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Abstract
The periaqueductal gray is a mesencephalic structure involved in modulation of responses to stressful stimuli. Structural 
connections between the periaqueductal gray and the cerebellum have been described in animals and in a few diffusion tensor 
imaging studies. Nevertheless, these periaqueductal gray–cerebellum connectivity patterns have yet to be fully investigated 
in humans. The objective of this study was to qualitatively and quantitatively characterize such pathways using high-resolu-
tion, multi-shell data of 100 healthy subjects from the open-access Human Connectome Project repository combined with 
constrained spherical deconvolution probabilistic tractography. Our analysis revealed robust connectivity density profiles 
between the periaqueductal gray and cerebellar nuclei, especially with the fastigial nucleus, followed by the interposed and 
dentate nuclei. High-connectivity densities have been observed between vermal (Vermis IX, Vermis VIIIa, Vermis VIIIb, 
Vermis VI, Vermis X) and hemispheric cerebellar regions (Lobule IX). Our in vivo study provides for the first time insights 
on the organization of periaqueductal gray–cerebellar pathways thus opening new perspectives on cognitive, visceral and 
motor responses to threatening stimuli in humans.
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Introduction

The periaqueductal gray (PAG) is an important neuronal 
station situated in the mesencephalon, surrounding the Syl-
vian aqueduct. According to the present knowledge, it prob-
ably works as a main control station for innate and acquired 
responses to stressful stimuli such as fear, anxiety and pain, 
by coordinating and integrating appropriate vegetative and 
behavioral responses (Carrive 1993; Fanselow et al. 1991; 
Tovote et al. 2016; Walker and Carrive 2003). The current 
opinion is that PAG is a downstream regulatory station 
involved in a circuit including the prefrontal cortex (PFC), 

amygdala and hippocampus, exerting a descending control 
on the spinal cord (Bandler et al. 2000; Sokolowski and Cor-
bin 2012; Tovote et al. 2015; Furlong et al. 2016). Although 
some of the aspects of this complex response to stressors 
are relatively well known (McMullan and Lumb 2006), the 
way PAG coordinates some complex motor responses, such 
as freezing behavior (Roelofs et al. 2010; Roelofs 2017), is 
still subject of debate.

Anatomical connectivity between PAG with the cerebel-
lum has been subject of interest in the past decades and 
has been investigated by means of tract-tracing techniques 
(Chan-Palay 1977; Dietrichs 1983).

Animal studies demonstrated that PAG and cerebel-
lum are connected both directly and indirectly (Watson 
et al. 2016). Connections joining the cerebellar cortex 
and nuclei with PAG were first described in monkeys 
(Chan-Palay 1977). A few years later, a direct connection 
between PAG and some cerebellar sub-regions was dem-
onstrated using fiber tracers in cats (Dietrichs 1983) and, 
more recently, in rabbits, between PAG and flocculus folio 
P (Nisimaru et al. 2013). In addition, neurophysiological 
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findings of a strong coupling between PAG and cerebel-
lar functions have also been provided in rats (Koutsikou 
et al. 2014).

According to these evidences, PAG may modulate cer-
ebellar activity via three distinct, either direct or indirect, 
ways: (1) by controlling sensory afferent spino-cerebellar 
projections; (2) by modulating the output response of cer-
ebellar nuclei; (3) by regulating spinal reflex circuits (Cer-
minara et al. 2009; Koutsikou et al. 2014, 2015, 2017).

In humans, the development of novel magnetic resonance 
imaging (MRI) sequences and signal modeling techniques 
has provided important contributions to the study of the 
functional neuroanatomy of PAG (Menant et al. 2016). In 
this regard, functional MRI (fMRI) studies demonstrated 
high statistical dependencies between PAG and cerebellum 
both in healthy (Kong et al. 2010; Coulombe et al. 2016; 
Faull and Pattinson 2017) and pathological conditions (Case 
et al. 2017).

