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Abstract: Over the years, significant research efforts have been made to extract bioactive compounds
by applying different methodologies for various applications. For instance, the use of bioactive
compounds in several commercial sectors such as biomedical, pharmaceutical, cosmeceutical,
nutraceutical and chemical industries, has promoted the need of the most suitable and standardized
methods to extract these bioactive constituents in a sophisticated and cost-effective manner.
In practice, several conventional extraction methods have numerous limitations, e.g., lower efficacy,
high energy cost, low yield, etc., thus urges for new state-of-the-art extraction methodologies.
Thus, the optimization along with the integration of efficient pretreatment strategies followed by
traditional extraction and purification processes, have been the primary goal of current research
and development studies. Among different sources, algal biome has been found as a promising
and feasible source to extract a broader spectrum of bioactive compounds with point-of-care
application potentialities. As evident from the literature, algal bio-products includes biofuels, lipids,
polyunsaturated fatty acids, pigments, enzymes, polysaccharides, and proteins. The recovery of
products from algal biomass is a matter of constant development and progress. This review covers
recent advancements in the extraction methodologies such as enzyme-assisted extraction (EAE),
supercritical-fluid extraction (SFE), microwave-assisted extraction (MAE) and pressurized-liquid
extraction (PLF) along with their working mechanism for extracting bioactive compounds from
algal-based sources to meet bio-economy challenges and opportunities. A particular focus has been
given to design characteristics, performance evaluation, and point-of-care applications of different
bioactive compounds of microalgae. The previous and recent studies on the anticancer, antibacterial,
and antiviral potentialities of algal-based bioactive compounds have also been discussed with
particular reference to the mechanism underlying the effects of these active constituents with the
related pathways. Towards the end, the information is also given on the possible research gaps, future
perspectives and concluding remarks.

Keywords: bioactive compounds; algal biome; extraction methodologies; enzyme-assisted
extraction; supercritical-fluid extraction; microwave-assisted extraction; pressurized-liquid extraction;
applications; anticancer; antibacterial; antiviral

1. Introduction

Biologically active constituents so-called “bioactive compounds” are typically available in various
bio-based sources including algal biome and others though in different quantities with specific
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functionalities. Among bioactive compounds, carotenoids, tocopherols, tocotrienols, and others
are of supreme interest. In past years, they have been extensively studied and used as a nutraceutical
or functional constituents for several health purposes. In recent years, the research interest in bioactive
compounds increased exponentially in the biomedical, pharmaceutical, cosmeceutical, nutraceutical
and chemical industries. However, the use of bioactive compounds in different sectors implies
the need and consequent demand most appropriate and standardized strategies of extraction [1].
The quantitative and qualitative characteristics of biologically active compounds strongly rely on the
selection of an appropriate extraction method [1–3]. For instance, the state-of-the-art processes to
extract polysaccharide and exopolysaccharide from algal-based biomass and the analytical strategies
for their characterization have been reviewed [3]. A properly developed and exploited extraction
methodology plays a significant and critical role in the quality of the end products. It is also equally
important to consider various influencing factors such as physiochemical properties of the source
material, matrix properties, solvent type and concentration, pH, temperature, pressure and time that
can affect the overall performance of the extraction process [4]. The overall efficiency of the extraction
methods mostly depends on the following points, i.e., (1) critical input parameters; (2) understanding
the nature of the source; (3) interplay between the process and the source and (4) chemistry of
bioactive compounds.

Owing to the extreme diversity and source-based variation in their physiochemical properties,
a precise classification of bioactive compounds is not well established yet. Also, the classification is
quite complicated because of certain similarities between molecules and/or dissimilarities between
functionally and chemically interrelated compounds. However, they have been well categorized from
different perspectives, i.e., based on: (1) taxonomic sources i.e., family and genus; (2) biosynthetic
pathways; (3) their physical source i.e., plant or animal; (4) their unique structure including ring
and linear structures; (5) available functional moieties; (6) precursor molecules; (7) sugar moiety;
(8) chemical contents, etc. Croteau [5] divided bioactive compounds into three categories, i.e.,
(1) terpenes and terpenoids (approximately 25,000 types); (2) alkaloids (approximately 12,000 types);
and (3) phenolic compounds (approximately 8000 types). From the biosynthetic pathways view, there
are four major pathways, i.e., (1) shikimic acid pathway; (2) malonic acid pathway; (3) mevalonic
acid pathway; and (4) non-mevalonate (MEP) pathway. The simplest routes for biosynthesis
include glycosides and polysaccharides, synthesized from pentose; phenolic compounds, tannins,
and alkaloids, synthesized from shikimic acid; phenolic compounds and alkaloids, synthesized
from acetate-malonate; and terpenes, steroids, and alkaloids, synthesized from mevalonic acid
pathway [6]. According to Dewick [6], a broader spectrum of secondary metabolites is biosynthetically
formed after the intermediate acetyl coenzyme A (acetyl-CoA), shikimic acid, mevalonic acid,
and 1-deoxyxylulose 5-phosphate.

Considering the value-added characteristics of bioactive compounds, herein, this review compiled
salient information covering various industrially relevant aspects to meet current bio-economy
challenges and opportunities. More specifically, this review covers recent advancements in the
extraction methodologies such as EAE, SFE, MAE, and PLF, along with their working mechanism for
extracting bioactive compounds from algal-based sources.

