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Rapid accumulation of cancer genomic data has led to the identification of an increasing number of mutational hotspots

with uncharacterized significance. Here we present a biologically informed computational framework that characterizes

the functional relevance of all 1107 published mutational hotspots identified in approximately 25,000 tumor samples across

41 cancer types in the context of a human 3D interactome network, in which the interface of each interaction is mapped at

residue resolution. Hotspots reside in network hub proteins and are enriched on protein interaction interfaces, suggesting

that alteration of specific protein–protein interactions is critical for the oncogenicity of many hotspot mutations. Our

framework enables, for the first time, systematic identification of specific protein interactions affected by hotspot mutations

at the full proteome scale. Furthermore, by constructing a hotspot-affected network that connects all hotspot-affected in-

teractions throughout the whole-human interactome, we uncover genome-wide relationships among hotspots and implicate

novel cancer proteins that do not harbor hotspot mutations themselves. Moreover, applying our network-based framework

to specific cancer types identifies clinically significant hotspots that can be used for prognosis and therapy targets. Overall,

we show that our framework bridges the gap between the statistical significance of mutational hotspots and their biological

and clinical significance in human cancers.

[Supplemental material is available for this article.]

Through DNA sequencing of tumor mutations, precision oncolo-
gy has enabled the identification of cancer drivers, therapy targets,
and prognostic mutations that can guide individualized therapies
for many cancer patients. For example, what was once defined as
melanoma is now delineated as BRAF-positive or BRAF-negative
melanoma, a meaningful distinction with respect to therapy
with BRAF and MAPK pathway inhibitors. Similarly, whether a tu-
mor has deficient DNA mismatch repair defines whether the pa-
tient is eligible for immune checkpoint inhibitor monoclonal
antibody therapy. Precision medicine now has become part of
mainstream oncology, and in 2019, >80% of oncology drugs in de-
velopment are personalized medicines (Personalized Medicine
Coalition 2019). However, an important current limitation to pre-
cisionmedicine is the overwhelming number of total somatic mu-
tations that accumulate during tumorigenesis and progression. A
significant challenge is distinguishing bona fide driver mutations
that promote tumor growth from passenger mutations that are
neutral and have nomechanistic impact. To date, international ef-
forts in cancer genomics have provided whole-exome sequencing
for tens of thousands of human cancers (Forbes et al. 2008; The
International Cancer Genome et al. 2010; The Cancer Genome
Atlas Research et al. 2013). Subsequent computational analyses
have identified cancer driver genes in which mutations occur
more frequently than expected (Futreal et al. 2004; Ding et al.

2008; Chapman et al. 2011; Morin et al. 2011; Stransky et al.
2011; Wang et al. 2011; Lawrence et al. 2013). Yet not all muta-
tions on driver genes are drivermutations. This is usually interpret-
ed as the driver–passenger paradigm, in which the few recurrent
mutations are viewed as drivers, whereasmostmutations, especial-
ly rare ones, are passengers that do not contribute to oncogenesis
(Stratton et al. 2009; Porta-Pardo et al. 2017). In this regard, statis-
tical models were developed to detect mutational hotspots (highly
recurrently mutated residues across tumor samples) as candidate
drivers. Such candidate list was quickly populated by more than
1000 hotspots (Chang et al. 2016, 2018), but only a small number
of them have well-defined functional consequences. It was recent-
ly reported that some hotspotmutations are in fact passengers that
arose from the preference of APOBEC3A, a cytidine deaminase, for
DNA stem-loops (Buisson et al. 2019). Thus, given the increasing
number of cancer hotspots with uncertain significance, there is
an urgent need to characterize their functional relevance toward
translating the wealth of genomic data into biological and clinical
insights.

Although it is now possible to systematically test certain mu-
tations by experiments (Ipe et al. 2017), genome-wide prioritiza-
tion of candidate driver mutations still involves bioinformatics
tools that predict the impact of mutations on protein function at
the individual protein level (Adzhubei et al. 2010; Pollard et al.
2010; Kircher et al. 2014). However, not all mutations can be
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simply interpreted as causing a gross loss
of protein. Many cancer mutations exert
their oncogenic effects through altering
specific aspects of protein activity and
give cancer cells a selective advantage.
One promising route to decipher this
complexity is the view that the cell is a
network of interacting biomolecules in
which proteins carry out diverse func-
tions by interacting with other proteins.
We have previously shown that one key
feature in understanding the functional
impact of mutations is whether they fall
in the binding interfaces that mediate
interactions with other proteins and,
critically, which specific interactions
they mediate (Wang et al. 2012; Chen
et al. 2018). Although studies of known
disease mutations have already reported
a strong association with protein interac-
tion interfaces (Wei et al. 2014; Sahni
et al. 2015), application of this feature
has been largely limited by low coverage
of structural information on interacting
proteins; cocrystal structures and homol-
ogy models together cover merely ∼6%
of all known human interactions (Meyer
et al. 2018). Here we leverage our newly
established, the first human full-prote-
ome 3D interactome with residue-resolu-
tion interface predictions (Interactome
INSIDER) (Meyer et al. 2018) to system-
atically identify protein–protein interac-
tions that are affected by mutational
hotspots, aiming to offer a biologically
informed framework that characterizes
the functional relevance of mutational
hotspots and nominate new cancer pro-
teins across human cancers, with interac-
tion-specific resolution at the full
proteome scale.

Results

Many hotspot mutations function

through affecting specific protein–

protein interactions

By mapping mutational hotspots to our
3D interactome network, we analyzed
their impact not only at the individual
protein level, as traditionally has been
performed, but extended beyond and interrogated their network
properties to evaluate their oncogenic potential by how they
may affect protein interactions (Fig. 1A). A unique advantage of
our approach lies in its capacity to dissect specific interactions
each hotspot affects while leaving others unchanged. This is par-
ticularly advantageous for studying cancer hotspots because the
vast majority (84%) of them are missense mutations (Methods;
Fig. 1B; Chang et al. 2016, 2018), which are intrinsically more like-
ly to induce interaction-specific perturbations (Zhong et al. 2009).
We previously reported that inherited in-frame disease mutations

are enriched on protein interaction interfaces and that alteration
of specific protein interactions is critical in the pathogenesis of
many disease genes (Wang et al. 2012). We and others have also
shown, through high-throughput experiments, that disease mis-
sense mutations located on protein interaction interfaces are sig-
nificantly more likely to affect corresponding interactions than
those away from interfaces (Methods; Fig. 1C; Wei et al. 2014;
Sahni et al. 2015). Consistently, analyzing our recent screen of
populationmissense variants acrossmore than 3000 protein inter-
actions (Fragoza et al. 2019) resembled this trend (Methods; Fig.
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Figure 1. Proteome-wide structural analysis of mutational hotspots. (A) Data resource of mutational
hotspots and workflow of our full-proteome interaction-specific characterization framework. (B)
Composition of mutational hotspots collected in this study. (Mis) Missense, (Nons) nonsense, (Syn) syn-
onymous, (Splice) splice site. (C) Fraction of missense mutations affecting protein interactions from pub-
lished experiments. The error bars indicate standard error of the fraction. (D) Distribution of hotspots and
nonrecurrent variants on proteins with regard to protein interaction interfaces. Enrichment was calculat-
ed as the ratio of the observed fraction of hotspots/variants that occur on interaction interfaces over the
fraction of interface residues on corresponding proteins (expected fraction). (E) Average number of pro-
tein interactions affected by hotspots and nonrecurrent variants. (F) Average edge betweenness of inter-
actions affected by hotspots and nonrecurrent variants.
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1C). These results from independent studies suggest that interface
information can be an effective predictor in determining the im-
pact of mutations on protein–protein interactions. Moreover, on
the interfaces, known disease mutations showed a much higher
rate to affect protein interactions than population variants (8.1-
fold) (Fig. 1C), which further underscores the importance of inter-
face information in characterizing the functional relevance of mu-
tations in human diseases.

