Taylor et al. BMC Ecology 2010, 10:22

http://www.biomedcentral.com/1472-6785/10/22
P BMC

Ecology

SOFTWARE Open Access

radR: an open-source platform for acquiring and
analysing data on biological targets observed by

surveillance radar

Philip D Taylor'", John M Brzustowski'#, Carolyn Matkovich', Michael L Peckford', Dave Wilson?

Abstract

developed to solve this problem.

data of biological targets.

Background: Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there
are few readily available software tools for the acquisition, storage and processing of such data. Program radR was

Results: Program radR is an open source software tool for the acquisition, storage and analysis of data from
marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial
component as input from some source (typically a radar digitizing card) and extracts and retains information of
biological relevance (i.e. moving targets). Low-level data processing is implemented in “C" code, but user-defined
functions written in the “R" statistical programming language can be called at pre-defined steps in the calculations.
Output data formats are designed to allow for future inclusion of additional data items without requiring change
to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an
overview of the basic considerations of setting up and running a biological radar study.

Conclusions: Program radR provides a convenient, open source platform for the acquisition and analysis of radar

Background

Biological use of radar originated in the 1940s when
early users attributed echoes of unknown origin
("angels”) that they observed on radar screens, to birds
[1]. In the years since, zoologists have used radar to
study the behaviour of many types of mobile organisms
including birds, bats and insects [2]. Today, researchers
study the movements of organisms using a wide variety
of types of radar from small marine units [3] surplus
military equipment [4] fixed beam “entomological
radars” [5] to broad-scale Weather Surveillance Radar
(WSR) arrays [6]. Radar is an especially useful tool
where direct observations of biological phenomena are
challenging, such as at night or in fog.

In spite of the relatively long period of time that radar
has been available for use in biological studies, there are
still major barriers to its more general use. One of these
is the lack of an automated, cost-efficient tool that

* Correspondence: philip.taylor@acadiau.ca
'Department of Biology, Acadia University, Wolfville, Canada
Full list of author information is available at the end of the article

( BioMVed Central

enables users to obtain digital radar data of known qual-
ity for a given project. For example, some use non-auto-
mated means for data collection such as video-taping
and marking acetate sheets with putative tracks; such
approaches are time consuming and prone to errors of
omission and interpretation. Furthermore, non-auto-
mated approaches mean that it is not straight-forward
to estimate error and bias (and correct for it) and so do
not produce results that are comparable across studies.
A range of ‘in-house’ solutions to automated data collec-
tion exist but are not readily available for use perhaps
for cost or proprietary reasons. In general, there is a
lack of ability within the research community to com-
pare and validate various systems and studies, which in
our view has hampered the broader development of
radar zoology.

Implementation

Here we present an open-source software program -
“radR” - that addresses this problem. Program radR is
capable of reading, extracting biological information and

© 2010 Taylor et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:philip.taylor@acadiau.ca
http://creativecommons.org/licenses/by/2.0

Taylor et al. BMC Ecology 2010, 10:22
http://www.biomedcentral.com/1472-6785/10/22

saving data from a digitized radar signal. Archival data
formats allow for future inclusion of arbitrary additional
information while preserving forward and backward
compatibility. We present an overview of the current
state of program radR and some additional material that
outlines technical details about how to set up a small
marine radar in what would be typical use for the radR
software (see Additional file 1). For an in-depth over-
view of many of the details of radar terminology and
function, its range of applications, and the strengths and
pitfalls of the technology for zoological work the reader
should consult Larkin [7]; for details of radar signal pro-
cessing and tracking, readers should consult any of the
more accessible radar texts (e.g. [8]).

Our ultimate aim is to increase the accessibility of
radar technology to researchers, the consulting commu-
nity and citizen scientists, in order to improve our abil-
ity to calibrate and compare results across studies [9-11]
and to stimulate hardware and software developments
in the field.