2. An Immense Source of Excellent Performance: Algal Biome

To equally fulfill the rising demand of naturally occurring bioactive compounds among all
industrial sectors, researchers have regained their interests in natural sources such as algal biome
“a treasure of untouched sources”. Algal biome belongs to the marine region of aquatic biome
(the largest biome in the world). The aquatic biome can be broken down into two main regions, i.e.,
(1) freshwater region and (2) marine region. The ever-increasing ecological, social and economic
issues alongside a more extensive scope of current research, the utilization of bioactive constituents
from natural origin turned out to be more beneficial and acceptable. This growing trend among
researchers is due to the easy accessibility and fewer side effect of algal-based bio-resources. Moreover,
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the exploitation of such natural sources also offers a variety of high-value products which are highly
efficient, cost-effective and greener. Considering the immense essence of excellence of algal biome,
the principle of “going green” has sifted this alternative search towards eco-friendlier, recyclable and
sustainable materials with an overall higher cost-effective ratio benefit. In this context and as discussed
above, words like renewable, degradable, and recyclable are emphasized in growing environmental
awareness [7,8]. The marine-based sources with high bioactive efficacy have noteworthy advantages
over synthetic sources. In this context, natural sources based integrated transition to meet bio-economy
challenges and opportunities have following justifications [9]:

(i) to safeguard the natural ecosystem
(ii) to circumvent or diminish the current price hike
(iii) to provoke awareness on the worldwide climate issues
(iv) to stimulate the greener development of regional and rural areas
(v) to diminish the activities which cause greenhouse gasses emission
(vi) to strengthen and diversify the bio-renewable-based energy sources
(vii) to circumvent an over dependency on petrochemicals and/or petro-sources
(viii) to decrease/circumvent the over-consumption of the oil, gas, coal and other potential minerals

The development of distinctive methodologies and/or strategies are in practice for the
improvement of cutting-edge bio-based platforms which support green agenda. Thus, the synergistic
use of natural materials such as algal-based sources in combination with green technologies is
mandatory to establish a sustainable production of value-added products with multifunctional
potentialities. The key scientific advances in green biotechnology, as a set of green principles,
have extraordinary potential to abolish the generation of wasteful protection and de-protection steps [7].
Aiming to develop either a methodology or products which are genuinely green in nature, pose fewer
or no side-effects, and comes under the sustainability concept, the research community either from
academia or industry could, and should, consider the green principles from the green agenda [9].
The sustainability concept is shown in Figure 1 [7].
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3. Algal Biome as A Prolific Source of Bioactive Compounds

The Primordial Soup Theory suggests that life began in a body of water, possibly a pond or ocean.
Most of the Earth’s microbial diversity is found in the ocean, which ultimately directs an enormous
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number of bioactive substances [10]. The ocean is the largest marine biome, and within the ocean, algal
strains are characterized by high biodiversity with notable potentialities for various applied purposes,
for instance, major routes of applications are shown in Figure 2. Algae are a group of photosynthetic
organisms and usually classified as (1) red (Rhodophyceae); (2) brown (Phaeophyceae), and (3) green
(Chlorophyceae) [9,11]. More specifically, red algae are a group of multicellular eukaryotic organisms
that possess chlorophyll and phycobiliproteins. Their red color appearance is precisely due to the high
phycoerythrin content.
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Figure 2. Algal biome as a prolific source of value-added products. The diversity of bioactive substances
produced in the marine environment and their potential application routes.

The brown algae, comprising the class Phaeophyceae, are a large group of marine multicellular
algae, including many seaweeds. Its size varies with a broader range of forms. Some brown algae are
just a few centimeters long, while others can be up to 60 m in size with a high level of biodiversity.
For instance, Macrocystis pyrifera, commonly known as giant kelp or giant bladder kelp that belongs to
the phylum Ochrophyta, may reach 60 m (200 ft.) in length and forms prominent underwater masses.
From the compositional viewpoint, the brown algae are rich in carbohydrates which contributes
more than 50% of their total dry biomass. Moreover, the absence of lignin constituents makes them
highly favorable candidates to access their carbohydrate (sugar) contents without any pre-treatment
process, which is a highly desirable requisite in plant-based materials. Keeping this mind, several
brown algae, for instance, Sargassum baccaularia and Sargassum siliquosum have been cultivated at a
larger scale for numerous applications, e.g., alginate extraction [12]. Compared to other algae (green
algae), brown algae have also been exploited as a feedstock for bio-based fuels—so-called “bio-fuel
or bio-ethanol”—subject to its overall productivity and high yield [13]. Some of its members such
as Ectocarpus have been extensively used as a model organism in genomics [14]. The blue-green
algae also are known as Cyanophyceae or Cyanophyta are microscopic organisms that are capable
of growing in both marine and fresh water. They are categorized in diatoms (Bacillariophyceae), green
algae (Chlorophyceae) and golden algae (Cyanophyceae) [11,15]. Table 1 summarizes various algal strains
as a prolific source of bioactive compounds.
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Table 1. Algal biome as a prolific source of bioactive compounds.

Algal spp. Bioactive
Compound Structure Methodology Reference

Dunaliella salina

Carotenoids
(β-carotene),

Chlorophyll a
and b
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Table 1. Cont.

Algal spp. Bioactive
Compound Structure Methodology Reference

Scenedesmus
obliquus Lutein
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4. Conventional vs. Non-Conventional Extraction Techniques

Based on literature evidence, several types of conventional extraction techniques have been
well exploited for the extraction of bioactive compounds from different materials, including marine
sources. The existing conventional/classical extraction techniques include: (1) hydro-distillation
which is further divided into three categories i.e., (i) water distillation; (ii) water and steam
distillation and (iii) direct steam distillation; (2) Soxhlet extraction; (3) maceration; (4) percolation;
(5) infusion, (6) decoction; and (7) hot continuous extraction, etc. [43–45]. The extraction of organic
compounds, including pesticides, polycyclic aromatic hydrocarbons, and phenols from different
matrices (soils, sewage sludges, vegetables, plants), has historically been carried out by using Soxhlet
extraction [43,46]. However, many of the techniques mentioned above are strongly dependent on
various influencing parameters such as extracting power of solvents, sample size, and concentration,
etc. Owing to the fact that Soxhlet extraction is solvent-based (mostly harsh ones), often requires
pre-digestion by acids and is time-consuming its current place in modern extraction methodology
is limited. In addition, the crude extracts in many cases are subjected to preliminary fractionation
and/or purification either by solvent fractionation and/or partition. In other cases, a multistep
procedure in maceration, and heavy consumption of water and energy in hydro-distillation also
poses serious concerns. Other major drawbacks/limitations of conventional extraction techniques
include long extraction periods, the need for high purity solvents, evaporation of the huge amount of
solvent, low extraction yield, selectivity and thermal decomposition of thermolabile ingredients,
etc. [1]. To tackle the gaps and drawbacks of conventional techniques, new alternative and
promising non-conventional (modern) extraction techniques (EAE, SFE, MAE, PLF among others)
have been proposed and well reported in the recent literature. Most of these extraction techniques
are considered “green” in nature [47], as they comply standards set by the U.S. Environmental
Protection Agency (EPA). As compared to conventional extraction techniques, the major advantages
of non-conventional extraction techniques include eco-friendlier processing conditions, no or less
use of hazardous chemicals, safer auxiliary solvents, use of water, and energy efficiency, reduced
formation of derivatives, use of renewable feedstocks, overall cost-effective ratio, facile preparatory
steps, higher efficacy, prevention of degradation, and avoidance of protection and deprotection
steps [1]. The abovementioned promising non-conventional (modern) extraction techniques are further
discussed and elaborated in the following section.