From the same structural point of view, to explore where
somatic hotspots reside with respect to protein interfaces, we
mapped 1107 hotspots (Supplemental Table 1) detected from ap-
proximately 25,000 tumors onto the human interactome, in
which the interface of each interaction is mapped at residue reso-
lution using Interactome INSIDER (Methods; Meyer et al. 2018).
We found that these hotspots are highly enriched on protein inter-
faces: Although interaction interfaces cover 11.0% of the proteins
harboring these hotspots, 30.8% of the hotspots fall in interaction
interfaces (2.8-fold, P=5.0 ×10−62 by a two-tailed exact binomial
test; Methods) (Fig. 1D). In comparison, when we examined the
distribution of approximately 40,000 nonrecurrent somatic vari-
ants (presumed to be predominantly passengers) on the same
sets of proteins that harbor hotspots, no enrichment was observed
(11.0%, 1.0-fold, P=0.78) (Supplemental Table 1). This sharp con-
trast indicates that many hotspot mutations exert their functional
effects by affecting specific protein–protein interactions and that
mutation locating on an interaction interface is an important fea-
ture that can be used to identify driver mutations.

Leveraging the partner-specific information in our 3D inter-
actome network, we then investigated which and howmany inter-
actions are affected by each hotspot. Modeling the count of
interactions per hotspot with a negative binomial model yielded
a significantly higher number of interactions affected by hotspots
than nonrecurrent variants on the same set of proteins (means: 7.0
vs. 1.3, 5.2-fold, P=5.5 ×10−18; Methods) (Fig. 1E), suggesting that
hotspot mutations preferentially affect “hub interfaces” that in-
volve in a large number of interactions. We further examined
the topological positions of these hotspot-affected interactions
in the interactome network. Using edge betweenness, in which a
higher betweenness value indicates more information follows
through the corresponding interaction, we found that hotspot-af-
fected interactions, on average, have a significantly higher be-
tweenness than those affected by nonrecurrent variants
(medians: 7.2 × 10−5 vs. 4.4 × 10−5, 1.6-fold, P=1.1 ×10−9 by a
two-tailed Mann–Whitney U test; Methods) (Fig. 1F). Similar dis-
tinctions were recapitulated when we compared hotspots with
population variants (Supplemental Fig. 1). Overall, hotspot muta-
tions tend to affect key proteins (high degree) and interactions
(high betweenness) that are of great importance topologically for
the whole-interactome network.

Hotspot-affected interactions help infer molecular mechanisms

of oncogenic hotspots

To assess the oncogenic potential of the hotspots on protein inter-
action interfaces and the corresponding interactions they affect,
we first examined how they link to previously identified cancer
genes. Intersecting genes harboring interface hotspots with a list
of cancer genes curated in Cancer Gene Census (CGC) (Sondka
et al. 2018), we found ∼80% (80/96) of them are known cancer
genes. This gave 7.4-fold increased odds compared with that of
genes harboring noninterface hotspots (82/204, P=1.2 ×10−12

by a two-tailed Fisher’s exact test) (Fig. 2A; Supplemental Table

2). We next examined the interaction partners—proteins that in-
teract with the proteins harboring hotspots—affected by interface
hotspots (“hotspot-affected partners”), as well the interaction
pairs that involve both interacting proteins (“hotspot-affected
pairs”). There was again significant enrichment for both hotspot-
affected partners and pairs compared with the unaffected ones
(partners: 190/1444 vs. 150/1795, OR=1.7, P=1.1 ×10−5; pairs:
285/2043 vs. 309/3736, OR=1.8, P=3.0 ×10−10) (Fig. 2B;
Supplemental Table 2). Collectively, these results point to the asso-
ciation of hotspot-affected interactions—involving not only pro-
teins harboring the hotspots but also their affected interaction
partners—with cancer.

We further performed gene set enrichment analysis, asking
in what biological processes the pairs of proteins affected by hot-
spots are functioning together, using unaffected protein pairs as
the counterpart (Methods). We found that hotspot-affected inter-
actions are frequently involved in processes that have been tight-
ly linked to cancer (e.g., regulation of transcription, intracellular
signal transduction, cell proliferation/death) (Fig. 2C), and are
enriched in curated sets of cancer-associated pathways (Fig.
2D). Consequently, alteration of these interactions may be criti-
cal for the oncogenicity of hotspot mutations on corresponding
interfaces. For example, RAF1 is a serine/threonine kinase with
an established role in activating the oncogenic RAS-RAF-MAPK
pathway (Wellbrock et al. 2004), and its kinase activity can be in-
hibited by 14-3-3 proteins (Fig. 2E; Dumaz and Marais 2003). Our
framework predicted the hotspot RAF1 S257L as an interface res-
idue mediating RAF1’s interaction with 14-3-3 proteins. We
would then propose RAF1 S257 mutations disrupt RAF1-[14-3-
3] interaction, deprive kinase inhibition of RAF1, and thereby po-
tentiate RAS-RAF-MAPK signaling to fuel cancer development.
Our postulate is supported by independent experiments that ob-
served that mutant RAF1S257L lost 14-3-3 binding (Light et al.
2002) and was able to induce anchorage-independent cell growth
(Imielinski et al. 2014). Therefore, RAF1 S257 mutations are likely
to cause oncogenesis through a “gain of cellular function” via a
“loss of molecular inhibition” mechanism. This example helps
show how identification of specific protein interactions affected
by a hotspot can generate mechanistic hypothesis about its
oncogenicity.

Recurrence of multiple hotspots affecting the same interac-
tion can lend strong evidence to the oncogenic potential of the in-
teraction and shared molecular basis of the hotspots. For instance,
we found the most highly recurrent SMAD4 hotspots R361, D537,
G386, and D351 all fall in the trimer interface with SMAD3, and
three of them are significantly clustered in 3D space (P=2.0 ×
10−4 using a bootstrapping method by mutation3D (Fig. 2F;
Meyer et al. 2016).We experimentally tested the functional impact
of these hotspot mutations, and the results showed that all muta-
tions disrupted SMAD4–SMAD3 interaction (Methods; Fig. 2G).
Importantly, these mutations still retained SMAD4’s interaction
with EWSR1, whose interfaces are unlikely to involve these resi-
dues by our interface predictions (Fig. 2G). Thus, the SMAD4 hot-
spot mutations are likely to function by disrupting specific
interaction with SMAD3 rather than causing a loss of the whole
protein. We additionally tested a nonrecurrent variant on the
SMAD4–SMAD3 interface (H541Y) (Fig. 2F), and we found it dis-
rupted neither of the tested interactions (Fig. 2G). This suggests
that although passenger mutations may still randomly occur on
the interfaces, they are much less likely to cause perturbations to
protein interactions. Therefore, our framework that identifies in-
teractions affected by mutational hotspots is an effective way to
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dissect functional consequences andmo-
lecular mechanisms of candidate driver
mutations in cancer.

The proteome-scale hotspot-affected

interactome network helps identify

novel cancer proteins without hotspot

mutations

Given the functional significance and
oncogenic potential of hotspot-affected
interactions, we constructed a “hotspot-
affected interactome network” by con-
necting all 2083 interactions affected by
hotspots at the whole-proteome scale
(Fig. 3A; Supplemental Table 2). As a con-
trol, the remaining 3736 unaffected in-
teractions of proteins harboring hotspots
were built into another network, referred
as the hotspot-unaffected network (Fig.
3A). We first examined how known can-
cer-associated proteins are distributed be-
tween these two networks. Overall, there
was a 1.2-fold enrichment for cancer pro-
teins in the hotspot-affected network ver-
sus the unaffected network (210/1471 vs.
307/2617, P=0.02 by a two-tailed Z-test).
With an increasing network degree
(number of interactions associated with
a protein), the enrichment became in-
creasinglystronger (Fig. 3B; Supplemental
Table 3), suggesting that cancer proteins
tend to act as hubs in thehotspot-affected
network.