On the other hand, diffusion-weighted imaging (DWI) 
and tractography represent powerful tools to trace struc-
tural connections non-invasively and in vivo (Cacciola 
et al. 2016, 2017a, c, d, 2018, 2019; Milardi et al. 2016a, b, 
2017; Arrigo et al. 2018; Calamuneri et al. 2018), by esti-
mating diffusion properties of magnetically labeled water 
molecules along myelinated axons (Basser et al. 1994; 
Henderson 2012). Several tractography studies explored 
the structural connectivity of PAG in humans (Sillery et al. 
2005; Hadjipavlou et al. 2006; Owen et al. 2007, 2008; 
Ezra et al. 2015), though only a few characterized either 
direct or indirect pathways between the PAG and cerebel-
lum (Sillery et al. 2005; Hadjipavlou et al. 2006; Owen 
et al. 2008).

In particular, Sillery and colleagues (2005) found direct 
connections between PAG and cerebellum using probabilis-
tic tractography with 1.5 T MRI on seven healthy subjects. 
Similar connections were described by Owen and coworkers 
(2008) in two out of four patients with deep brain stimula-
tion (DBS) electrodes implanted in PAG for treating chronic 
pain.

However, to the best of our knowledge, none of these 
studies precisely characterized the topographical distribu-
tions of connections between the PAG and the cerebellar 
subregions. Therefore, aim of the present study was the sys-
tematic investigation and characterization of the structural 
connections between PAG and both the cerebellar cortex and 
nuclei. We employed multi-shell, high-angular resolution 
diffusion MRI (HARDI) data of 100 healthy subjects from 
the WU-Minn Human Connectome Project (HCP) reposi-
tory combined with constrained spherical deconvolution 
(CSD) signal modeling. Herein, we provide comprehensive 
qualitative and quantitative descriptions of the connectivity 
patterns between the PAG and cerebellum.

Materials and methods

Subjects and data acquisition

High-quality structural and diffusion MRI data from the 
HCP repository have been employed. We obtained data for 
100 healthy subjects (males = 46, females = 54 age range 
22–36 years). Data were acquired by the Washington Uni-
versity, University of Minnesota, and Oxford University 
(WU-Minn) HCP Consortium (Van Essen et al. 2013). All 
the HCP subjects were scanned using a Siemens 3T Skyra 
scanner previously modified with a Siemens SC72 gradi-
ent coil and stronger gradient power supply with maxi-
mum gradient amplitude (Gmax) of 100 mT/m (initially 
70 mT/m and 84 mT/m in the pilot phase), with the aim of 
improving diffusion imaging (Van Essen et al. 2013). The 
structural scans included T1-weighted acquisitions with 
the following parameters: TE = 2.14 ms, TR = 2400 ms, 
voxel size = 0.7 mm. (Uǧurbil et  al. 2013). Diffusion-
weighted images were acquired using a single-shot 2D 
spin-echo multiband echo planar imaging (EPI) sequence 
and equally distributed over three shells (b-values of 
1000 s/mm2, 2000 s/mm2, and 3000 s/mm2), with isotropic 
spatial resolution of 1.25 mm (Sotiropoulos et al. 2013).

Data employed in this study were downloaded in the 
minimally pre-processed form consisting of: normaliza-
tion of b0 image intensity across runs, registration of b0 
images to T1w acquisition and other corrections, such as 
those for EPI susceptibility, eddy-current-induced distor-
tions, gradient nonlinearities and subject motion (Glasser 
et al. 2013).