Results and Discussion

General layout and orientation of radR

Program radR provides a convenient platform for visua-
lizing and recording radar data, developing and testing
new algorithms, and evaluating and comparing radar
hardware. It is intended as a research tool, and is not
designed to be used for critical functions such as naviga-
tion, air traffic control or bird strike avoidance. It pro-
vides a baseline standard that offers an opportunity to
increase the reproducibility and comparison across stu-
dies of ecological phenomena using radar. Program radR
was developed for marine radars operating in surveil-
lance mode (that is, where a radar beam sweeps repeat-
edly through some volume of space - a ‘scan’), and has
been primarily tested using two types of small marine
radars (Furuno 1954/64 BB). However, it has been
designed to be flexible and extensible, and so we antici-
pate it will be useful for a wide variety of other radar
types, including different brands, antenna types and
orientations, and wavelengths.

The program is written in C and R [12], an open
source, statistical programming language that provides
rich extension capabilities and a broad spectrum of sta-
tistical tools for post-processing data. Program radR
runs under both Windows (XP/Vista) and Linux systems
and is not vendor-specific except when interacting with
proprietary radar digitizing cards of which two brands
are currently supported. The core of the radR program
is a ‘processing manager’ that consists of a user interface
loosely based around the familiar media-player para-
digm, that allows the user to start and stop processing,
choose sources and sinks for data and output, and dis-
play data and the output from basic target finding

Page 2 of 8

(clutter learning and target extraction) and tracking
("track-while-scan”) algorithms.

The basic data object in radR is the “scan”, which is a
matrix of integers representing the power received by
the radar at a set of uniformly-spaced sample times
within each pulse of a sequence evenly-spaced through
the radar’s rotation (see Figure 1). Additional data,
called “meta-data”, denote conditions under which the
scan was obtained, such as the time of the first pulse,
the physical location of the radar (when available) and
the radar’s pulse length. Much of the work of radR con-
sists of processing the scan matrix, to remove noise and
clutter and extract putative targets. This processing is
done in stages, and at check-points between stages
(called “hooks”) user functions written in R can be
called to use or modify the intermediate data. Function-
ality in the program is delivered by a set of modules
("plugins”) that implement functions called at some of
the hooks. For example, a ‘hook’ is present at the point
where all of the meta-data for a scan has been acquired
from the data source. A plugin may then add additional
meta-data for which it is responsible, e.g. the angle of
the beam above the horizon. For a particular radar set-
up, this information might be constant, or it might vary
from scan to scan. Subsequent processing stages will use
the data and metadata which might have been modified
by a plugin at an earlier hook. The plugin architecture
allows users to write extensions to the program in “R”,
without having to resort to low-level programming in
“C”. We believe that allowing users to customize the
program using the same programming language that
many of them will subsequently use for statistical analy-
sis of the data it gathers, significantly lowers the barrier
to use of radar technology. A current list of plugins can
be found at http://www.radr-project.org. Much of the R
code is verbosely documented in the source distribution
(comments are stripped from files in the binary
distribution).

At present, plugins can be grouped as follows: 1)
acquiring data from a radar or archive file,2) adding or
manipulating meta-data 3) processing, describing and
saving the input data, 4) creating tracks and exporting
data, 5) displaying information about the targets, and 6)
other utilities. Here we specify the approach used within
radR to accomplish each of the tasks above; details are
evolving and are documented at http://www.radr-pro-
ject.org. In the future we plan to migrate the project to
either sourceforge.net or r-forge.r-project.org, and to
take greater advantage of the R project’s well-developed
package management and distribution tools.

Acquiring the radar signal
There are many considerations in choosing a radar and
antenna and setting it up. These are generic to all


http://www.radr-project.org
http://www.radr-project.org
http://www.radr-project.org

Taylor et al. BMC Ecology 2010, 10:22
http://www.biomedcentral.com/1472-6785/10/22

Page 3 of 8

one scan of raw radar data

a single sample: color represents
the 12-bit value according to a
user-defined palette

---------------------------------------

Figure 1 Terminology used in radR for referencing the elements of a digitized radar scan . The example shows a single ‘scan’, divided
into 1024 pulses, each divided into 2048 samples. Each sample has a value from 0 through 4095, displayed on a coloured scale (blue low, red
high). A ‘stats’ cell is the unit used to calculate means and variances of sample values for blip extraction (see Figure 2 and text for details).