5. Extraction Methodologies for Bioactive Compounds

5.1. Supercritical-Fluid Extraction (SFE)

SFE epitomizes an important green extraction process which is being used for the extraction of
high-value bioactive compounds, e.g., pigments and fatty acids, in recent years [47]. It also seems
that SFE addresses the main drawbacks of traditional extraction techniques [47,48]. For instance,
some of the drawbacks associated with these techniques include their long extraction time, high energy
consumption, and waste generation. Besides, conventional techniques are limited in extraction
specificity, then purification steps are required in order to isolate the bioactive metabolites of
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interest [49,50], whereas, SFE shows great extraction selectivity, short processing times, and a low
degradability of the extracted product [51–53], without the use of non-food grade solvents [54].
SFE uses supercritical fluids, which above their critical point exhibit liquid-like characteristics
such as solvent power, and negligible surface tension, etc. as well as gas-like features such as
enhanced transport properties [55]. Moreover, SFE requires minimal solvents as compared to
other extraction techniques, while it has a broad application for different bioactive compounds [56].
The thermodynamics and heat transfer properties of carbon dioxide (CO2) make it the preferred solvent
for SFE-based extraction processes [52,57]. Several other features such as its non-toxic nature, chemical
inertness, non-flammability, overall cost-effectivenes, facile availability, and environmental friendliness
also represent major factors favoring the choice of CO2 as SFE solvent [52,58,59]. It also possesses
other advantages such as a low critical point (31 ◦C, 73 bar). Beyond its critical condition, CO2 acquires
physicochemical characteristics somewhere between those of a gas and a liquid, showing similar
viscosities, intermediate diffusivities, and high density enhancing its penetration into materials [56,60].
In addition, the polarity of CO2 can be modulated by the use of co-solvents such as ethanol, increasing
the extraction yields of polar compounds [61,62]. Combinations of parameters (temperature, pressure,
and co-solvent) are necessary to extract a target compound efficiently. For this purpose, experimental
designs are being frequently used, such as the Taguchi method, especially for the evaluation of several
process factors at a time with a minimal number of experimental runs (orthogonal array) [63,64].
However, the extract composition is greatly affected by the input conditions of pressure, temperature
and co-solvent flow, predictive models, could be used to approach input values about the desired
output [47].

Despite the potential of this technique, its usefulness to extract high-value bioactive
compounds from algal-based sources strongly depends on the type of compounds to be extracted.
Mendiola et al. [65] used SFE to isolate an extract of green microalgae, i.e., Dunaliella salina in the
presence of CO2 at 314 bar and 9.8 ◦C. The obtained D. salina extract displayed notable antimicrobial
activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and Aspergillus niger. According
to the authors, this was probably due to the presence of indolic compounds, PUFAs, and compounds
related to carotene metabolism, such as β-ionone and neophytadiene in the microalga extract. Likewise,
other bioactive compounds such as vitamin E and carotenoids, among others, have been extracted
from algal-based matter. For instance, a statistical approach, i.e., central composite circumscribed
design (CCCD) has been employed to optimize an extraction process based on SFE at pilot scale to
obtain fractions highly enriched in vitamin E from Spirulina platensis [66,67]. The authors have also
achieved a tocopherol enrichment of more than 12 times the initial concentration of tocopherol in the
raw material by extracting with neat CO2 at 361 bar and 83.3 ◦C. Other target bioactive compounds,
such as diolefins, have been extracted from Botrycoccus braunii cells by SFE [68].

Schematic Workflow of SFE

A schematic representation of SFE equipment and working conditions are shown in Figure 3.
The SFE workflow in the extraction of bioactive compounds from marine sources involves several
parameters, for instance, solvent type, temperature, pressure, sample composition, and concentration,
sample quantity, the particle size of the sample, dispersing agents, etc. Among all, the supercritical
fluidic dynamics have a strong influence related to the solubility of the target bioactive compounds.
This also changes with reference to the extraction temperature and pressure. Optimal sample size
also contributes significantly to the higher extraction yield and ultimately strengthens the overall
cost-effectiveness of the process as per green agenda. As shown in Figure 3 [47], the SFE equipment
comprises following components/parts i.e., (1) a tank (sometimes also called the co-solvent vessel)
containing the mobile phase; (2) a pump that pressurizes the mobile phase; (3) a pump that pressurizes
the gas (CO2); (4) a gas (CO2) tank; (5) a manual backpressure regulator (BPR); (6) heat exchanger;
(7) extraction vessel 1; (8) extraction vessel 2; (9) automated BPR; and (10) collection vessel. A stepwise
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workflow of the SFE system is based on: (1) dynamic mode; (2) static mode; or (3) some combination
of both modes.Molecules 2018, 23, x FOR PEER REVIEW  12 of 28 
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5.2. Microwave-Assisted Extraction (MAE)