MRI post‑processing

Both structural and diffusion images were post-processed 
to perform tractography. Briefly, structural images under-
went brain extraction (Smith 2002) and cortical and sub-
cortical segmentation (Patenaude et al. 2011; Zhang et al. 
2001) using BET, FAST and FIRST tools in FSL (Smith 
et al. 2004). The obtained masks were visually inspected 
and, if needed, modified by a trained neuroanatomist. A 
five-tissue segmented image was then obtained and used 
to run multi-shell multi-tissue CSD (MSMT-CSD), an 
improvement of CSD signal modelling technique, in which 
fiber orientation distribution function (fODF) is estimated 
directly from deconvolution of diffusion-weighted signal 
with a reference single-fiber response function (Tournier 
et  al. 2007, 2008). The MSMT-CSD modelling tech-
nique represents a variant designed to support multi-shell 
data and to overcome classical CSD limitations when it 
comes to estimate fODF in the presence of tissue-type 
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heterogeneity (Jeurissen et al. 2014). Estimation of fODF 
and tractography were performed using the MRtrix soft-
ware (http://www.mrtri​x.org) (Tournier et al. 2012).

Region of interest (ROI) segmentation

To obtain useful ROIs for tractography (see paragraph 
below), both automated and semi-automated segmentation 
methods were used. The steps followed to obtain ROIs are 
listed in the following pipeline.

1.	 The ROIs were warped from MNI space to subject native 
space for each of our 100 subjects as follows: FSL’s 
FLIRT tool was applied to obtain a liner registration, 
and then a nonlinear registration (FSL’s FNIRT tool) 
was obtained from the affine registration of the previous 
step. The non-linear transformation was used to warp 
ROIs from MNI space to subject space.

2.	 The ROI of the PAG was obtained from the Keuken and 
Forstmann’s 7T atlas that provides ROIs obtained from 
high-resolution MP2RAGE and FLASH scans warped 
in MNI space (Keuken and Forstmann 2015) available at 
https​://www.nitrc​.org/proje​cts/atag/. Once the ROI was 
resliced in the MNI space, a probability threshold of 
50% was set employing the FSL’s command fslmaths.

3.	 Cerebellar ROIs were obtained using SUIT Atlas (http://
www.diedr​ichse​nlab.org/imagi​ng/suit.html), a free prob-
abilistic atlas of the human cerebellum in a dedicated 
space (SUIT space) designed to improve the alignment 
of infratentorial structures in respect to conventional 
MNI space (Diedrichsen et al. 2009, 2011; Diedrichsen 
2006). We ran the segmentation pipeline for each subject 
using SUIT toolbox on SPM12 (Ashburner and Friston 
2011) and obtained a large cerebellar ROI including cer-
ebellar cortex and nuclei, from which we extracted all 
the cerebellar lobular and nuclear ROIs (Fig. 1).

4.	 The cerebellum was parcellated in 34 regions of interest 
(six nuclei and 28 cerebellar cortex sub-regions includ-

ing lobules and vermis) using SUIT (Diedrichsen et al. 
2009). The whole PAG was considered as a median 
structure whilst the cerebellar cortex parcellation pro-
vided 12 subregions for each cerebellar hemisphere 
(Crus I, Crus II, Lobules I–IV, Lobule V, Lobule VI, 
Lobule VIIb, Lobule VIIIa, Lobule VIIIb, Lobule IX, 
Lobule X, dentate nucleus, interposed nucleus, fastigial 
nucleus), whereas the vermis was further subdivided in 
eight lobules (Vermis Crus I, Vermis Crus II, Vermis VI, 
Vermis VIIb, Vermis VIIIa, Vermis VIIIb, Vermis IX, 
Vermis X) (Fig. 1).

5.	 The cerebral grey matter (GM) previously obtained from 
FAST was also used as exclusion mask to filter out tracts 
that were not directed to cerebellar or brainstem grey 
matter, thus avoiding erroneous assignments (Verstynen 
et al. 2011, see below). The obtained grey matter mask 
was manually edited and then resliced into each subject’s 
native space using FLIRT tool on FSL.

6.	 Finally, since the high spatial proximity between PAG 
and the quadrigeminal plate (inferior and superior col-
liculi) could generate spurious tracts, e.g. from tectocer-
ebellar pathways, we manually defined the quadrigemi-
nal plate as region of avoidance (ROA). This ROA was 
outlined by a trained neuroanatomist on the MNI152 
template and then warped it in subject’s native space 
using FLIRT tool on FSL.