samples at
the same range
from consecutive pulses

samples from one pulse

-
______
.
Tay
.
.y,

studies, but are critical to obtaining useful data. We out-
line the major steps involved and some basic radar ter-
minology in Additional file 1. Once the user has a
suitable radar system, they require a means to obtain
basic information from the radar, including converting
the analog signal containing information on targets to a
digital signal for processing. The problem is non-trivial,
largely due to the huge bandwidths involved [[8]; Chap-
ter 1], and so specialized radar digitizing cards are used.

radR has primarily been developed using the Rutter
Technologies (St John’s, Newfoundland, Canada) Sigma
S6 radar digitizing card. A plugin allows the user to
interface with this card, and to control, via Rutter’s pro-
prietary software, the sampling rate and maximum
range of the card. At present, pulse length and Pulse
Repetition Frequency (PRF) are set by the radar and
inferred using tables provided by the user. (Readers not
familiar with these terms should consult Additional file
1, some of the key radar overview papers cited therein,
and a text on basic radar principles e.g [8]). A similar
plugin has been written to acquire data from the Russell
Technologies (Vancouver, Canada) “XIR3000C card). It

is worth noting that plugins can be written for other
digitizing cards, but that they will almost certainly
require some “C” code, as vendor interface libraries will
typically use data-types and calling conventions beyond
those available in “R”. A template plugin is provided
which documents the requirements for a new digitizing
card plugin, as well as providing the high-level R code
skeleton (which would presumably call new “C” code,
specific to the digitizing card).

For the advanced user, there is detailed documenta-
tion on how to convert an archive of unprocessed radar
data into one of radR’s own data formats, so that a user
can use radR to post-process data collected by a differ-
ent system.

Processing the radar signal and extracting putative
biological targets

Once a scan of radar data has been acquired, radR’s top-
level processing manager calls internal “C” functions to
process it. Processing works as follows. The radar digi-
tizing card or other source has provided a scan of data.
As discussed above, this consists of a matrix of integers.



Taylor et al. BMC Ecology 2010, 10:22
http://www.biomedcentral.com/1472-6785/10/22

Each column in the matrix represents a time-series of
power received by the radar antenna in a short time-
window after the radar has transmitted a single pulse of
microwave energy. Individual numbers in the column
represent the amount of microwave energy reflected
back from within volumes of space at increasing dis-
tance from the radar, as well as noise from various
sources both within and outside the radar system. The
columns form a sequence spaced uniformly around the
radar’s plane of rotation (e.g. sweeping from 0 through
360 degrees of azimuth). Each row in the scan matrix
corresponds to the energy received from a given “range
cell”, with individual numbers representing the energy
received while the radar was pointing at a particular azi-
muth (or more generally, direction). For each pulse of
energy transmitted by the radar (or at least for a uni-
formly spaced subset of pulses from one revolution of
the radar), the return echo is digitized into a specified
number of “samples” at a specified rate. Each sample
thus represents the intensity of the return echo from a
single pulse, for a given range cell. The possible number
of samples and the resolution of the return echo inten-
sity obtained depends on the digitizing card. For the 12
bit card which has been used for most work with radR,
a sample is an integer in the range 0 to 4095, (i.e. 2'*-
1), the available digitization rates are between 5 and 60
million samples per second, and roughly 4 million sam-
ples per scan can be obtained. The user has some choice
over how many pulses are digitized and how many sam-
ples are obtained per pulse, subject to the product not
exceeding 4 million. Roughly speaking, the digitizing
rate affects the ability to discriminate targets in the
same direction from the radar but at different distances,
as well as the precision of estimates of target distance;
the number of pulses affects how many echoes will be
received from a target in each scan, as well as the preci-
sion of estimates of target azimuth; and the samples
per pulse, when divided by digitizing rate, controls the
maximum range from which target echoes can poten-
tially be received. Each scan can be subsequently dis-
played, stored or processed, depending on the user
configuration.

The user can save all of the samples from each scan
(in a ‘raw’ archive) but such files are massive (e.g. about
5 GB for every hour of recording, depending on the
digitizing parameters). This can be reduced significantly
in situations where only a fixed portion of each scan is
of interest to the user (e.g. when the radar is monitoring
off-shore activity from the edge of a body of water,
where only data from, say, 0 to 180 degrees azimuth is
desired), or when the user is able to set a noise thresh-
old such that sample values below it are discarded
(either by adjusting the digitizing card controls, or by a
radR parameter). In these cases, a standard lossless

Page 4 of 8

compression algorithm can be (optionally) applied to
reduce the size of recorded files,

Normally however, radR is configured to extract and
save a subset of information from each scan - the parts
that contain putative biological targets ('blips’). These
smaller archives ("blipmovies”) provide an archival
record of the observations that can be subsequently
viewed and analysed (see below). Blipmovies typically
reach a maximum size of ~2 MB for each hour of
recording (depending on the specified sampling rate and
depth, and the numbers of biological targets that are
detected).