We prioritized 123 hubs (degree≥4)
from the hotspot-affected network as
candidate cancer proteins (Fig. 3C; Sup-
plemental Table 3). Topping the list are
well-known cancer proteins such as epi-
dermal growth factor receptors (EGFR,
ERBB2), tumor protein TP53, and the
SMAD family of signal transduction pro-
teins. An important feature of our net-
work-based approach, rather than of
single-protein level functional predic-
tions, is its ability to discover proteins
that do not harbor any hotspots them-
selves but are frequently targeted by hot-
spot-affected interactions. These proteins
maygounrecognizedbyothermethodol-
ogies owing to the lackof recurrentmuta-
tions, but we would interpret them as
crucial nodes that connect many differ-
ent hotspots and may serve as a conver-
gence point for their oncogenic effects.
Among such hubs, GRB2 ranked as the
top novel candidate, which links to nine
proteins harboring hotspots (“hotspot-
interactors”) (Fig. 3D). Although not be-
ing cataloged as a cancer driver gene
that contains casual mutations by the
CGC (Sondka et al. 2018), GRB2 is well
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Figure 2. Oncogenic potential of interface hotspots and hotspot-affected interactions. (A) Association
of genes harboring interface and noninterface hotspots with previously known cancer genes. (B)
Association of hotspot-affected interaction partners and interaction pairs with known cancer genes.
An interaction pair was counted when both the gene-carrying hotspot and its interaction partner are
known cancer genes. (C,D) Gene set enrichment analysis of hotspot-affected interactions. For each
Gene Ontology (GO; C ) or KEGG pathway (D) gene set, an interaction pair was counted when both
the gene-carrying hotspot and its interaction partner are in the gene set. The red vertical line indicates
statistical significance threshold after Bonferroni correction. (E) Implication of hotspot-affected interac-
tion RAF1 S257–[14-3-3] in the oncogenic RAS-RAF-MAPK pathway. A cocrystal structure of RAF1-
YWHAZ (PDB ID: 4IHL) highlighting the RAF1 S257 interface hotspot is shown. (F ) Cocrystal structure
of SMAD4–SMAD3 trimer (PDB ID: 1U7F) highlighting four SMAD4 interface hotspots (red) and one
nonrecurrent variant (gray). Number in parentheses indicates the recurrence of corresponding hotspot
across tumor samples. (G) Effects of SMAD4 hotspot (red) and nonrecurrent (gray) mutations on SMAD4
interactions tested by a yeast two-hybrid (Y2H) assay.
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Figure 3. Identification of novel cancer proteins using our hotspot-affected network. (A) Schematic illustration of constructing hotspot-affected and
hotspot-unaffected networks. (B) Association of proteins in the hotspot-affected and hotspot-unaffected networks with previously known cancer pro-
teins. (C) A network view of hub proteins prioritized by our hotspot-affected network. Proteins that harbor hotspots are shown in orange, and proteins
with no hotspots are shown in purple. Listed proteins are ranked first by whether the protein is a known cancer protein (indicated by asterisk) and then
by their degree in the hotspot-affected network (shown in parentheses). (D,E) Implication of the top-ranked hub proteins GRB2 (D) and STAT1 (E) in
oncogenesis.
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known to link receptor tyrosine kinases (RTKs) with intracellular
cancer-associatedpathways; up-regulatedGRB2 levels havebeen fre-
quently reported in cancer cell lines (Kapoor 2014). Corres-
pondingly, we found four GRB2 hotspot-interactors are RTKs
(EGFR, ERBB2, FGFR2, MET), and two are downstream effectors
(PTPN11, PIK3R1) in ERK/AKT pathways (Fig. 3D). Consequently,
GRB2 appears as the pivot for these proteins harboring hotspots to
launch oncogenic signaling cascades. Although no hotspot muta-
tions have been identified on GRB2, our network-based approach
implicates GRB2 as a cancer-associated protein that empowers the
oncogenicityofmanyhotspotmutationson its interactingproteins.

Besides acting as a convergence point, a hub could alternative-
ly mediate diverse oncogenic activities when affected by different
hotspots. Signal transducer and activator of transcription (STAT)
1, the second-ranked candidate in our network, represents one
such instance. As a signal transducer, STAT1 can mediate TGFB sig-
naling by directly interacting with TGFB receptors (Fig. 3E; Tian
et al. 2018). As an activator of transcription, STAT1 regulates a num-
ber of genes, either in a form of homo/heterodimer best known in
the response to interferons (IFNs) (Ho and Ivashkiv 2006) or by co-
operating with other proteins such as TP53 and EGFR in TP53/EGF-
induced apoptotic pathways (Fig. 3E; McDermott et al. 2005; You-
lyouz-Marfak et al. 2008; Forys et al. 2014; Ali et al. 2018). Although
serving as components of different pathways, these interactions all
point to STAT1’s function in promoting
cell death (Fig. 3E; McDermott et al.
2005; Ho and Ivashkiv 2006; Youlyouz-
Marfak et al. 2008; Forys et al. 2014).
Therefore, our results support a tumor
suppressor role for STAT1, and we impli-
cate specific hotspot-affected interactions
that may underlie its tumor-suppressive
function. Although no STAT1 truncating
mutations have been tested directly,
STAT1 knockout mice have been shown
to spontaneously develop mammary car-
cinomas (Chan et al. 2012). Together,
we expect that as more mutations are un-
covered and studied,more nodes and edg-
es will be added to our hotspot-affected
network, providing complementary evi-
dence that strengthens previously identi-
fied associations and enhances the
discovery of new ones.

Cancer-type-specific hotspots affect

different interactions in different

cancers

In Mendelian disorders, it has been
shown that mutations on the same pro-
tein can cause distinct diseases through
altering different protein interactions
(Wang et al. 2012; Sahni et al. 2015). To
explore the association of hotspots and
hotspot-affected interactions with differ-
ent cancers, we analyzed the subset of
hotspots detected from individual cancer
types (Chang et al. 2016). In total, 719
unique cancer-type-specific hotspots
were identified, of which ∼30% occurred
in more than one cancer type (“multi-

cancer hotspots”) (Fig. 4A; Supplemental Table 4). We first exam-
ined how these hotspots distributed in the interactome network
and found that multicancer hotspots, compared with single-can-
cer hotspots, tend to affect more central positions (degree medi-
ans: 35 vs. 22.5, fold-change [FC] = 1.6, P=1.2 ×10−8 by a two-
tailedMann–WhitneyU test) (Fig. 4B).We next determinedmulti-
cancer interactions, as those affected by either one or more multi-
cancer hotspots or multiple single-cancer hotspots of different
cancers (Supplemental Table 4). In line with the centrality of mul-
ticancer hotspots, we found multicancer interactions also tend to
occupy central positions within the interactome network, as indi-
cated by their high edge betweenness compared with that of sin-
gle-cancer interactions (medians: 7.5 × 10−5 vs. 5.9 × 10−5, FC=
1.3, P= 6.2 ×10−6) (Fig. 4C). These findings suggest that the multi-
cancer roles of hotspots and hotspot-affected interactions may
arise from their network centrality, which allows them to function
through a wide range of downstream targets.