MAE is another unique approach that yields high titers of quality extract and value-added
biological compounds of industrial interest. As compared to traditional solvent-based extraction
methods, MAE, being environmental friendlier, has several advantages such as facile operational
conditions, minimal solvent use, non-corrosive solvents, short extraction period, overall low
consumption ratio for energy and temperature, and inhibits degradation of thermo-labile
compounds [69,70]. Therefore, MAE is widely used in several industrial practices for the
extraction of high-value bio-active phenolic compounds, phytonutrients, functional foods, and active
pharmaceutical grade constituents from biomaterials [47,52,71–73]. Despite the fact that algal biome
as a prolific source of bioactive compounds, as discussed above, only a few reports on the use of
MAE of compounds such as alkaline galactans, carrageenans, and agar from seaweeds and other algal
sources [74–79]. For instance, Rodriguez-Jasso et al. [78] used the MAE approach to extract sulfated
polysaccharides (fucoidan) from brown seaweed, i.e., Fucus vesiculosus. Aiming to obtain maximal
extraction yields, numerous parameters such as pressure (30–120 psi), extraction time (1–31 min),
and alga/water ratio (1/25 to 5/25 g/mL) were evaluated and optimized. Subject to each experimental
condition, the alga degradation (%), total sugar yield (%), and SO3 content (%) were also determined
by Rodriguez-Jasso et al. [78].

Schematic Workflow of MAE

In MAE-based extraction system, microwave irradiation is used, which causes motion of polar
molecules and rotation of dipoles to heat solvents. This unique feature of MAE promotes efficient
transfer of target compounds from the sample matrix into the solvent [80]. The schematic workflow of
MAE starts with the homogenization of the samples which are later mixed with a solvent. Regarding
the solvent, the MAE technique is very versatile due to the possibility of using numerous solvents such
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as acetone, acetonitrile, ethanol, methanol, and dichloromethane, with different polarity indexes. Next,
the samples are placed in a safe chamber and irradiated with non-ionizing electromagnetic waves
of a frequency at more than 2000 MHz for a short period. The irradiation period is usually repeated
several times with consecutive cooling periods to avoid sample boiling. According to physics at large
and microwave theory, in particular, microwaves are comprised on two oscillating perpendicular
fields, i.e., (1) an electric field and (2) a magnetic field. The former field is considered responsible for
the heating phenomenon [81]. Furthermore, the heating principle is governed by two phenomena,
i.e., (1) dipole rotation and (2) ionic conduction [81–83]. In most cases, both happen concurrently,
and the microwave-based heating has a direct impact on the polarity of the test materials/solvents [83].
In summary, owing to the high moisture level, marine-based sources are excellent candidate materials
for the extraction of bioactive compounds using MAE. This is because the moisture contents serve as the
main target for microwave heating. Upon microwave heating, the moisture evaporates and generates
an enormous amount of pressure which ultimately ruptures the outer cell membranes and facilitates
leaching out of the bioactive compounds [83]. MAE equipment comprises four major components, i.e.,
(1) a microwave generator; (2) a waveguide which is used to propagate the microwaves from the source
to the microwave cavity; (3) a sample incubator; and (4) a circulator which allows the microwaves to
move only in the forward direction.

5.3. Pressurized-Liquid Extraction (PLE)

In recent years, PLE has been considered an excellent technique for the extraction of polar
compounds, as compared to other conventional extraction strategies [84]. In 1996, Richter et al. [85]
introduced accelerated solvent extraction (ASE) as a new technique to prepare samples and extract
high-value compounds by combining elevated temperatures and pressures with liquid solvents. Owing
to its diverse working conditions, ASE is also variously known as pressurized-liquid extraction (PLE),
pressurized fluid extraction (PFE), enhanced solvent extraction (ESE), and/or high-pressure solvent
extraction (HPSE) [86]. Like other green extraction methods, PLE also has several advantages
over traditional extraction approaches. For instance, the minimal consumption of organic solvents,
and lower extraction time potential of PLE perfectly meet the green agenda which comes under
the Green Chemistry and Engineering (GCE) principles [87]. Under GCE terms, PLE has been
successfully used for the extraction of bioactive natural products from marine sponges and other
natural materials [84,87].

Very recently, Otero et al. [88] used the PLE technique to extract the high-value fatty acids from
macroalgae species from the Northwest of Spain, i.e., Ulva intestinalis, Ulva lactuca, Fucus vesiculosus,
Dictyota dichotoma, Cystoseira baccata and Himanthalia elongate. The lipid content (%) profile, and fatty
acid composition (mg/g) of four brown species of macroalgae (F. vesiculosus, D. dichotoma, C. baccata
and H. elongata) and two green algae (U. intestinalis, U. lactuca) were determined and ranged from 4.6%
to 6.7% (Table 2).

Table 2. Lipid content (%) and fatty acid composition (mg/g) of six algae species (dry weight).

FA FA (C:U) RT (min) F. vesiculosus C. baccata H. elongata D. dichotoma U. lactuca U. intestinalis

FA content
(mg/g algae)

FA 14:0 9.802 11.09 ± 0.19 5.13 ± 0.12 1.72 ± 0.04 3.01 ± 0.37 1.78 ± 0.22 1.96 ± 0.23
FA 15:0 10.774 0.31 ± 0.03 N.D 0.17 ± 0.03 N.D 0.18 ± 0.02 0.08 ± 0.00
FA 16:1 11.789 0.98 ± 0.22 2.19 ± 0.04 0.56 ± 0.01 1.16 ± 0.05 0.16 ± 0.00 0.16 ± 0.00
FA 16:0 12.078 9.64 ± 0.30 6.80 ± 0.29 5.85 ± 0.14 4.40 ± 0.64 6.09 ± 0.29 6.02 ± 0.22
FA 18:3 14.900 0.08 ± 0.00 N.D 0.04 ± 0.04 N.D 0.09 ± 0.01 N.D
FA 18:2 15.304 0.34 ± 0.04 0.16 ± 0.02 0.01 ± 0.00 0.01 ± 0.00 0.05 ± 0.01 0.06 ± 0.00
FA 18:1 15.507 13.15 ± 1.03 3.09 ± 0.34 0.49 ± 0.09 1.09±0.05 0.47 ± 0.02 0.23 ± 0.01
FA 18:0 16.041 1.56 ± 0.13 1.65 ± 0.16 1.80 ± 0.04 1.28 ± 0.07 1.68 ± 0.11 2.11 ± 0.08
FA 20:4 20.549 1.30 ± 0.12 0.62 ± 0.01 N.D N.D N.D N.D
FA 20:5 20.806 0.36 ± 0.08 0.24 ± 0.01 N.D 0.15 ± 0.03 N.D N.D