At present, radR extracts putative biological targets
from the digitized signal in a simplistic way. For a user-
specified number of scans the program computes a tem-
poral mean and mean deviation of the strength of the
radar echo from user-defined windows of samples and
pulses across the entire scan. This is the background.
The program then computes, for each subsequent sam-
ple, an intensity z-score for that sample (i.e. the inten-
sity of the signal return for that azimuth and range cell
combination, relative to the background distribution for
its window). Samples that exceed some user-defined
threshold in the z-score are considered ‘hot” and are
grouped with adjacent ‘hot’ samples into ‘patches.
Patches that satisfy user-defined filtering criteria (fixed
values or arbitrary functions based on numbers of sam-
ples, PPI area, angular and radial span) are considered
blips, and retained. These can be of any size above the
user-defined minima described above. The learned pat-
tern of background can optionally be updated with data
from each scan, using a scheme that amounts to expo-
nentially weighting data from previous scans at a user-
specified decay rate. A diagrammatic representation of
the process is presented in Figure 2.

The target finding algorithm was developed to loosely
mimic how human radar operators appeared to detect
targets, and raw data is saved for each blip so that phy-
sically realistic target detection models can be applied to
them. The method does not work well in situations
where there are rapidly changing patterns of ‘back-
ground’ such as reflections from surface water (waves)
and during periods of rain. In these situations, the algo-
rithm detects many ‘non-biological’ blips, some of which
can be filtered on-the-fly using user-defined criteria.
More sophisticated ‘blip-finding’ algorithms exist (e.g.
[8,13]) that can make much better use of the informa-
tion contained within the returned signal; we plan to
develop these in future versions of the software.

At present, blips are stored and manipulated in the
digitized units obtained from the associated radar scan
converter (e.g. for the 12 bit Rutter card, a sample can
theoretically have a value ranging from 0-4095). These
sample values can be converted to estimates of the



Taylor et al. BMC Ecology 2010, 10:22
http://www.biomedcentral.com/1472-6785/10/22

Page 5 of 8

. o € c

c'l:’c T cleclel €
c e W
raral:iia et c|c|€ Wi
clei¥ielNels c
c|c [l c | < | < m
clalfije (< € : 2
cqccc‘ BIBIBIEic |c E
Cdlefcicln =
3 —c-—___libbhbtt E]
Cccgb -4
clulc]e | € -

t‘t{gc
€/cYe

not using diagonals:
4 patches:
3x l-sample
1 x 15-samples

using diagonals:
3 patches:
Zx l-sample
1 x 16-samples

- finding: adjacent hot samples are joined together into patches
- filtering: patches satisfying criteria are called blips
= filbering criteria:

- minimum and maximum numbers of samples in the patch
- minimum and maximum apparent patch area

- minimum and maximum angular span of patch

- minimum and maximum radial span of patch

- reclassify blip samples: sample _class]i, ] = blip

"*==-.. blip (given appropriate filtering criteria)

Figure 2 Example and terminology used for blip extraction. See text for details.

returned power for that sample by determining (either
through the manufacturer’s specifications, or through an
empirical test of the conversion card using a microwave
generator) and substituting the appropriate values or
estimates into the radar range equation [8,10]. This
functionality is card-specific, and is being developed as a
separate plugin.

Users would normally save blips to a permanent
archive (a “blipmovie”) which is a file-backed structure
that behaves like an R language “list” object. Blipmovies
can be re-run, further modified (by filtering out blips)
and processed. Typical processing steps include output-
ting files of blips (timestamps, X, y, z coordinates, and
their associated characteristics) or combining blips into
tracks. All processed files can be saved to text files, for
processing outside of radR, or re-recorded as (presum-
ably filtered) blip movies.