All the aforementioned ROIs and ROAs were visually 
inspected and, if needed, manually modified for each subject 
by one of the authors.

Tractography

Tractography was performed in the native space of each 
subject using the following pipeline: first, we reconstructed 
1 million tracts using the PAG ROI as seed region, the 
large cerebellar ROI as inclusion mask (MRtrix’s -include 
option), the brain GM and quadrigeminal plate ROIs as 

Fig. 1   Sagittal and coronal sec-
tions of the MNI152 template 
(voxel size 0.5 mm). a ROI of 
the periaqueductal grey taken 
from the probabilistic atlas of 
the basal ganglia by Keuken and 
collegues was overlaid on the 
mid-sagittal plane. b Coronal 
view showing a colored scale 
of the vermal and hemispheric 
subregions provided by SUIT 
atlas

http://www.mrtrix.org
https://www.nitrc.org/projects/atag/
http://www.diedrichsenlab.org/imaging/suit.html
http://www.diedrichsenlab.org/imaging/suit.html
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exclusion masks (-exclude option) and IFod2 as fiber-
tracking algorithm (Tournier et al. 2012).

In our study, spherical harmonic degree was fixed equal 
to six to obtain robustness to noise. During tractography, 
tracking was stopped in one of the following conditions: 
step size = 0.2 mm, maximum angle = 10°, minimal fODF 
amplitude = 0.15. This is a more conservative choice with 
respect to usual standards, since we preferred to underes-
timate fiber bundles to have more consistent reconstruc-
tions (Cacciola et al. 2017b; Descoteaux et al. 2009; Rizzo 
et al. 2018; Tournier et al. 2011). Once obtained 1 mil-
lion streamlines between PAG and cerebellar ROI, tracts 
were “filtered out” using each single cerebellar lobular 
and nuclear ROI as inclusion mask and all the others as 
exclusion masks, and thus extracting single connections 
of interest between each cerebellar target region and PAG. 
It is worthy to note that we extensively used appropri-
ate regions of avoidance (-exclude option) for an accurate 
extraction of streamlines of interest, and to avoid errone-
ous tract assignation (Verstynen et al. 2011).

Connectivity analysis

Connectivity measures were obtained using in-house 
scripts built with MATLAB software package (http://
www.mathw​orks.com), release 2015b. At first, the num-
ber of streamlines (NOS) connecting PAG to cerebellar 
regions was assessed. We defined connectivity density 
(δ) of each pathway of interest as the contribution of each 
target region, respectively, to the total NOS. With some 
limitations (Smith et al. 2013), such numbers are used as 
markers of connectivity density, both in healthy and patho-
logical conditions (Behrens and Sporns 2012; Bijttebier 
et al. 2015; Guo et al. 2016; Zhang et al. 2017).

Since connectivity between seed region and regions 
of interest (ROI) is subjected to volume biases (Cheng 
et  al. 2012), we extracted  seed and target  ROI  vol-
umes to scale the NOS by the mean volume of the two 
ROI involving each pathway thus computing a normal-
ized connectivity density not affected from the volume 
bias (δNORM). Hence, removing ROI volume contributions, 
we could estimate connectivity density profiles that are 
less sensitive to individual volumetric differences.

To summarize the distribution of the connectivity den-
sity for each reconstructed pathway, we computed the 
mean normalized density (δNORM) and standard deviation 
(SD) from individual subject profiles.

Furthermore, for each connectivity density measure 
and for each pathway reconstructed, we assessed the 
inter-subject variability by means of coefficient of vari-
ation (COV), which was defined as the ratio of the SD to 
the δNORM estimated.