We then asked whether hotspots targeting different interac-
tion partners tend to be involved in different cancers. By compar-
ing the number of cancer types shared by hotspots on the same
protein, we found a significantly greater number of common can-
cer types shared by hotspots affecting the same interactions than
those affecting different interactions (1.6-fold, P=3.7 ×10−4 by a
negative binomial model; Methods) (Fig. 4D; Supplemental
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Figure 4. Association of cancer-type-specific hotspots with specific protein interactions. (A)
Categorization of pan-cancer versus cancer-type-specific hotspots and multicancer versus single-cancer
hotspots. (B) Degree distributions of proteins harboring multicancer and single-cancer hotspots. Degree
values are transformed by log2 for presentation purposes. (C) Edge betweenness distributions of multi-
cancer and single-cancer interactions. (D) Average number of cancer types shared between hotspots on
the same interface and between hotspots on different interfaces.
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Table 4). The result indicates that hotspots affecting different inter-
actions, although on the same protein, are likely to be involved in
different cancers. This reinforces our notion that alteration of spe-
cific protein interactions is critical for the oncogenicity of hotspot
mutations. Therefore, linking specific interactions to hotspots of
specific cancer types, that is, constructing a cancer-type-specific,
hotspot-affected network, would further delineate functional hot-
spots and interactions and better understand their molecular
mechanisms in specific cancers.

Cancer-type-specific hotspot-affected interactome networks

prioritize hotspots for cancer prognosis

Many interactions may not happen across all tissues, and conse-
quently, for a particular type of cancer, a hotspot-affected interac-
tion is only meaningful if that interaction happens in the
corresponding tissue. Thus, we incorporated tissue-specific gene
coexpression data to prioritize hotspot-affected interactions that
are likely functional in a particular cancer type. Specifically, for
each cancer type, we surveyed the expression patterns of genes en-
coding hotspot-affected interacting proteins, using RNA-seq data
frommatched tumor-adjacent normal tissues (Methods). We con-
structed cancer-type-specific, hotspot-affected interactome net-
works by considering only hotspot-affected interactions in
which both interacting partners are coexpressed in the corre-
sponding tissue, and considered interface hotspots in these net-
works prioritized for the specific cancer types (Methods; Fig. 5A).

To evaluate the utility of our cancer-type-specific hotspot-af-
fected interactome networks, we investigated whether the net-
work-prioritized hotspots can be useful in real clinical practice,
such as to help prognostic prediction and/or personalized treat-
ment. In each of the seven cancer types thathad sufficient network
and expression data, we compared the progression-free survival be-
tween patients carrying hotspot mutations, grouping them by
whether the hotspot is prioritized by our network or not
(Supplemental Table 5). Across all cancer types, patients carrying
network-prioritized hotspot mutations, on average, had a shorter
survival time than patients carrying other hotspot mutations
(based on Kaplan–Meier survival estimates; Methods) (Fig. 5B).
To further assess the prognostic power of our network-prioritized
hotspots, we fit the network-prioritized hotspot as a predictor for
patient’s survival time using a Cox regression model (Methods).
In line with the Kaplan–Meier estimates, our regression analyses
revealed significant negative associations between our network-
prioritized hotspot and patient’s survival time (hazard ratio [HR]
> 1.0, P<0.05 in 5/7 cancer types) (Fig. 5B). These results suggest
that the prioritized hotspotsmight play a significant role in the de-
velopment or recurrence of cancer in corresponding patients.

Network-prioritized hotspots and interactions provide clues

toward personalized medicine

The prognostic value of our prioritized hotspots raises the possibil-
ity that they could provide useful information regarding targeted

BA

Figure 5. Construction of cancer-type-specific hotspot-affected networks and their prognostic values. (A) Schematic illustration of incorporating tissue-
specific coexpression pattern to construct cancer-type-specific hotspot-affected networks. (B) Association of our network-prioritized hotspots with patients’
survival. Survival probabilities and curves were obtained using Kaplan–Meier estimates (red denotes patients harboring network-prioritized hotspot mu-
tations; gray denotes patients harboring other hotspot mutations). Number at risk tables are shown under corresponding Kaplan–Meier plots, indicating
the number of subjects at risk immediately before the time point. Hazard ratio (HR), P-value, and C-statistic were calculated using a Cox regression model.
(BRCA) Breast invasive carcinoma, (ESCA) esophageal carcinoma, (HNSC) head and neck squamous cell carcinoma, (LIHC) liver hepatocellular carcinoma,
(LUSC) lung squamous cell carcinoma, (READ) rectum adenocarcinoma, (STAD) stomach adenocarcinoma. Number of hotspots included in each Kaplan–
Meier analysis (Nprioritized andNother, respectively): BRCA=18, 66; ESCA=13, 33; HNSC=10, 52; LIHC=8, 11; LUSC=17, 51; READ=20, 43; STAD=20, 59.
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therapy for patients with particular hotspot mutations. To test
this, we surveyed a list of known genetic biomarkers that are being
used in current targeted therapy (106 SNV biomarkers compiled
from My Cancer Genome [Swanton 2012], with either FDA ap-

provals or clinical practice guidelines; Methods) (Supplemental
Table 5). Therewas a strong enrichment of our network-prioritized
hotspots to be known biomarkers (in both cancer-type-specific
and pan-cancer settings) (Fig. 6A), including several well-known

E
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Figure 6. Clinical significance of network-prioritized hotspots in targeted therapy. (A) Association of our network-prioritized hotspots with known ge-
netic biomarkers in targeted therapy. (B) Known biomarkers on the interface of ERBB2 dimers. Interfaces were determined by structural analysis of ERBB2
(S310)-ERBB3 (homology model; PDB template: 3N85), ERBB2(V659)-EGFR (cocrystal structure; PDB ID: 2KS1), and ERBB2(D769)-ERBB3 (homology
model; PDB template: 4RIX). (C) Known biomarkers on the interface between PIK3CA and PIK3R1 (cocrystal structure; PDB ID: 4OVU). (D) Known resistant
biomarkers on the interface between ESR1 and SCR (cocrystal structure; PDB ID: 4MG8). The ESR1 interface mutations render resistant to antiestrogen
treatment but are sensitive to SRC inhibitors, especially when coadministered with an ESR1 inhibitor. (E) Prevalence of targeted therapy in different breast
cancer subtypes. (F ) A cocrystal structure of TP53–BCL2L1 (PDB ID: 2MEJ) highlighting the TP53 H179 and S241 interface hotspots. (G) Cocrystal structure
of TP53 (PDB ID: 2H1L) highlighting a 3D cluster formed by our network-prioritized hotspots (red) and known interaction-disrupting mutation residues
(orange). (H) Coimmunoprecipitation validating the disruptive effects of our network-prioritized hotspot mutations TP53 H179P and S241Y, along with a
previously reported oncogenic mutation R175H in 3D proximity, on the TP53–BCL2L1 interaction in HEK 293T cells. (I) Drug responses of cancer cell lines
harboring network-prioritized hotspots. Known therapeutic biomarkers were excluded from the analysis toward identifying potentially novel targets. Each
point denotes a specific hotspot-drug pair, for which the difference in drug response was evaluated by an analysis of variance (ANOVA) model. P-values
were corrected by the Benjamini–Hochbergmethod (with red dashed line indicating a false-discovery rate [FDR] of 0.1). Effect sizes were quantified using a
Cohen’s d statistic. (J) Cocrystal structure of XPO1–SNUPN interaction (PDB ID: 5DIS) highlighting a prioritized interface hotspot XPO1 E571 that presented
significant drug sensitivity.
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ones such as ERBB2 (also known as HER2) S310/V659/D769,
which are predictive biomarkers for use of ERBB2 inhibitors
(Greulich et al. 2012; Swanton 2012; Bose et al. 2013; Chumsri
et al. 2015; Ou et al. 2017; Pahuja et al. 2018), PIK3CA C420/
E542/E545/Q546 (sensitive to PI3K inhibitors) (Zhang et al.
2008; Swanton 2012; Jung et al. 2018), and ESR1Y537/D538 (resis-
tant to estrogen inhibitors) (Swanton 2012; Robinson et al. 2013;
Toy et al. 2013). Examining these biomarkers within our hot-
spot-affected network, we found that their predicted drug response
can be explained by alteration of specific protein interactions. For
example, ERBB2 S310/V659/D769 mutations identified on its
dimer interfaces (Fig. 6B) have been frequently implicated in stabi-
lized ERBB2 dimerization that led to an overactivation of the recep-
tors (Greulich et al. 2012; Bose et al. 2013; Chumsri et al. 2015; Ou
et al. 2017; Pahuja et al. 2018); consequently, patients carrying
these mutations are predicted to be sensitive to ERBB2 inhibitors.
Similarly, patients with PIK3CA (also known as p110α) C420/
E542/E545/Q546mutations, which disrupt the inhibitory interac-
tion between PIK3CA and PIK3R1 (also known as p85α), two regu-
latory subunits of PI3K (Fig. 6C; Miled et al. 2007; Burke et al.
2012), are predicted to respond to PI3K pathway inhibitors.