Another plugin provides important information to the
program and to the archived movie regarding the basic
characteristics of the antenna and scanner including the
type of antenna ("t-bar” or “dish”), the beam height and
width, the angle of the beam center off the horizontal,
the angle of the scanner off the horizontal, and the geo-
graphic co-ordinates of the scanner.

Through another plugin, the user can apply different
processing and filtering rules for different portions of
the scanned volume, and can entirely discard data from
specified sectors.

Track compilation and exporting

A single target flying through the radar beam can be
detected on multiple scans of the rotating beam, creat-
ing a series of blips. These blips can be linked together
to form tracks (track-while-scan), so that the velocity
and direction of targets can be estimated. Currently,
radR provides two track-building models: one based on
a simplistic nearest neighbour (NN) algorithm and the
other based on a multiframe correspondence (MFC)

algorithm [14]. Tracks can be fit in real time or to
archived data.

The NN model is primarily used as the basis for the
more sophisticated MFC model. It builds tracks by
minimizing the distances between existing tracks and
possible new blips ("extension distance”), subject to
some constraints. It first computes the distance from
every new blip in a scan to the last blip in every active
track. For all such pairs, a speed, turning angle, and
relative change in blip area or intensity (all user-defined)
are computed, and pairs for which these values do not
fall within user-specified ranges are discarded. Among
remaining “feasible” pairs, blips are assigned to tracks in
such a way as to minimize the total “extension distance";
i.e. generally by matching tracks to their nearest feasible
blips, and settling conflicts according to the minimum
extension criterion. For example, if a new blip is the clo-
sest feasible blip to two different tracks, it is matched to
the closer of the two tracks, with a “coin toss” for ties.
Blips which are left unmatched in one scan may be
extended into tracks in a subsequent scan, provided this
occurs before their user-defined “expiry” time. The
model uses an algorithm from the Stanford GraphBase
package of Knuth [15,16].

The MFC method is more robust than the NN
method. It employs a non-iterative greedy algorithm for
multiframe point correspondence as outlined by Shafi-
que and Shah [14]. It begins with two scans, matching
blips between them using the NN algorithm and then
assigning a velocity to the set of matched blips. When
third and subsequent scans are processed, the algorithm
considers all possible matches between blips in the first
two scans, and those in the third. A “gain” function
returns the “quality” of match between each new blip
and an existing track (or initial segment thereof). The
default gain function is a weighted sum (expressed on a
log scale) of two components: the proximity of the new
blip to the next location predicted for the track by



Taylor et al. BMC Ecology 2010, 10:22
http://www.biomedcentral.com/1472-6785/10/22

assuming constant target velocity; and the homogeneity
of target velocity (not just speed) when the new blip is
added to the track. Tracks are extended with (or broken
and re-matched to) new blips in such a way as to maxi-
mize the total “gain”. When subsequent scans are pro-
cessed, the procedure is repeated. All possible track
segments connecting the blips in the previous k-1 scans
and the blips in the new scan are considered, optimizing
between proximity to predicted position and consistency
in velocity (k is a parameter chosen by the user). Tracks
may be broken and attached to a new blip, in which
case the blips from the broken-off track tails participate
in a second track-building phase with any other
unmatched points. In effect, tracks can be retroactively
corrected back k scans to better match newly acquired
blips. The procedure is flexible in that the gain function
can be modified or specified by the user to change the
nature of the track building.

In informal tests, the algorithm works well (e.g.
detects most ‘valid’ tracks and does not create incorrect
tracks) when there is limited ‘noise’ (e.g. blips that are
actually rain or surface water), where tracks are long,
and more-or-less linear, and when the density of targets
is lower. We have not directly quantified errors in track-
building at this time, since we are actively undertaking
calibration experiments that will allow us to incorporate
additional information from blips into the blip finding,
blip filtering and track building algorithms, all of which
we expect to improve track-building performance.

Other, possibly superior, methods for track building
exist (e.g. Multiple Hypothesis Testing; see [17]) that
could be implemented in the future by us or the inter-
ested user.