Finally, a lateralization index (LI) (Parker et al. 2005) was 
calculated for assessing lateralization in the investigated 
pathways as follows:

Positive values of LI indicate left lateralization (LI > 0.1), 
whereas negative values indicate right lateraliza-
tion (LI < 0.1). For each pathway, to assess statistically sig-
nificant lateralization, permutation tests based on a t-statis-
tic were performed using the connectivity profiles of each 
hemisphere gathered from each subject. 50.000 permutations 
were used to estimate the distribution of the null hypoth-
esis, alpha level was set to 0.05, and the “tmax” method 
was adopted to correct the p values of each variable for mul-
tiple comparisons (Blair and Karkiski 1993).

Results

To better summarize our results, we grouped cerebellar sub-
regions following the structural and functional anatomical 
subdivision of the cerebellum described by Stoodley and 
Schamamann (2016). Lobules, vermal regions and deep cer-
ebellar nuclei have been attributed to four compartments: (1) 
anterior cerebellum (Lobules I–IV, V), (2) posterior cerebel-
lum (Lobules and Vermis VI, Crus I, Crus II, VIIb, VIIIa, 
VIIIb, IX), (3) flocculonodular lobe (Lobule and Vermis X), 
and (4) deep cerebellar nuclei (dentate nucleus, interposed 
nucleus and fastigial nucleus).

A first analysis focused on the morphological charac-
terization of the fiber tracts connecting the PAG with the 
cerebellar structures. The streamlines arising from the PAG 
ran through the superior cerebellar peduncle and follow the 
arbor vitae of the cerebellum reaching nuclei, vermal regions 
and lobules. Connectivity patterns joining the PAG, respec-
tively, with the deep cerebellar nuclei (Fig. 2), the entire 
vermis (Fig. 3) and lobules (Fig. 4) have been successfully 
reconstructed in all subjects.

A second analysis was finalized to assess quantitative 
structural connectivity by calculating the δNORM from con-
nectivity data as described in the Connectivity analysis sec-
tion. Consistent δNORM was found between PAG and all the 
cerebellar subregions across hemispheres, vermis and deep 
nuclei here considered. However, to provide more robust 
results, a probabilistic threshold (δNORM > 1%) has been 
applied to normalized tractograms to remove false-positive 
results (Rubinov and Sporns 2010). However, choosing a 
proper cut-off value remains quite empirical and still con-
stitutes matter of debate (van Wijk et al. 2010).

Thus, only connections exceeding the probabilistic 
threshold δNORM > 1% of the whole PAG–cerebellum tracts 

LI =
Left − Right

Left + Right
.

http://www.mathworks.com
http://www.mathworks.com
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Fig. 2   Average track density maps showing connections between 
cerebellar nuclei and periaqueductal grey mapped in directionally 
encoded color space (DEC) and superimposed to the MNI152 tem-
plate. a Axial slices showing the course of tracts joining fastigial 
nucleus (red) and periaqueductal grey (cyan). The tracts leave the 
fastigial nucleus, pass through the superior cerebellar peduncle and 
reach the periaqueductal grey in the mesencephalon, sparing the 
superior colliculi. b Axial slices showing the course of tracts between 

interposed nucleus (pink) and periaqueductal grey (cyan). Tracts 
reach the mesencephalic periaqueductal grey via the superior cerebel-
lar peduncle sparing the superior colliculi. c Axial slices represent-
ing the course of connections between dentate nucleus (yellow) and 
periaqueductal grey (cyan). The tracts leave the dentate nucleus, run 
through superior cerebellar peduncles and reach the periaqueductal 
grey avoiding superior colliculi

Fig. 3   Average track density 
maps showing tracts connecting 
cerebellar vermal regions and 
periaqueductal grey mapped 
in directionally encoded color 
space (DEC) and superimposed 
to the MNI152 template. a 
Course of tracts connecting 
the Vermal lobule IX (violet) 
and the periaqueductal grey 
(cyan). b Connections between 
Vermal lobule VIIIa (green) and 
periaqueductal grey (cyan). c 
Tracts between Vermal lobule 
VI (brown) and periaqueductal 
grey (cyan). d Course of tracts 
joining Vermal lobule X (pink) 
to periaqueductal grey (cyan). 
e Connections between Vermal 
lobule VIIIb (blue) and periaq-
ueductal grey (cyan)
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were considered as true positives and will be object of 
discussion.