The estrogen receptor (ER) hotspots ESR1 Y537/D538, on the
other hand, represent another category in which the presence of
these biomarkers predicts resistance to antiestrogen treatments
(Swanton 2012; Robinson et al. 2013; Toy et al. 2013; Jeselsohn
et al. 2015). The resistance has been largely attributed to a consti-
tutive, estrogen ligand-independent binding between the ESR1
mutant and its transcriptional coactivators (Jeselsohn et al. 2015;
Fanning et al. 2016); this is also echoed in our hotspot-affected
network, in which ESR1 Y537/D538 are linked to steroid receptor
coactivators (SRCs) (Fig. 6D). In this case, our data would suggest
that instead of targeting the ligand estrogen, directly targeting
the receptor ESR1 and/or its interacting SRCs may be a promising
therapeutic strategy (Fig. 6D). Indeed, a recent study showed that
pan-SRC inhibitors were able to suppress ESR1mutant-driven tran-
scriptional activation and blocked proliferation of breast cancer
cells expressing ESR1 Y537/D538 mutations (Gates et al. 2018).
Moreover, suppression of the tumor growth became stronger
when SRC inhibitor was coadministered with a selective ER de-
grader, in a model generated from a patient with hormone-refrac-
tory breast cancer (Fig. 6D; Gates et al. 2018). Such synergistic
effect of drugs targeting interacting protein pairs highlights the
value of identifying specific protein interactions affected by hot-
spot mutations.

To further show that our network-prioritized hotspots can in-
form novel/better therapeutic strategies, we investigated the cur-
rent prevalence of targeted therapy, in comparison to traditional
nontargeted chemotherapy. Here we used breast cancer, which
has well-recognized therapeutic biomarkers, ER/progesterone
receptor (PR) and ERBB2, as a proof-of-principle. We collected
clinical information of 509 breast cancer patients whose pharma-
ceutical therapy history and ERBB2/ER/PR status were available
(The Cancer Genome Atlas Research et al. 2013). We found that,
as expected, most (80.4%) patients with ER/PR-positive signatures
received antihormone therapies, and in ER- and PR-negative but
ERBB2-positive cases, most (65.2%) patients were administered
with anti-ERBB2 drugs (Fig. 6E). In contrast, however, for patients
in triple-negative status, only 12.2% had targeted therapy, and the
vast majority underwent traditional nontargeted chemotherapy
(Fig. 6E). We then asked whether our network-prioritized hotspots
could provide clues to facilitate targeted therapy for these triple-
negative patients.

Four triple-negative cases were found within our hotspot-af-
fected network; all of them harbor TP53 hotspot mutations, and
three fall on the interaction interface with BCL2L1 (two at H179
and one at S241) (Fig. 6F). The TP53–BCL2L1 interaction is known
to promote TP53’s apoptotic activity at the mitochondria, where
TP53 directly binds to and antagonizes the antiapoptotic protein
BCL2L1 (Mihara et al. 2003; Moll et al. 2006; Green and
Kroemer 2009; Vaseva and Moll 2009). Although the effects of
TP53 H179/S241 mutations on TP53–BCL2L1 have not been test-
ed directly, several alterations in the TP53 surrounding regions
have been shown to abrogate its BCL2L1 binding and apoptotic
ability in multiple cancer cell lines (Mihara et al. 2003). In partic-
ular, the reported interaction-disrupting mutations at R175 and
L194 reside in structural proximity with our network-prioritized
hotspots H179 and S241 (P=7.1 ×10−5 by mutation3D) (Fig. 6G;
Meyer et al. 2016), suggesting similar functional effects of these
mutations on TP53–BCL2L1 interaction. We validated our predic-
tions by coimmunoprecipitation experiments in human cells,
which showed that both mutations on our network-prioritized
hotspots (H179P and S241Y) disrupt the interaction, to a similar
extent as the known oncogenic mutation R175H (Methods; Fig.
6H). Therefore, it is plausible to speculate that TP53 H179/S241
mutations may contribute to oncogenesis in corresponding pa-
tients by disrupting the TP53–BCL2L1 interaction. In this regard,
restoration of functional TP53–BCL2L1 interaction appears a ratio-
nal treatment strategy. A number of TP53-reactivating small mole-
cules have been discovered (for review, see Bykov et al. 2018);
many of them were shown to rescue TP53’s binding to DNA,
whereas the same interface has a dual function in mediating
TP53’s binding to BCL2L1 (Mihara et al. 2003; Petros et al.
2004). Besides, it was found that exclusive delivery of wild-type
TP53 to mitochondria (but not to the nucleus) could induce effi-
cient apoptosis and significant tumor growth suppression in trans-
genic mice (Palacios and Moll 2006). Collectively, these findings
lend evidence to the validity and feasibility of applying TP53-
based targeted therapy to the triple-negative cases that harbor
TP53–BCL2L1 interface hotspot mutations.

Lastly, we systematically explored the pharmacogenomic
landscape of our network-prioritized hotspots. Leveraging drug re-
sponse profiles of approximately 1000 human cancer cell lines
screened with 265 anticancer compounds (Iorio et al. 2016), we
identified 108 significant hotspot-drug associations (Methods;
Supplemental Table 5). Leading associations were driven by well-
known therapeutic biomarkers (e.g., BRAF V600, NRAS Q61), yet
∼50% of the associations were found in hotspots that are poten-
tially novel targets (Fig. 6I). For example, the top association impli-
cating novel drug-sensitivity was found between hotspot XPO1
E671 and an AKT inhibitor (GSK690693). The XPO1 gene encodes
a nuclear transporter that exports molecules from the nucleus into
the cytoplasm, and many of the cargos are significant players in
oncogenesis such as AKT (Iorio et al. 2016). Our network approach
identified that the hotspot XPO1 E671 resides on its interaction in-
terface with SNUPN (Fig. 6J), which is known to form a nuclear
pore complex with XPO1 and mediate the transport of cargo pro-
teins (Monecke et al. 2009). Therefore, alteration of the XPO1–
SNUPN interaction might be a plausible mechanism underlying
the oncogenicity of hotspot XPO1 E671, and thus, ATK inhibitors
could provide a therapeutic option for patients carrying XPO1
E671 hotspot mutations. Collectively, we show how our hotspot-
affected interactome networks could generate mechanistic clues
that aid in the design of targeted therapy and personalized
medicine.
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Although we acknowledge that the path from mechanism to
medicine is intricate, we consider our framework a useful way for
clinicians to obtain functional information, rather than pure stat-
istical recurrence, of the hotspot mutations. Because high recur-
rence has been regarded as a hallmark of cancer-driving
mutations, it is natural for clinicians and researchers to prioritize
hotspots by their degree of recurrence. To interrogate the value
of our network-based prioritization in providing new, indepen-
dent information, we divided the hotspots into two groups by
their statistical ranking—highly recurrent hotspots (upper 50%)
and the relatively mild ones (lower 50%)—and repeated all analy-
ses separately within each group. We found all results remained
the same: Both upper- and lower-ranked hotspots are enriched
on protein interfaces, and hotspots prioritized from both groups
are closely associated with cancer (Supplemental Fig. 2). This clear-
ly shows that our network-based framework offers orthogonal in-
formation independent of the hotspot recurrence. In fact,
recurrence by itself is not informative enough to distinguish clin-
ically relevant hotspots; highly recurrent hotspots were not pre-
dictive for patient’s survival outcome (Supplemental Fig. 3).
Together, we suggest that one key feature to understand the func-
tional relevance of cancer hotspots is how they may alter specific
protein–protein interactions. Our network-based approach pre-
sents a biologically informed framework that identifies hotspot-
affected interactions at the full-proteome scale and yields
mechanistic hypothesis that can be used to guide downstream
functional studies and clinical interpretations.