Summary data for each blip and(or) tracks can be
exported to text files or raw R-format data files for pro-
cessing outside radR. At present, exported data includes
basic blip parameters (e.g. time, X, y, z) and summaries
of blip characteristics (number of samples, area, “peri-
meter” in the PPI display, mean and maximum intensity,
angular span, radial span) that may be useful for blip
and track classification. When exporting data on tracks,
each blip is associated with a unique track number.
Complete information on blips (e.g. actual values for all
samples within a blip) are retained in the blipmovies,
and can be extracted by the user via additional plugins.
(example blipmovies can be found at http://www.radr-
project.org).

A simple ‘batch’ mode allows the processing of multi-
ple files in a single job, controlled by a script rather
than the by the graphical user interface.

Displaying the targets
Biological targets (blips) are displayed in a “plan-position
indicator” (PPI) plot window which the user can pan,

Page 6 of 8

zoom and rotate. The PPI displays a scan by plotting a
spot at the nominal range and azimuth of each sample,
with the spot’s color depending on the sample value. A
pointer can optionally display the current characteristics
of any blip or track on display. The user can also pro-
vide a background image such as an aerial photograph
of the area being sampled that can be translated,
rotated, and scaled within radR to align with radar data.

The user can mimic the appearance of a phosphor
screen by allowing blips to persist and fade over multi-
ple scans (’trails’). Figure 3 provides a screenshot of an
example session with an underlay, several targets, and
trails from those targets displayed.

Other utilities

Plugins exist for a number of other purposes, allowing
users to create demonstration ‘clips’ of movies in ani-
mated GIF format, to add comments to blipmovie
archives at specific points, and to generate random blips
with known patterns and characteristics that could serve
various purposes, such as algorithm testing.

Extensibility

Program radR is extensible by the user by writing
“hook” functions in R, as discussed earlier. For example,
each time the tracker plugin declares a track “complete”
(because no blip has been added to the track for some
user-determined number of scans), a user function, writ-
ten in R, could be called with the coordinates of the
blips on the completed track. This could then be used
to apply a user-defined hidden-variables model for
improving the estimates of target locations along the
track, or to add the track to a 3-dimensional scene.

Software testing

Software has primarily been tested in an ad-hoc way,
under field situations (e.g. as part of ongoing research
projects) and similarly, through post-processing of data.
As such, some parts of the code are known to be more
robust than others. Program radR is in active develop-
ment, and new features are added regularly. We main-
tain a ‘stable’ release and development versions of radR
available for download at http://www.radr-project.org.

Using radR

Details of how to use radR in a field setting are provided
at http://www.radr-project.org. These will change from
time to time as new features are introduced, and bugs
are corrected. The basic steps include: 1) Installing radR
and the supporting version of R on the local computer;
2) configuring radR so that it is aware of the current
setup (type and orientation of the scanner and antenna;
3) selection of parameters for the detection of blips (and
filtering) and 4) Recording. In our use, we are liberal


http://www.radr-project.org
http://www.radr-project.org
http://www.radr-project.org
http://www.radr-project.org

Taylor et al. BMC Ecology 2010, 10:22
http://www.biomedcentral.com/1472-6785/10/22

Page 7 of 8

plot PREVIEW: 2008 May 07 06:33:50.8 GMT 15 biips; 2117 hot (0.05047%) 1.84%

Trail sample value: 801
range: true= 0.830 km, ground= 0.610 km; bearing= 87.0 deg
xyzt={  &03, 32, 562, 06:33:51.396) m,s

Sample 160 Pulse 991

Value = 0 Score =  0.000

Active track with 7 points

#3 in all.tracks; $3 in tracks

From 0£:83:36 to 06:33:51

Length: 279 m Mean Speed: 65.8 km/h

From: | blipmovie: C: SC-0C20 To

{select a destination)

1. 06 May 2008 12:03:22 GMT — 07 May 2008 12:01:29 GMT Length: 23 87 hours; Scans: 34220

blip processing
r ¥ fndblipt —M8M8M8M8M8M8 ™
learning scans: |15 E[:

Restart saming now |

=(Ox]

¥ update stats every scan

|| ¥ excluds blips from stats update

old stats weighting: [0.95

hot score: |2.5

cold score: |2.5

sampies per calt [+

pulses per celt [+

I™ blips extend diagonally

I~ biip centroids by area, not intensity
- ¥ fiter blips

min blip samples: [20
‘max blip samples: |5000
‘min blip area (m*2): [200
‘max blip area (m*2): [20000
‘min angular span: |2
‘max angular span: |-1
min radial span: |1

max radial span: [1
I also fiter by logical expression:
perin "2/ (atza " (4% pil] < 5

R

A ] TSI

screen.