Robust connectivity patterns have been demonstrated 
between the PAG and cerebellar nuclei: the fastigial nucleus 
resulted to be the most connected (right: 17.2 ± 8.4%; left: 
10.5 ± 5.4%), followed by the interposed nucleus (right: 
10.7 ± 6.1%; left: 4.3 ± 3.6%) and the dentate nucleus (right: 
4.5 ± 3.3%; left: 1.8 ± 1.6%) (Fig. 2, Table 1).

The structures of the posterior compartment which 
showed consistent connectivity patterns with the PAG were 
the Vermis IX (12.4 ± 6.0%), Vermis VIIIa (9.9 ± 5.4%), 
Lobule IX (right: 9.2 ± 4.1%; left: 5.8% ± 3.0%), Vermis VI 
(5.1% ± 3.5%) and Vermis VIIIb (1.7 ± 1.2%), while Lobule 
VI, VIIIa, VIIIb, vermal and lobular Crus I, Crus II and VIIb 
showed an average δNORM < 1%. Connections between the 
PAG and flocculonodular lobe were also present with robust 
connections with the Vermis X (4.5 ± 3.1%) and weaker con-
nectivity with Lobule X (< 1%) (Figs. 3 and 4).

The normalized connectivity density profiles are sum-
marized in Table 1.

We also investigated the consistency of density percent-
ages estimated from our subjects by looking at the COV. The 
most consistent results were obtained for the connections 
between the PAG and the right Lobule IX (COV = 0.44), 
the Vermis IX (COV = 0.48) and the right fastigial nucleus 
(COV = 0.49), whereas the highest variability between 
subjects was observed for the right dentate nucleus 
(COV = 0.72), the left interposed nucleus (COV = 0.84) and 
the left dentate nucleus (COV = 0.89).

It is worthy to note that highest COVs (one or above) 
often correspond to lowest values of mean δNORM, mostly 
under the fixed threshold of 1%. This indicates that less 
connected regions are, at the same time, the most variable 
among subjects suggesting that the application of the afore-
mentioned threshold could help to distinguish reliable from 
unreliable connections (Roberts et al. 2017).

A third analysis was carried out to assess the connec-
tivity between PAG and each cerebellar compartment. 
The δNORM percentage revealed a prominent connectivity 
to nuclear region (49.10 ± 12.78%), followed by posterior 

(45.35 ± 10.24%), the flocculonodular (5.16 ± 3.23%) and 
anterior lobes (0.38 ± 0.30%).

Finally, the lateralization analysis, performed to assess 
differences between the connectivity profiles of PAG with 
the left and right cerebellar lobules and nuclei, revealed no 
significant side-to-side variations (p > 0.05).

Discussion

Our study aimed at providing new insights on the structural 
connectivity between the PAG and cerebellum performing 
MSMT-CSD tractography on high-resolution data from 
the WU-Minn HCP database. We observed that the PAG is 
highly connected with both the cerebellar cortex and deep 
cerebellar nuclei. To better summarize and discuss our find-
ings, we will follow the structural and functional anatomical 
classification of the cerebellum proposed by Stoodley and 
Schmahmann (2009, 2010, 2016) (Fig. 5). The connectivity 
density profiles between PAG and cerebellar structures will 
be discussed following the structural classification, consid-
ering the existing literature regarding PAG–cerebellar con-
nectivity (Table 2). The possible functional significance of 
the reconstructed connectivity patterns will be discussed in 
the last paragraph of the discussion.

Deep cerebellar nuclei

Our connectivity analysis showed the highest strength for 
the connectivity patterns linking the PAG and the three 
deep cerebellar nuclei. While similar connections were 
reported in animals (Chan-Palay 1977; Koutsikou et al. 
2015; Moers-Hornikx et  al. 2011), to the best of our 
knowledge, our study represents the first evidence of the 
possible existence of the human analogues of these path-
ways in humans. The most connected nucleus to the PAG 
was the Fastigial nucleus, followed by the interposed and 
dentate nuclei (Fig. 2, Table 1). In rats, DBS of the dor-
solateral column of PAG induces panic attacks and deac-
tivates the deep cerebellar nuclei (Moers-Hornikx et al. 