Discussion

Cancer driver mutations are frequently nominated based on their
recurrence rate in different cancers. However, because there are
many additional factors that affect mutation rates (Buisson et al.
2019; Seton-Rogers 2019), not all hotspot mutations are cancer
drivers. Here we showed that many cancer hotspot mutations
function through affecting specific protein–protein interactions
and that our full-proteome, interaction-specific 3D interactome
network framework can effectively identify functional hotspots
and hotspot-affected interactions. Because experimental examina-
tion of hotspots is limited in scale and current bioinformatics tools
hardly interpret oncogenicity, our framework makes significant
contributions in systematically prioritizing and mechanistically
characterizing hotspots in human cancers. Our results revealed
that hotspots and hotspot-affected interactions preferentially oc-
cupy central positions in the interactome network and frequently
target previously known cancer proteins and pathways. Although
we suggested that identifying specific interactions affected by a
hotspot can already help understand its oncogenicity, instead of
analyzing each hotspot individually as is commonly performed
in cancer driver mutation prediction (Carter et al. 2009; Li et al.
2010; Mao et al. 2013; Shihab et al. 2013), we further connected
the effects of all hotspots to construct a hotspot-affected interac-
tome network at the full proteome scale. Such network has not
been possible to construct in any previous studies because interac-
tome-based approaches suffered from either low coverage (i.e., fo-
cusing on only interactions with cocrystal structures) (Engin et al.
2015, 2016; Porta-Pardo et al. 2015; Rodrigues et al. 2019) or low
resolution (i.e., examining [sub-]network properties at the protein
level, not the residue level) (Guda et al. 2009; Chen et al. 2016; Li
et al. 2016; Zhang and Zhang 2017).We show utilities of our inno-
vative hotspot-affected interactome network in uncovering novel
relationships among different hotspots, generating hypotheses

of how hotspot mutations function at the molecular level, and
identifying novel oncogenic proteins that do not harbor hotspot
mutations themselves. Therefore, although our analyses started
with approximately 1000 published hotspots, our framework ex-
panded the scope of existing data sets and can be readily applied
as more cancer mutations are identified. Finally, by complement-
ing the hotspot-affected interactome network with tissue-specific
transcriptomes, we showed the clinical utilities of applying our
framework in specific cancer types toward improving prognosis
and targeted therapy.

We emphasize the virtue of connecting hotspot-affected in-
teractions into a network as the topological properties are indica-
tive of hotspot oncogenicity, which cannot be assessed when
viewing these interactions as independent pairs. We note that
the hub–oncogenicity association is only meaningful in the hot-
spot-affected network but not in the unaffected network because
only interactions in the affected network are considered function-
ally relevant in the specific context of cancer. The affected hub
GRB2 (degree = 9), for example, even though it has more interac-
tion partners in the unaffected network (degree = 18), fewer of
them are associated with cancer (11/18=61% in CGC, compared
with that in the affected network, 8/9 =89%). More generally,
across the nearly 750 proteins shared by the two networks, there
is a significantly higher rate for interaction partners in the affected
network to be known cancer genes than those in the unaffected
network (means: 87% vs. 58%, P<10−20 using a Wilcoxon
signed-rank test) (Supplemental Fig. 4). Moreover, when studying
the unaffected network in the same fashion to prioritize hotspots,
we foundno clinical significance in these hotspots for cancer prog-
nosis (Supplemental Fig. 5). These results reinforce the value of
protein interaction interface and network information in inter-
preting the oncogenicity of cancer hotspots.

One unique strength of our framework resides in its full-pro-
teome scale prediction of interfaces for interactions with no co-
crystal structures or homology models available. Although we
emphasize the scalability of our framework, we ensure the reliabil-
ity of our findings by repeating all analyses using only protein in-
terfaces resolved from cocrystal structures and homology models.
All results agreed well with those calculated from full interface
data, althoughwith reduced statistical significance owing to limit-
ed sample size (Supplemental Fig. 6). These results not only con-
firm the validity of our findings in this study but also underscore
the effectiveness of our full-proteome framework in characterizing
mutational hotspots. Moreover, we recognize that the current hu-
man interactomemay be subject to sampling bias from small-scale
studies (Das andYu 2012; Rolland et al. 2014) inwhich certain pro-
teins (e.g., TP53)may have been studied intensively against a great
number of interactors. Thus, we re-examined the network proper-
ties of hotspots and hotspot-affected interactions using only high-
throughput-derived human interactions (Das and Yu 2012),
and our results on network centralities remain unchanged
(Supplemental Fig. 7). This further confirms the importance of us-
ing network properties to interpret the functional significance of
hotspots in cancer.

Our analyses suggest that identifying specific interaction
partners affected by hotspots provides important clues about their
oncogenicity. Meanwhile, we recognize that some interaction
partners mapped from the global interactome may not be func-
tional under specific tumor context. To address this issue, we in-
vestigated the expression status of partner genes for each hotspot
in tumors that carry that hotspot. Overall, ∼90% of the affected
partners are expressed in at least 80%of the corresponding carriers,
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giving amoderate but significant higher rate than that of unaffect-
ed partners (Methods) (Supplemental Fig. 8A). Although expres-
sion data are limited in coverage across multiple sequencing
projects, we reanalyzed the subset of hotspot-affected interactions
in which the partner genes are expressed (Methods).We show that
all results on hotspot-affected interactions hold steadily
(Supplemental Fig. 8B–G), suggesting that our analyses on the
full interaction data are unlikely prone to severe context-biased ex-
pression of partner genes. We expect that as more complete and
unified expression profiles of tumors became available, integrating
traditional gene expression analyses with our novel protein-inter-
action-level features will further promote the mechanistic under-
standing of oncogenic hotspots.

Although the widespread adoption of whole-exome sequenc-
ing and computational tools in cancer genomics has brought us to
a nearly complete catalogue of cancer driver genes (Porta-Pardo
et al. 2020), one of themost pressing questions remaining is which
mutations on these genes are driver mutations, as personalized
treatment hinges on its answer. Our framework, in light of its res-
idue-resolution characterization of protein interfaces, then stands
a superior approach to the prevalent gene-level statistical models.
We showed that hotspots prioritized by our framework are en-
riched for known therapeutic SNV biomarkers, while excluding
these known ones from our prioritized hotspots continued to
show prognostic signals (Supplemental Fig. 9). Another remaining
challenge in completing the identification of potentially target-
able hotspots is the small sample size of rare cancer types. The
number of hotspots detected in a cancer type is largely correlated
with the number of tumors sequenced, with fluctuations in cancer
types with high mutational load (Supplemental Fig. 10A).
Nonetheless, the property of hotspots being enriched on protein
interfaces is not dependent on sample size or mutational load
(Supplemental Fig. 10A), nor the prognostic significance of net-
work-prioritized hotspots is driven by hypermutations in certain
cancer patients (Supplemental Fig. 10B; Methods). Besides, the
network centrality of multicancer hotspots is not sensitive to their
relative frequencies in different cancer types (Supplemental Fig.
10C–E). Therefore, our network approach presents a scalable and
generalizable framework in characterizing hotspots across differ-
ent cancers and can be readily applied to newhotspots as addition-
al tumor genomic data become available.We anticipate that with a
growing network view of the cancer hotspots, more nodes (func-
tional sites) and edges (protein–protein interactions) will be
discovered for targeted therapy. The latter, targeting protein–pro-
tein interactions, has been a particularly attractive goal in preclin-
ical studies (Lu et al. 2020). Recent research has made substantial
progress in identifying oncogenic and potentially targetable pro-
tein interactions (Cheng et al. 2021; Zhou et al. 2021), yet the
drug design of the medicinal protein–protein interaction has
been largely limited by the lack of high-resolution protein inter-
face structures (Lu et al. 2020). As more resources are suggested
to put into the structural studies of the implicated protein interac-
tions, we expect more of our interface predictions to be validated
and/or improved to further narrow the gap between networkmed-
icine and precision medicine.