Figure 3 Example program radR screen layout showing bird targets migrating overhead in spring at Old Cut Field Station, Long
Point, Lake Erie, Canada. The main ‘plot’ screen is in the upper left; the ‘blip processing functions’ in the upper right, display options in the
lower right, and ‘player’ controls in the lower left. On the plot screen, an aerial photograph underlay is shown, with North at the top. Blips
detected in the current scan are an orange colour; blips that are green show positions where targets were situated in previous scans. A single
track (white arrow pointing N on the right hand side of the plot screen) is currently active and shows the relationship between a current blip
(orange) and the previous locations of that target. Details of that track are shown in the text box in the upper left hand corner of the plot

Class Click to edit
¥ Bip 1 N brightprimary
[~ Hot e . = dimprimary
[~ Cold 100 2] N scoreredblus
¥ Other 1 3 greenramp
™ Excluded R = grayscale
Background layer | |
[¥ Compass pixels:[400 =2 B
7| Range rings. metres:[s00 2] ]
[ Update plot while playing Potdala.  sample scores
[¥ Use slow Ik plotting; needed for displaying fracks and zones

with the amount of data collected (that is, we acquire
information on many putative targets that are almost
certainly not targets, then filter them out during post-
processing). Although it is possible (given sufficient
memory and processing power) we do not usually
attempt to process tracks in real time, leaving those
steps for post-processing.

Once data are acquired, radR is used to further filter
and create tracks. Filtering and track-building para-
meters are situation and radar dependent; individual
users will need to calibrate their systems and view their
archives to determine settings that meet their needs.
Special consideration needs to be made for the classifi-
cation of targets; radars with short wavelengths (e.g. the
3.2 cm wavelength of typical X band marine radars)
readily detect birds, bats and insects and these types of
targets are not easily separable (if at all) without

additional information [10]. radR can facilitate target
classification by providing the user with metrics such as
target speed, height and direction. If a proper calibration
protocol has been carried out (see Additional file 1)
then radR can be configured to provide information on
the radar cross sections of targets (RCS) or volume
reflectivity.

Conclusions

We have developed and extensively tested radR in field
situations over the past five years. The software provides
an open solution to the problem of acquiring and pre-
paring for analysis radar data for use in biological stu-
dies. We hope that the provision of a widely applicable,
freely-available open source tool will enable researchers
working with radar data to improve and standardize the
acquisition, storage and analysis of these data greatly



Taylor et al. BMC Ecology 2010, 10:22
http://www.biomedcentral.com/1472-6785/10/22

enabling comparisons across multiple times and studies
and further developments in the field. We further wel-
come other researchers to collaborate with us on the
future development of the software.

Availability and requirements
Project name: Project radR

Project home page: http://www.radr-project.org

Operating system(s): Full functionality on Windows
XP systems. On Linux systems, all functionality except
the ability to read live data from radar digitizing cards
because the proprietary cards supported so far lack
Linux drivers

Programming language: R, C, C++

Other requirements: R 2.5.1, digitizing card interface
library and possibly server program from one of the two
currently supported hardware vendors.

License: GNU GPL Version 2 or later.

Any restrictions to use by non-academics: None

Additional material

Additional file 1: A basic primer for implementing a radar study. An
outline of some basic information needed to implement a radar study

Acknowledgements

Charles Francis (Environment Canada) provided the initial impetus for the
project, facilitated funding, and provided technical and logistical support.
John Black (Emeritus, Brock University, Canada) provided very important
early encouragement and ideas. Two anonymous reviewers provided
detailed comments that greatly improved the manuscript. Financial support
was provided by Environment Canada and Natural Resources Canada
through grants to PT. CM was supported by an NSERC graduate fellowship.

Author details

'Department of Biology, Acadia University, Wolfville, Canada. *Canadian
wildlife Service, Environment Canada, Ottawa, Canada. >Electro Marine
Communications Inc., Oakville, Canada.

