized pixel wise classification of tissue (Figure 11) [96].
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Commercial vendors are now utilizing modern DL techniques including multiple
instance learning (MIL) to generate cell-by-cell data, quantify within subregions, and
perform feature-based analysis for multiple applications in brightfield and fluorescent
WSIs, with recent solutions facilitating the accurate prediction of genomic status from
H&E-stained slides [97]. An increasing number of commercially available AI solutions
support the construction of bespoke AI models, e.g., custom assay development, whereby
pathologists are enabled to train models via annotations rather than complex coding,
with some vendors offering built-in learning tools to further assist the annotation process
for faster training and increased accuracy. Commercial solutions are capable of high
throughput with fast turnaround from rapid generation, visualization, and export of
spatial, morphological, and increasingly precise histology data from WSI, e.g., tumor
area, cell counts, cell size, staining intensity, collagen area, and blood vessel density [98].
Yet, only 22% of laboratories enrolled in a 2016 College of American Pathologists (CAP)
quality improvement survey for histology reported using quantitative tools for image
analysis tasks [99].

Following the introduction of IHC and next generation sequencing for clinical practice,
AI has been deemed the third revolution of pathology [99]. Such a revolution and the
magnificent potential it holds for clinical pathology, as evidenced in our review, may only
be unleashed through WSI adoption. Improvements in clinical-grade accuracy, increased
productivity, robust QC, and shorter TAT realized through AI-augmented DP laboratories
have driven a case for full laboratory digitization as seen in Maccabi Healthcare Services.
Integration of AI into clinical workflow at the healthcare network yielded low risks while
producing high returns. These findings, in conjunction with increased efficiency, decreased
IHC ordering, and increased practitioner satisfaction supported the decision for complete
digitization from both practical and financial vantage points.

Van Der Poel et al. had noted in their 1992 review of computational applications in
“quantitative light microscopy” for the diagnosis of prostatic adenocarcinoma, transitional
cell carcinoma, and renal cell carcinoma, that the purpose for investigating the application
of such techniques stemmed from the highly inconsistent nature of visual tumor grading
lending to high interobserver variability reported at the time [16]. Authors also noted
changes in grading systems that were often descriptively subjective therefore resulting in
“disturbingly low reproducibility”, further compounding the highly subjective nature of
pathologist-directed quantification of histological, cellular, and nuclear features pertaining
to malignant potential. The comprehensive review of primordial computational applica-
tions for GU pathology concluded with noting that such techniques were valuable in aiding
diagnosis only when confined to research settings. The need for standardized automated
fixation, embedding, staining, selection, and measuring techniques was emphasized, as the
extensive data analyzed within the review had been obtained with varying preparation
methods and therefore differed too greatly to support any consistent conclusions.

Twenty years later, Egevad et al. reported on their investigation concerning the shifting
approach to Gleason grading following the 2005 change in guidelines by the International
Society of Urological Pathologists [36]. New encouragement to incorporate poorly formed
glands and cribriform patterns into Gleason pattern (GP) 4 had led to high inter-observer
variability amongst even specialist urologic pathologists (κ = 0.34), who expressed concern
regarding the compromised significance of GS 7 in the wake of the amended guidelines [35].

Modern computational pathology tools have facilitated the standardization of work-
flow components highlighted by Van Der Poel et al., yet most current studies involving
the interrogation of AI-development for pathology are still relegated to academia while
lacking any consistent methodical standardization that may be utilized for clinical rele-
vancy. Though the performance of AI algorithms for GU pathology has, within the cohort
of research studies included in our review, demonstrated equivalency to the diagnostic
interpretations of GU specialists while surpassing those of general pathologists, training
materials and methods for individual AI-models varied when evaluated as a conglomerate.
Variations in tissue samples and WSI patch sizes used for model training are two such
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examples. Firm conclusions pertaining to the clinical relevancy of these investigations
were also unreachable, in some instances, due to lack of model-development for correlating
cancer grade with clinical outcome.

In his wake, Aurelius left scores of stoic prose directing those seeking understanding
almost two millennia later to “look back over the past, with its changing empires that rose
and fell . . . ” to foresee the future. Those pursuing additional directives towards fomenting
solutions for change may turn to Socratic texts encouraging avoidance of conflict with the
old to build upon the new, words which predated Aurelius’ reign by centuries.

Realization of objective diagnostic reproducibility has been a coveted goal for clin-
ical pathology long before the concept of computer vision, or computers in any respect.
Newer studies featured in our review have highlighted instances of clinical implementation,
groundbreaking generalizability, and MIL methods for algorithm development incorporat-
ing data from entire clinical pathology reports into training for enhanced clinical relevancy.
Newer CNN derivatives and methods for model training have emerged to combat data
concerns which have been a primary limitation to algorithmic clinical implementation.

Integration of a fully digitized, LIS-centric laboratory was a response to overwhelming
workload burdens at the Gravina Hospital in Caltagirone (Sicily, Italy) [95]. Such problems
had been compounded by the Coronavirus pandemic, though were omnipresent in similar
departments throughout the globe struggling to combat long withstanding problems that
had fervently resurged after lying dormant for years. Digital transformation of all workflow
steps through departmental LIS allowed practitioners and staff at the Gravina Hospital to
alleviate burdens through a completely interconnected, easily streamlined workflow. DP
transformation of the laboratory would later be followed by augmentation of the digitized
workflow processes with AI-tools. Superior diagnostic concordance amongst pathologists
and increased WSI quality was observed shortly following implementation of AI, as al-
gorithmic adjuncts to digital workflow processes created a cause for upholding a high
standard of workflow quality. Through shining a light upon areas for improvement within
the existing workflow it was embedded within, AI had uncovered problem areas otherwise
overlooked existing prior to its arrival, which would then be amended to optimize the
conjunctive potential of both diagnostic utilities.

Unearthed depths of clinical potential embedded within millions of WSI pixels has
driven the development of effective, accurate, and precise AI algorithms purposed for
transforming such potential into meaning. The same prospects have inspired the evolution
of four generations of WSI devices to extract and present data from glass slides with greater
efficacy, accuracy, and precision with each successive iteration. Driving forward and fueled
through shared inspirations of clinical prospect and potential, WSI has met AI at a road
converged where both may continue to a destination of enhanced clinical understanding
and optimized patient care. As the night turns and AI embeds itself within the digital
bedrock of clinical pathology, Rushmore-esque pillars form to cast monumental gazes of
computer vision to an infinitely opportune landscape ahead.
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