Taken together, our innovative network-based framework
provides an effective way to identify candidate driver hotspots
and to dissect themolecularmechanismsunderlying their oncoge-
nicity. Our findings would help researchers and clinicians nomi-
nate hotspots that can serve as biomarkers for cancer prognosis
in individual patients, personalized treatment, and potentially
the development of new therapeutics.

Methods

Compilation of cancer hotspots

We compiled published cancer hotspots from two previous studies
(Chang et al. 2016, 2018). A cancer hotspot was defined as an ami-
no-acid position on a protein that is frequentlymutated (by substi-
tutions) more than expected, which was determined by assessing
severalmutational processes such as nucleotide contextmutability
and gene-specific mutation rates (Chang et al. 2016). In total, we
compiled 1324 unique mutational hotspots, the vast majority
(1112/1324=84.0%) of which are composed of a single-amino-
acid substitution, that is, missense mutation (Fig. 1B). One thou-
sand one hundred seven missense hotspots that could be mapped
to a canonical UniProt sequence were considered for downstream
analyses (Supplemental Table 1).

Fraction of missense mutations affecting protein interactions

To show the value of interface information in assessing the effect
of missensemutations on protein interactions, we analyzed exper-
imental data from previous interactome perturbation studies for
both known disease mutations (Wei et al. 2014; Sahni et al.
2015) and population variants (Fragoza et al. 2019). The data
were directly downloaded from the corresponding publications,
and it comprises (1) 70 mutation-interaction pairs from Wei
et al. (2014), 18 with mutation on the corresponding interface
and 52 noninterface; (2) 32 pairs from Sahni et al. (2015), 17 on
the interface and 15 noninterface; (3) 3368 pairs from Fragoza
et al. (2019), 233 on the interface and 3135 noninterface. Based
on their corresponding experimental results, we calculated the
rate of missense mutations affecting protein interactions in each
independent study, with regard to its interface status: (1) inter-
face,13/18=72.2%, and noninterface, 9/52=17.3%; (2) interface,
12/17=70.6%, and noninterface, 2/15=13.3%; (3) interface, 55/
233=23.6%, and noninterface, 424/3135 =13.5%. We also com-
pared the rates between interface-known disease mutations and
population variants by combining the data from 1 and 2: 25/35
=71.4% in disease versus 23.6% in population. We evaluated the
differential rates of “interface versus noninterface” and “disease
versus population” using a two-tailed Fisher’s exact test.

Construction of the full-proteome 3D human interactome

network

A comprehensive set of 59,073 experimentally resolved binary hu-
man protein–protein interactions (curated by HINT [Das and Yu
2012] from eight widely used interaction databases: BioGRID
[Chatr-Aryamontri et al. 2015], MINT [Stelzl et al. 2005],
iRefWeb [Turner et al. 2010], DIP [Salwinski et al. 2004], IntAct
[Hermjakob et al. 2004], HPRD [Keshava Prasad et al. 2009],
MIPS [Mewes et al. 2011], and PDB [Berman et al. 2000]) was com-
piled to generate a high-quality human protein interactome net-
work. For each interaction within the network, we determined
the interface residues that mediate the specific interaction using
Interactome INSIDER (Meyer et al. 2018), a unifiedmachine-learn-
ing framework that predicts partner-specific interfaces at the full-
proteome scale.

Enrichment of hotspots and nonrecurrent variants on protein

interfaces

For each hotspot or nonrecurrent variant, with each of its interac-
tion partners, we considered it to be on the interface for this specif-
ic interaction if it has a probability score of high or very high in
Interactome INSIDER prediction. If the locations of hotspots are

Full-proteome characterization of cancer hotspots

Genome Research 145
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275437.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275437.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275437.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275437.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275437.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275437.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275437.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275437.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275437.121/-/DC1


not influenced by the interface architecture of the protein, then
their relative length should determine the frequency of hotspots
on interfaces. The fraction of hotspots expected by chance on in-
terfaces was calculated by adding the total sequence length of in-
terface residues in all proteins harboring hotspots and dividing it
by the length of all proteins combined; let the probability of falling
in an interaction interface be p. Let the number of observed hot-
spots falling in the interfaces be S, and let N be the total number
of hotspots. An exact binomial test was then computed from p,
S, and N. CIs were based on the 95% CI for an exact binomial
and then transformed to the risk ratio (enrichment) using the ex-
pectation in the denominator and the lower/upper bound in the
numerator.

Modeling the number of interactions as a function of hotspot

status

Somehotspots can affectM=1, 2,…, I interactions, whereas others
do not affect any interactions,M=0. To account for the dispersion
in M and to determine whetherM is stochastically greater for hot-
spot than nonrecurrent variant, we modeledM as a negative bino-
mial distribution and fit it to hotspot status (“1” for hotspot and
“0” for nonrecurrent variant).

Computing edge betweenness

We computed edge betweenness for protein interaction pairs (edg-
es) in the interactome network using algorithm fromUlrik Brandes
(Brandes 2001, 2008) (built in Python module NetworkX):
Betweenness of an edge e is the sum of the fraction of all-pairs
shortest paths that pass through e:

betweenness(e) =
∑

s,t[V

s(s, t|e)
s(s, t)

,

where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-
paths, and σ(s, t|e) is the number of those paths passing through
edge e.

Gene set enrichment analysis

Enrichment of 2043 hotspot-affected interaction pairs over 3736
hotspot-unaffected interaction pairs was tested for 15,917 Gene
Ontology (GO) and 186 KEGG pathway gene sets (obtained from
MSigDB) (Subramanian et al. 2005). For each gene set, the fractions
of hotspot-affected and hotspot-unaffected pairs overlapping with
the gene set were compared using a Fisher’s exact test. An interac-
tion pair was countedwhen both the gene-carrying hotspot and its
interaction partner are present in the gene set. Statistical signifi-
cance threshold was corrected by Bonferroni.

Experimental examination of SMAD4 hotspot mutations using

yeast two-hybrid assay

To perform yeast two-hybrid (Y2H), pDEST-AD and pDEST-DB
plasmid vectors corresponding to the GAL4-activating domain
(AD) and DNA-binding (DB) domain, respectively, were used.
Full-length Clone-seq-identified mutant clones were transferred
into Y2H-amenable pDEST-DB and pDEST-AD vectors by
Gateway LR reactions and then transformed into MATα Y8930
and MATα Y8800, respectively. All DB-ORF MATα transformants,
including wild-type ORFs, were thenmated against corresponding
wild-type and mutant AD-ORF MATα transformants in a pairwise
orientation on YEPD agar plates. After mating, yeast was replica-
plated onto selective SC–Leu–Trp–His+1 mM of 3-amino-1,2,4-tri-
azole (3AT) as well as SC–Leu–Trp–Ade plates. Interactions were
scored after 3 d of incubation and 5 d of incubation for SC–Leu–

Trp+3AT and SC–Leu–Trp–Ade plates, respectively. To screen out
autoactivating DB-ORFs, all DB-ORF MATα transformants were
alsomated pairwise against empty pDEST-ADMATα transformants
and scored for growth on SC–Leu–Trp+3AT and SC–Leu–Trp–Ade
plates. DB-ORFs that trigger reporter activity under this setup
were removed from further experiments.