Fig. 4   Average track density 
maps showing tracts connecting 
cerebellar hemispheric regions 
to periaqueductal grey mapped 
in directionally encoded color 
space (DEC) and superim-
posed to the MNI152 template. 
Sagittal views depicting tracts 
connecting a the left hemi-
spheric Lobule IX (purple) and 
b the right hemispheric Lobule 
IX (orange) with the periaque-
ductal grey (cyan)
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2011), whereas stimulation of the ventrolateral column of 
PAG induces Fos expression in fastigial (medial) nucleus 
(Koutsikou et al. 2015). It is worth to note that the major-
ity of tracts between PAG and cerebellum reached the fas-
tigial nucleus that, in addition to its well-known motor 
and oculomotor functions, is also involved in regulating 
complex vegetative responses such as cardiovascular tone, 
micturition, defecation, gastro-intestinal peristalsis and 

respiratory rate (Zhang et al. 2017) and is connected with 
limbic regions (Blatt et al. 2013). Moreover, the interposed 
nucleus, which retrieved high connectivity density values, 
also appears to play a role in fear conditioning (Sacchetti 
et al. 2002).

Posterior cerebellum

Lower connectivity density profiles were observed between 
the PAG and the posterior lobe of the cerebellum. Inter-
estingly, the highest values of connectivity for the regions 
belonging to posterior lobe were obtained for the uvula (Ver-
mal lobule IX) and vermal pyramis (Vermal lobule VIIIa 
and VIIIb). The uvula is a well-known component of the 
vestibular cerebellum and receives afferents from vestibular 
receptors (Barmack 2003), exerting a well-recognized role 
in ocular movements (Voogd et al. 2012) and in postural 
adjustments via the regulation of the vestibulospinal system 
(McCall et al. 2017). On the other hand, the vermal pyramis 
is a component of the motor cerebellum: Vermal lobule VIII 
and the hemispheric Lobules VIII and IX are somatotopi-
cally organized constituting the posterior homunculus of the 
human cerebellum (Snider and Eldred 1951; Grodd et al. 
2001). In rats, the electrical stimulation of the ventrolateral 
column of PAG leads to the activation of the vermal pyramis, 
eliciting fear-related freezing behavior, likely by influencing 
spinal descending neurons (Koutsikou et al. 2014). Finally, 
high-connectivity values were also found for Vermal lobule 
VI, a posterior vermis region that is part of the oculomotor 
vermis (Kheradmand and Zee 2011), but that also plays a 
role in the regulation of autonomic functions (Strata 2015) 
and in conditioned fear acquisition and retention (Sacchetti 
et al. 2004, 2007, 2009).

Flocculonodular lobe

Finally, our probabilistic tractography study revealed con-
nectivity patterns between the PAG and the flocculonodular 
lobe. Interestingly, the flocculonodular lobe reported the 
lowest connectivity values compared to the other lobes. It is 
worth to note that connections between PAG and flocculus 
folio P have been previously described as part of an hypo-
thalamo-PAG-cerebellar pathway in rabbits (Nisimaru et al. 
2013). As it is well known, together with uvula (Vermal 
lobule IX), lingula (Vermal lobules I–II) and the fastigial 
nucleus, the flocculonodular lobe is a key structure in the 
so-called paleocerebellum or vestibulocerebellum, involved 
in the regulation of ocular movements and posture by inte-
grating vestibular afferences (Barmack 2003; McCall et al. 
2017; Stoodley and Schmahmann 2016; Voogd et al. 2012; 
Zhang et al. 2017).