Authors’ contributions

PT developed the initial ideas, provided the overall conceptual framework
for the project and is the main writer. JB wrote all of the code and
formulated most of the internal conceptual organization for the program.
CM and MP undertook extensive field testing, wrote sections of the
manuscript, and provided key feedback on aspects of program and project
implementation. DW provided extensive technical advice and modifications
to hardware. All authors read and approved the final manuscript.

Received: 10 November 2009 Accepted: 26 October 2010
Published: 26 October 2010

References

1. Eastwood E: Radar Omithology London: Methuen & Co. Ltd; 1967.

2. Alerstam T: Bird migration Cambridge: Cambridge University Press; 1990.

3. Cooper BA, Day RH, Ritchie RJ, Cranor CL: An improved marine radar
system for studies of bird migration. Journal of Field Ornithology 1991,
62:367-377.

4. Bruderer B, Steuri T, Baumgartner M: Short-range high-precision
surveillance of nocturnal migration and tracking of single targets. /srael
Journal of Ornithology 1995, 41:207-220.

Page 8 of 8

5. Drake VA: Automatically operating radars for monitoring insect pest
migrations. Entomologia Sinica 2002, 9:27-39.

6. Gauthreaux SA, Belser CG: Radar ornithology and biological conservation.
Auk 2003, 120:266-277.

7. Larkin RP: Radar techniques for wildlife. In Techniques for wildlife
investigations and management. 6 edition. Edited by: Larkin R. Bethesda: The
Wildlife Society; 2005:448-464.

8. Richards MA: Fundamentals of Radar Signal Processing New York: McGraw-
Hill; 2005.

9. Gauthreaux SA: Radar Ornithology-The Past, Present, and Future: A
Personal Viewpoint. In Applying radar technology to migratory bird
conservation and management: strengthening and expanding a collaborative.
Edited by: Ruth J. US. Geological Survey Open-File Report 2007-1361; 86.

10. Schmaljohann H, Liechti F, Bahler E, Steiri T, Bruderer B: Quantification of
bird migration by radar - a detection probability problem. /bis 2008,
150:342-355.

11. Zaugg S, Saporta G, van Loon E, Schmaljohann H, Liechti F: Automatic
identification of bird targets with radar via patterns produced by wing
flapping. J R Soc Interface 2008, 5:1041-53.

12. R Development Core Team: R A language and environment for statistical
computing. Vienna: R Foundation for Statistical Computing; 2008 [http://
www.R-project.org].

13. Betke MD, Hirsh E, Makris NC, McCrakeken GF, Procopio M, Hristov NI,
Tayng S, Bagchi A, Reichard J, Horn JW, Crampton S, Cleveland CJ, Kunz TH:
Thermal imaging reveals significantly smaller Brazilian free-tailed bat
colonies than previously estimated. Journal of Mammalogy 2008, 89:18-24.

14.  Shafique K, Shah M: A Noniterative Greedy Algorithm for Multiframe
Point Correspondence. IEEE Transactions on Pattern Analysis and Machine
Intelligence 2005, 27:51-65, 2005.

15. Knuth DE: The Stanford GraphBase: A platform for combinatorial computing
New York: ACM Press; 1993.

16. Knuth DE: The Stanford GraphBase package.[http://www-cs-faculty.stanford.
edu/~knuth/sgb.html].

17. Blackman S, Popoli R: Design and analysis of modern tracking systems
Boston: Artech House; 1999.

doi:10.1186/1472-6785-10-22

Cite this article as: Taylor et al.: radR: an open-source platform for
acquiring and analysing data on biological targets observed by
surveillance radar. BMC Ecology 2010 10:22.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.radr-project.org
http://www.biomedcentral.com/content/supplementary/1472-6785-10-22-S1.RTF
http://www.ncbi.nlm.nih.gov/pubmed/18331979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331979?dopt=Abstract
http://www.R-project.org
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/pubmed/15628268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15628268?dopt=Abstract
http://www-cs-faculty.stanford.edu/~knuth/sgb.html
http://www-cs-faculty.stanford.edu/~knuth/sgb.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results and Discussion
	General layout and orientation of radR
	Acquiring the radar signal
	Processing the radar signal and extracting putative biological targets
	Track compilation and exporting
	Displaying the targets
	Other utilities
	Extensibility
	Software testing
	Using radR

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