FA total (mg/g algae) 38.83 19.87 10.64 11.09 10.46 10.63
Lipid content by Folch (%) 6.6% 6.7% 6.0% 5.7% 4.8% 4.6%

Lipids were extracted using the Folch method (n = 3). A number of carbon and unsaturation (C:U) status and
retention time (RT) of the fatty acid methyl esters (FAMEs) are also included. Results show the mean ± standard
error of the mean (SEM) of three experiments. N.D means not detected. Reproduced from Otero et al. [88],
an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
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In an earlier study, Shang et al. [89] extracted fucoxanthin from brown algae, i.e., Eisenia bicyclis
(Kjellman) Setchell, using PLE. A statistics-based experimental design was adopted to process optimize
the important variables. First, a Plackett–Burman design (PBD) was used to screen out the most
important and six influencing parameters i.e., temperature (◦C), ethanol concentration (%), static
time (min), pressure (psi), weight of sample (g), and flush volume (%). Following that, a second
design, i.e., a central composite design, was used to further optimize and attain the best of the selected
factors, i.e., temperature (◦C), and ethanol concentration (%) for the highest yielding fucoxanthin
extraction [89]. Anaëlle et al. [90] performed different PLE extraction experiments along with other
extraction techniques such as centrifugal partition extraction (CPE), and supercritical fluid extraction
(SFE) to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum
as a model. In summary, the use of PLE for the extraction of algal-based bioactive compounds has
enormous potential and applications are expected to continue to grow in the following years.

Schematic Workflow of PLE

Likewise, SFE, the PLE-based extraction processes can also be done in two modes, i.e., dynamic
or static mode. The static mode is more frequently used based on commercial equipment availability
as compared to dynamic mode. In PLE, the highest recovery of bioactive compounds can be achieved
by optimizing some critical parameters. For instance, the most important parameters which can
significantly contribute to the product recovery include temperature, pressure, extraction solvent,
static time, and a number of cycles. Other parameters such as purge time and flush volume have shown
little influence on the final recoveries, so these are usually fixed. Each parameter can be optimized
separately or using experimental designs [86]. Some other parameters such as the arrangement of the
sample inside the extraction vessel and the collection of the analytes should also be considered based
on the target compound. Of course, for highly volatile compound recovery, a cooling step should
be included.

A schematic representation of PLE equipment and working conditions are shown in Figure 4.
Principally, the PLE-based extraction system comprises a series of solvent reservoirs which are coupled
to a high-pressure pump. A gas (usually N2) tank and solvent reservoir follow the pressure pump,
and both are connected to an oven. Valves control the solvent and gas flow into the extraction cell which
is placed inside the oven, each separately, to maintain the pressure inside the system. The extracted
sample is collected at the end of extraction system outlet and additionally can also be pumped to a
cooling unit for rapid cooling of the resultant extract.
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5.4. Enzyme-Assisted Extraction (EAE)

EAE of bioactive compounds from numerous sources, including marine ones, has received
much attention in recent years. As compared to other reported conventional extraction methods,
EAE offers some noteworthy advantages i.e., (1) high selectivity; (2) overall efficacy, (3) rapid extraction,
(4) eco-friendly procedures, (5) low-energy consumption, (6) minimal usage of harsh chemicals,
(7) maximal yield, (8) low/no wasteful protection/deprotection steps, (9) facile recovery, and (10)
process recyclability [73,91–93]. In addition, enzyme-based pre-treatments also help induce mass
transfer phenomena and ultimately facilitate the release of bioactive compounds and other secondary
metabolites in an efficient manner [94]. A range of enzymes including ligninolytic, cellulolytic,
and proteolytic enzymes have been extensively used as perfect catalysts. Enzyme-based pre-treatment
or catalysis easily causes the breakdown and/or hydrolysis of complex materials on the cell walls and
membranes, thus also supporting the recovery of intracellular bioactive constituents which are not
easily extractable through conventional extraction methods. This is because the intracellular bioactive
constituents are generally intact and compacted in polysaccharides-lignin chains, which limits their
extractability [73].

Algal-based seaweeds have been appeared as promising materials to extract bioactive compounds.
The presence of complex polysaccharides in the seaweed cell wall, such as alginates and carrageenans,
represent physical barriers and reduce the extraction efficacy of general procedures. The EAE-based
extraction approach has unique potential to overcome this drawback and facilitate the extraction
of bioactive compounds by degrading the cell wall polymers such as alginates. In an earlier study,
Barzana et al. [95] presented EAE of carotenoids from Tagetes erecta. Under optimized extraction
conditions, up to 97% recovery yield of carotenoids was obtained. Various proteases have been used to
extract bioactive peptides via hydrolytic reactions [96]. Recently, del Pilar Sánchez-Camargo et al. [97]
used EAE in combination with PLE to improve the extraction of phlorotannins from the seaweed
Sargassum muticum. Enzymatic treatment with proteases and carbohydrases, alkaline hydrolysis and
PLE with ethanol:water as extracting solvent have been studied [97]. Under these conditions, values of
21.9%, 94.0 mg gallic acid equivalents g−1, 5.018 mg phloroglucinol equivalents g−1 and 1.275 mmol
Trolox equivalents g−1 were obtained for extraction yield, total phenols, total phlorotannins, and TEAC,
respectively [97].