Comparing the number of common cancer types shared between

hotspots

To test whether hotspots affecting same/different interactions
tend to be associated with same/different cancer types, we per-
formed pairwise comparison between cancer types linked to hot-
spots on the same protein. We examined 26 proteins that have
at least two interface hotspots. On each protein, for each pair of
hotspots, we asked (1) whether they are on the same interface
—“1” for on the same interface if the two hotspots affect the
same set of interactions and “0” for on different interfaces if the
two hotspots affect exclusively different interactions and (2) how
many common cancer types these two hotspots share. Then the
number of shared cancer types between each pair of hotspots (y)
wasmodeled against whether they are on the same interface (x) us-
ing a negative binomial model.

Tissue-specific coexpression analysis

RNA-seq data of tumor-adjacent normal tissues were obtained
from the Genomic Data Commons (GDC) data portal. Ten cancer
types (bowel, breast, esophagus, head andneck, kidney, liver, lung,
prostate, stomach, and thyroid) with at least 40 normal tissue sam-
ples were considered for coexpression analysis. For each cancer
type, we calculated coexpression coefficients of genes encoding
hotspot-affected interaction pairs across corresponding normal tis-
sue samples. Tissue-specific coexpressionnetworkswere construct-
ed using gene pairs with an absolute Pearson correlation
coefficient> 0.5.

Survival analysis

We compared the progression-free survival between patients carry-
ing our network-prioritized hotspots (those that are on the inter-
faces of a cancer-type-specific, hotspot-affected interactome
network) and patients carrying other hotspots. Survival curves
were generated using Kaplan–Meier estimation. The statistical as-
sociation between network-prioritized hotspot and patient sur-
vival outcome was evaluated using a Cox regression model,
controlling for clinical covariates including patient age, gender, tu-
mor stage, and subtype. In the discussion of cancer-type-specific
mutational load,we further includedmutational load (the number
of nonsynonymous mutations in corresponding patients) as a co-
variate. Patient clinical data were obtained from the TCGA Pan-
Cancer Clinical Data Resource (TCGA-CDR) (Liu et al. 2018), and
cancer types that have at least five prioritized hotspots and 50 pa-
tients with available clinical information were considered for sur-
vival analysis. The progression-free interval was used as the clinical
outcome endpoint following the usage recommendations by the
TCGA-CDR. As a new tumor event (NTE) has not yet been clearly
specified by cancer type, a more inclusive definition considering
all NTEs is currently being adopted in the calculation of PFI: breast
invasive carcinoma (BRCA; n= 60 for network-prioritized, n=398
for other), esophageal carcinoma (ESCA; n=44, 52), head and
neck squamous cell carcinoma (HNSC; n=76, 186), liver hepato-
cellular carcinoma (LIHC; n=38, 25);, lung squamous cell carcino-
ma (LUSC; n=42, 64), rectum adenocarcinoma (READ; n=47, 67),
and stomach adenocarcinoma (STAD; n=88, 124).
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Collection of genetic biomarkers used in targeted therapy

We searched for single-nucleotide variation (SNV) sites that are
used as genetic biomarkers in cancer targeted therapy using My
Cancer Genome (Swanton 2012), a unified genomics and clinical
trial portal (https://www.mycancergenome.org/). My Cancer
Genome provides information on the clinical impact of molecular
biomarkers, derived from FDA labels, NCCN or other guidelines,
clinical trials, peer-reviewed literatures, and others. In total, we col-
lected a list of 106 SNV biomarkers, the clinical use of which is ei-
ther approved by FDA or under at least one clinical practice
guidelines.

Cell culture, coimmunoprecipitation, and western blotting

HEK 293T cells were maintained in complete DMEM medium
supplemented with 10% FBS. Cells were seeded onto six-well dish-
es and incubated until 70%–80% confluency. Cells were then
transfected with a mixed solution of 1 µg bait construct, 1 µg
prey construct, 10 µL of 1 mg mL−1 PEI (Polysciences 23966),
and 150 µL Opti-MEM (Gibco 31985-062). After 24 h of incuba-
tion, cells were gently washed three times in 1×PBS and then re-
suspended in 200 µL cell lysis buffer (10 mM Tris-Cl at pH 8.0,
137 mM NaCl, 1% Triton X-100, 10% glycerol, 2 mM EDTA, and
1× EDTA-free complete protease inhibitor tablet [Roche]) and in-
cubated for 30 min on ice. Extracts were cleared by centrifugation
for 10 min at 16,000g at 4 °C. For coimmunoprecipitation, 100 µL
cell lysate per sample was incubated with 5 μL EZ view red anti-
FLAG M2 affinity gel (Sigma-Aldrich F2426) for 2 h at 4°C under
gentle rotation. After incubation, bound proteins were washed
three times in cell lysis buffer and then eluted in 50 μL elution buff-
er (10 mM Tris-Cl at pH 8.0, 1% SDS) for 10 min at 65°C. Cell ly-
sates and coimmunoprecipitated samples were then treated in 6
× SDS protein loading buffer (10% SDS, 1 M Tris-Cl at pH 6.8,
50% glycerol, 10% β-mercaptoethanol, 0.03% bromophenol
blue) and subjected to SDS–PAGE. Proteins were then transferred
from gels onto PVDF (Amersham) membranes. Anti-FLAG
(Sigma-Aldrich F1804) and anti-MYC (9E10; Invitrogen MA1-
980) at 1:5000 and 1:3000 were used for immunoblotting analysis.

Drug response analysis of network-prioritized hotspots

Pharmacogenomic data were downloaded from Iorio et al. (2016).
Drug sensitivity profiles comprise the natural log half-maximal in-
hibitory concentration (IC50) values of 265 drugs tested across 990
molecularly annotated human cancer cell lines. We adopted an
analysis of variance (ANOVA) model from Cheng et al. (2021) to
evaluate the difference in the drug response of cell lines harboring
specific hotspot mutations. Specifically, for each drug, a drug-re-
sponse vector of n IC50 values fromn cell lineswasmodeled as a lin-
ear combination of the mutational status of a particular hotspot,
the tissue of origin of the cell lines, screening medium, andmicro-
satellite instability. P-values were corrected by the Benjamini–
Hochberg method (Adzhubei et al. 2010); a hotspot-drug associa-
tion was considered significant if it has an FDR≤0.1. Effect sizes
were quantified using a Cohen’s d statistic, which is the difference
between two means divided by the pooled standard deviation.

Expression analysis of interaction partner genes in tumors

To systematically examine the expressionof interactionpartners in
specific tumors, we used RNA-seq data from approximately 11,000
tumors uniformly processed by TCGA (The Cancer Genome Atlas
Researchet al. 2013; https://portal.gdc.cancer.gov/). For each inter-
actionpartner gene associatedwithaparticularhotspot,weconsid-
ered it to be expressed if it has an FPKM (fragments per kilobase of

exon model per million reads mapped) value ≥1.0 across ≥80% of
the tumors carrying that hotspot. The vast majority (1990/2342=
85.0%)of thepartnergeneswere foundexpressed in corresponding
tumors (Supplemental Fig. 8A), suggesting little context-depen-
dent expression bias. Although we recapitulated our results using
the subset of expressed interactions (Supplemental Fig. 8B–G), we
present the full-interactome data analyses considering the limited
coverage (<50%) of unified gene expression data across tumors
frommultiple projects used in this study.

Software availability

All scripts for analyses in the manuscripts are available as
Supplemental Code.
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