Schematic Workflow of EAE

From the GCE perspective, enzymes have been considered ideal biocatalysts with notable potential
to assist the extraction of bioactive compounds of natural origin. Principally, EAE facilitates the
degradation of cell walls and membranes which is a critical step in the extraction process. This, in turn,
increases the cell wall permeability and thus, higher extraction yields of bioactive compounds are
achieved [98]. More specifically, EAE is based on two approaches, i.e., (1) enzyme-assisted aqueous
extraction (EAAE) and (2) enzyme-assisted cold pressing (EACP) [99]. For efficient and high yield
extraction, several factors such as enzyme type and concentration, working pH and temperature,
surface area, solid to water ratio, moisture contents, the composition of the test material, the particle
size of the samples, incubation, and hydrolysis are considered key factors [1,100,101]. According
to GCE, EAE-based extraction of bioactive compounds is documented as an eco-friendly approach
because it uses water as a solvent instead of organic chemicals [98]. Figure 5 illustrates a schematic
representation of the EAE of bioactive compounds.
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6. Point-of-Care Applications of Bioactive Compounds

The mechanistic integration of GCE along with the efficient utilization of naturally inspired prolific
sources such as algal-based materials and the above-mentioned extraction strategies are mandatory,
to establish a sustainable production of high-value bioactive compounds that includes but is not
limited to phenolic compounds, tocopherols, carotenoids, organosulfur compounds, phytosterols,
fucoxanthin, etc. with different chemical structures e.g., hydrophilic, lipophilic, etc. [102]. GCE offers a
wide-ranging set of green principle extraction strategies to obtain products which are genuinely green
in nature, pose fewer or no side-effects, and that fall under the sustainability concept. In this context,
the research community, either from academia or industry, should consider the green principles for
point-of-care applications [9].

A plethora of marine-derived bioactive compounds with medicinal value such as anticancer,
antibacterial, antifungal, antiviral, and anti-allergic agents, etc. are available for a variety of industrial
applications at large and pharmaceutical and/or biomedical ones in particular. Marine-derived
bioactive compounds are pharmacologically active constituents with great chemical and structural
diversity, and thus are considered as potential treatment candidates [103–105], thus having great
potential to produce high-value therapeutic entities. Several bio- and non-bio related applications of
marine-derived bioactive compounds are shown in Figure 6 [9], whereas, Figure 7 illustrates a step by
step purification process for bioactive compounds using various marine-based potential sources [9].



Molecules 2018, 23, 2953 17 of 28

Molecules 2018, 23, x FOR PEER REVIEW  17 of 28 

 

 

Figure 6. Bio- and non-bio-related applications of marine-based potential sources. Reproduced from 

Centella et al. [9], with permission from Elsevier. 

 

Figure 7. A stepwise illustration to extract and purify bioactive compounds from marine-based 

potential sources. Multi-step processing key is presented from the pre-processing to purification. 

Several combinations of chromatographic techniques can be used to achieve high throughput 

screening and percent purification. For validation purposes, numerous analytical equipment and 

instrumental techniques can be used to identify and quantify the active fractions of extracted 

compounds. Reproduced from Centella et al. [9], with permission from Elsevier. 

6.1. Anticancer Potential of Algal-Based Bioactive Compounds 

Based on literature evidence, cancer, in several forms, is recognized as a significant global health-

related issue. It is also considered one among the primary leading causes of death. According to a 

report, in 2012, 32.6 million people were living with cancer while 8.2 million cancer-caused deaths 

occurred worldwide [9,106]. A broad spectrum of marine-derived bioactive compounds with 

Figure 6. Bio- and non-bio-related applications of marine-based potential sources. Reproduced from
Centella et al. [9], with permission from Elsevier.

Molecules 2018, 23, x FOR PEER REVIEW  17 of 28 

 

 

Figure 6. Bio- and non-bio-related applications of marine-based potential sources. Reproduced from 

Centella et al. [9], with permission from Elsevier. 

 

Figure 7. A stepwise illustration to extract and purify bioactive compounds from marine-based 

potential sources. Multi-step processing key is presented from the pre-processing to purification. 

Several combinations of chromatographic techniques can be used to achieve high throughput 

screening and percent purification. For validation purposes, numerous analytical equipment and 

instrumental techniques can be used to identify and quantify the active fractions of extracted 

compounds. Reproduced from Centella et al. [9], with permission from Elsevier. 

6.1. Anticancer Potential of Algal-Based Bioactive Compounds 

Based on literature evidence, cancer, in several forms, is recognized as a significant global health-

related issue. It is also considered one among the primary leading causes of death. According to a 

report, in 2012, 32.6 million people were living with cancer while 8.2 million cancer-caused deaths 

occurred worldwide [9,106]. A broad spectrum of marine-derived bioactive compounds with 

Figure 7. A stepwise illustration to extract and purify bioactive compounds from marine-based
potential sources. Multi-step processing key is presented from the pre-processing to purification.
Several combinations of chromatographic techniques can be used to achieve high throughput screening
and percent purification. For validation purposes, numerous analytical equipment and instrumental
techniques can be used to identify and quantify the active fractions of extracted compounds.
Reproduced from Centella et al. [9], with permission from Elsevier.

6.1. Anticancer Potential of Algal-Based Bioactive Compounds

Based on literature evidence, cancer, in several forms, is recognized as a significant global
health-related issue. It is also considered one among the primary leading causes of death. According
to a report, in 2012, 32.6 million people were living with cancer while 8.2 million cancer-caused
deaths occurred worldwide [9,106]. A broad spectrum of marine-derived bioactive compounds
with anticancer potential have been well reported and reviewed [9,107,108]. Cell death can be
triggered by three mechanisms, i.e., (1) apoptosis; (2) angiogenesis inhibition and (3) affecting
the tubulin-microtubule equilibrium [109]. Most of the available commercial drugs focus on
inhibiting any of the abovementioned mechanisms. However, algal-based bioactive compounds have
enormous potential to alter several physiological mechanisms, e.g., oxidative stress, inflammation,
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and carcinogenesis [110]. Further to this unique behavior, some marine-derived compounds, i.e.,
fucoidans, directly induce cytotoxicity and apoptosis in cancer cells. Thus, there has been growing
research interest in the use of fucoidans as an anti-cancer agent in both in-vivo and in-vitro test
models [111]. The proposed molecular mechanism of bioactive compounds, e.g., fucoidans-induced
ROS-dependent apoptosis in a cancer cell is shown in Figure 8. Anastyuk et al. [112] examined the
structural features and anticancer activity in-vitro of depolymerized fucoidan derivatives from the
brown alga Saccharina cichorioides. The anticancer activities of different concentrations, i.e., 50, 100, 200,
and 400 µg/mL of depolymerized fucoidan-based polysaccharides were recorded against the human
colorectal adenocarcinoma cell line HT-29. Likewise, in another study by Zhang et al. [113], fucoidan
extract isolated from Cladosiphon navae-caledoniae Kylin through enzymatic digestion enhanced the
anti-cancer activity of chemotherapeutic agents, i.e., cisplatin, tamoxifen or paclitaxel in MDA-MB-231
and MCF-7 breast cancer cells.
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In [113] The authors have also observed that combination treatments enhanced intracellular
ROS levels and reduced glutathione (GSH) levels in breast cancer cells, suggesting that induction of
oxidative stress was an important event in the cell death induced by the combination treatments.
Very recently, Pawar et al. [114] prepared doxorubicin (DOX)-loaded nanoparticles (NPs) using
fucoidan and evaluated them as an improved chemotherapy against breast cancer through the
immunotherapeutic activity of fucoidan based on an in-vivo model using 4T1 induced tumor-bearing
BALB/c mice. Structural characterization and antitumor effects of enzymatically digested fucoidans
extracted from the brown alga Kjellmaniella crassifolia have been reported [115]. The enzymatically
digested crude extract was further separated into three fractions, i.e., F1, F2, and F3. Based on the
composition and structural analyses, F1 was found to have an acetylated galactofucan, F2 consists
of fucose, galactose, mannose, and glucuronic acid, while the last fraction, i.e., F3 has two major
components, i.e., (1) an acetylated galactofucan and (2) a pure sulfated fucan. The cytotoxicity of all
three fractions was tested against murine hepatocarcinoma Hca-F cells in vitro and found a significant
inhibition of lump growth in Hca-F-inoculated mice. This also led to upregulated FAS expression
in tumor tissues compared to that of the control [115]. A simultaneous administration of fucoidan
in combination with a therapeutic agent, i.e., cisplatin, synergistically inhibited lung cancer cell
viability by inducing apoptotic responses, including upregulating cleaved caspase-3 and poly (ADP
ribose) polymerase (PARP) expression [116]. The efficacy of low-molecular-weight fucoidan as a
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supplemental therapy in metastatic colorectal cancer patients has been studied by Tsai et al. [117],
using a double-blind, randomized controlled trial.

6.2. Antibacterial Potential of Algal-Based Bioactive Compounds

In recent years microbial-based serious infections and/or the antimicrobial resistance (AMR) or
multidrug resistance (MDR) issues that constantly affect human health have become a worldwide
concern [118]. With ever increasing scientific knowledge and social awareness, now the people are
more concerned about the AMR/MDR issue. This scenario is even worse as there has been a significant
increase in the appearance of AMR/DMR strains that limits the overall effectiveness of several in
practice commercial products, including antibiotics [7]. Owing to this increasing consciousness and
growing demands of legislative authorities, drug manufacturers, to eliminate AMR/DMR issues in
healthcare facilities and possibly reduce pathogenic infections, consider the development of novel
anti-microbial active compounds/constituents to be a potential solution to such a problematic issue.
Among the potential causes, below are some possible explanations for an increased incidence of
AMR/MDR [118]:

(1) The genetic transformation from strain to strain.
(2) Biofilm matrix forming potential of several strains.
(3) Efflux pumps and other outer membrane structural variations.
(4) Enzyme-mediated resistance against, in practice, antimicrobials.
(5) Enhanced level of metabolic activity within the biofilm structure.
(6) Lower/no perfusion of antimicrobial agents through the biofilm matrix.
(7) Adaptability and interaction between antimicrobial agents and biofilm matrix.
(8) Excessive/useless consumption of in practice antimicrobials in a random order.
(9) Genetic variation and adaptability against excessive antimicrobials exposure.

The scenarios mentioned above stimulate the search to develop new types of antimicrobial agents
using various sources, including marine-derived bioactive compounds. Therefore, researchers around
the globe are valorizing algal-based sources to attract the considerable attention of both academia and
industry, especially in the biomedical, and other health-related sectors.

Taskin et al. [119] isolated methanolic extracts of six marine algae belong to the Rhodophyceae
(Corallina officinalis), Phaeophyceae (Cystoseira barbata, Dictyota dichotoma, Halopteris filicina, Cladostephus
spongiosus f. verticillatus) and Chlorophyceae (Ulva rigida) from the North Aegean Sea (Turkey).
The isolated extracts were tested against three Gram+ strains, i.e., Staphylococcus aureus, Micrococcus
luteus and Enterococcus faecalis and three Gram− strains, i.e., Escherichia coli, Enterobacter aerogenes,
and E. coli O157:H7 using an in-vitro model. Among all tested extracts, C. barbata has shown a broader
activity spectrum against all the test organisms (Figure 9) [119]. In consideration of the emerging or
re-emerging resistance of microorganisms to existing antibiotics, in an earlier study, Bansemir et al. [120]
screened 26 species of cultivated seaweeds to investigate the antibacterial activities of their respective
extracts. For this purpose, the extracted were prepared using dichlorometane, methanol, and water and
tested against five fish-pathogenic bacterial strains, i.e., Aeromonas salmonicida, Aeromonas hydrophila,
Pseudomonas anguilliseptica, Vibrio anguillarum, and Yersinia ruckeri. According to the authors [120],
the dichloromethane-assisted extracts of around six out of 26 algal species that includes Asparagopsis
armata, Ceramium rubrum, Drachiella minuta, Falkenbergia rufolanosa, Gracilaria cornea, and Halopitys
incurvus showed strong antibacterial activities when tested via an agar diffusion assay. The synergistic
effect of fucoidan (a sulfated polysaccharide that is primarily extracted from brown seaweeds) with
antibiotics, i.e., ampicillin and gentamicin, has also been evaluated against oral pathogenic bacteria
either alone or in combination with antibiotics, via the broth dilution method and chequerboard and
time-kill assays [121]. This list further grows, and a comprehensive overview of pharmacological
mechanisms and applications of marine algae with reference to antibacterial derivatives has been
reported by Shannon and Abu-Ghannam [122].
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6.3. Antiviral Potential of Algal-Based Bioactive Compounds

In recent years, a huge number of viral infectious diseases have emerged or (re)-emerged.
In practice current antiviral therapeutics, e.g., oseltamivir and zanamivir, etc. are facing increasing
problems with resistance development. Oseltamivir is a selective antiviral prodrug which is used
to tackle influenza virus, whereas, zanamivir is an inhibitor of neuraminidase used in the treatment
of common flu and prophylaxis of virus A and B. Engineering efficient antiviral drugs with potent
activities against a wider spectrum of viral pathogens is difficult because viruses use the host’s cells to
replicate [123]. Therefore, researchers, around the globe, are working to extend the range of antivirals
to other families of pathogens. Owing to the ever-increasing drug resistance, there is an urgent need
to develop novel formulations in a range of contexts to tackle various viral infections. Furthermore,
the constantly changing genetic makeup of viruses may alter or induce the viral resistance against several
in-practice treatment strategies [124]. Spontaneous or intermittent mechanisms are mainly responsible
for viral resistant throughout the antiviral treatment. In an earlier study, Herlocher et al. [125] isolated
three type A influenza viruses, each of which has a distinct neuraminidase-gene mutation and is resistant
to the neuraminidase inhibitor oseltamivir. Likewise, immunocompromised patients, who received
oseltamivir for “post-exposure prophylaxis” are also at higher risk of resistance [126].

Therefore, new antiviral active principles are required, especially from sources that do not constitute
or are directly exposed to viral pools. Microalgae have consequently received more attention as a potential
source of antiviral agents [127–129]. The antiviral activities of extracts of blue-green algae, i.e., Lyngbya
lagerheimeii and Phormidium tenue against human immunodeficiency virus (HIV) along with the protective
potentialities for human lymphoblastoid T cells from the cytopathic effect of HIV infection has been
reported in earlier studies [130]. A new class of HIV inhibitors called sulfonic acid containing glycolipids,
were isolated from the extract of blue-green algae and the compounds were found to be active against
HIV [131]. So far, various reasons have been postulated for this activity such as the fact blue-green
algae-based cyanoviridin–N inactivates HIV strains and inhibits cell to cell and virus to cell fusion [132].
In other studies, it has also been reported that a novel sulfated polysaccharide, i.e., calcium spirulan
(Ca-SP), selectively inhibits the entry of enveloped virus (herpes simplex, human cytomegalovirus,
measles virus) into the cell [133–135]. Dey et al. [136] reported multiple antiviral activities of cyanovirin-N
by blocking the HIV type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped
viruses. Likewise, red-algae such as Porphyridium also produce a sulfated polysaccharide which is able to
inhibit viral infection by preventing adsorption of Herpes simplex viruses’ types 1 and 2 (HSV 1, and 2),
and Varicella zoster viruses into the host cells and/or by inhibiting the production of new viral particles
inside the host cells [137]. However, the exact action mechanism of antiviral activity of algae extracts
and/or algal-based bioactive compounds is not yet fully discovered.
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7. Research Gaps and Outstanding Questions

A plethora of information is available on naturally occurring bioactive compounds with medicinal
potential as antimicrobial, anticancer, antifungal agents, etc. However, many critiques including
the distribution profile, safety clearance, in vivo exploitability, GCE-based extraction processes,
and yield concerns remain unanswered and need to be addressed in future studies. Despite
current biotechnological advancements, the above-discussed concerns, with special reference to
marine-derived bioactive compounds, are still at early stages. Therefore, extensive scientific research
with proven exploitability following a track record of employability is much needed in this particular
line of research. Also, many other questions are yet outstanding and thus pose a big research gap that
must be tackled comprehensively:

(1) Is there any significant limitation to judge the proper utilization of marine sources?
(2) Is there any negative impact on the ecosystem subject to the exploitation and application of

marine sources?
(3) Is there any approach to limit the dispersion profile and stable the bioactivity profile

during extraction?
(4) Is there any tactic or approach to limit the yield and stability variance when extracted from the

same or multi-marine sources?
(5) Is there any way to solve the particle size and composition dependent efficacy of the

sample extract?

8. Concluding Remarks and Future Recommendations

In summary, biologically active constituents, so-called “bioactive compounds”, regardless of the
source, will become the norm, not the niche, in the near future. Furthermore, the ever-increasing
scientific knowledge and process awareness on the green extraction techniques, offers both a deep
insight and attention in the field of the marine-derived bioactive compounds with the following
futuristic viewpoints i.e., (1) to design novel extraction processes based on GCE; (2) to explore
untouched marine sources with hidden medicinal values; (3) to illustrate workflows and process
mechanisms following standard principles; (4) to investigate chemical and structural interactions
between different types of active constituents from the same and multi-source; (5) to elucidate the
intermediate interactions of bioactive compounds with available drugs; (6) to optimize existing
and/or develop new strategies to obtain high yields, etc. As highlighted above, the overall quality
and bioactivity of the target compounds strongly depend on different aspects related to the sample
preparation to extraction and final separation. In order to obtain maximum product yield, it is equally
important to consider all the influential parameters as highlighted in each respective extraction section.
For induced yield purposes, all those influential factors should be optimized.

Given the long-term interest in socially acceptable, sustainable and environmentally friendlier
extraction methodologies, the versatility, no or lesser side-effects, and high-level bioactivity, algal-based
bioactive compounds are likely to remain the subject of intensive research investigations in different
sectors of the modern world. Moreover, this could also help in revolutionizing and widen the use
and applicability of these naturally occurring rich and novel wealth for numerous health benefits for
humans and animals, alike.
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