Table 1   Connectivity density (%) between the PAG and cerebellar 
structures

Connections exceeding the probabilistic threshold δNORM > 1% of the 
whole PAG–cerebellum tracts are reported in bold
SD standard deviation, COV coefficient of variation, PAG periaque-
ductal gray

Normalized connectivity density

Structure Mean SD COV

Right fastigial nucleus 17.24 8.41 0.49
Vermis IX 12.43 6.02 0.48
Right interposed nucleus 10.75 6.09 0.57
Left fastigial nucleus 10.47 5.44 0.52
Vermis VIIIa 9.90 5.38 0.54
Right Lobule IX 9.20 4.07 0.44
Left Lobule IX 5.81 2.97 0.51
Vermis VI 5.07 3.52 0.69
Right dentate nucleus 4.56 3.27 0.72
Vermis X 4.52 3.14 0.69
Left interposed nucleus 4.29 3.58 0.84
Left dentate nucleus 1.81 1.60 0.89
Vermis VIIIb 1.72 1.18 0.69
Right Crus II 0.51 0.58 1.12
Right Lobule X 0.43 0.70 1.62
Left Lobule X 0.21 0.30 1.39
Left Crus II 0.18 0.20 1.10
Right Lobules I–IV 0.15 0.10 0.66
Right Lobule VIIIa 0.13 0.14 1.07
Left Lobule V 0.09 0.20 2.25
Right Lobule V 0.08 0.20 2.54
Right Lobule VIIb 0.07 0.09 1.31
Right Lobule VIIIb 0.07 0.13 1.89
Left Lobule VIIIb 0.07 0.08 1.20
Left Lobules I–IV 0.06 0.05 0.75
Left Lobule VIIIa 0.05 0.06 1.03
Right Crus I 0.04 0.06 1.63
Left Lobule VIIb 0.04 0.04 1.04
Vermis VIIb 0.02 0.03 1.44
Right Lobule VI 0.01 0.03 2.55
Left Crus I 0.01 0.02 1.25
Vermis Crus II 0.01 0.02 2.27
Left Lobule VI 0.01 0.01 1.96
Vermis Crus I 0.00 0.00 0.00
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Anatomo‑functional considerations

Reactions to external threatening stimuli, such as fear and 
anxiety, require a complex regulation that involves the inte-
gration of cognitive, vegetative and motor responses. The 
PAG represents the main neural hub involved in top-down 

control of these responses to stressful or painful external 
stimuli.

One of such possible responses is the so-called freezing 
behavior, largely described in animals: the animal acquires a 
crouched posture (Blanchard and Blanchard 1969), increases 
its muscular tone, remains still and reduces vegetative 

Fig. 5   Multiple axial sections 
showing cerebellum lobules 
grouped as functional compart-
ments: sensorimotor (red), cog-
nitive/affective (blue), vestibular 
(yellow). Deep cerebellar nuclei 
have been labeled as follows: 
dentate in purple, interposed in 
cyan and fastigial in green

Table 2   Evidences for the cerebellar-periaqueductal gray connectivity in animals and humans according to the existing literature

Authors (years) Species Method Findings

Chan-Palay (1977) Monkeys Fiber tracing Indirect PAG-olivo-cerebellar connections; direct fibers 
from dentate nucleus

Dietrichs (1983) Cats Fiber tracing Direct connections from PAG to lobulus simplex, Crus I, 
Crus II, paramedian lobule and posterior lobule vermis

Teune et al. (2000) Rats Fiber tracing Direct connections fibers from all cerebellar nuclei to PAG
Sillery et al. (2005) Humans Diffusion tensor imaging Direct PAG–cerebellar connections
Owen et al. (2008) Humans Diffusion tensor imaging Direct PAG–cerebellar connections based on pre-operative 

DTI for chronic pain
Cerminara et al. (2009) Rats Electrophysiology Connections with paramedian lobule and copula pyramidis
Kong et al. (2010) Humans Resting-state functional MRI High functional PAG–cerebellum connectivity (unspecified 

regions)
Moers-Hornikx et al. (2011) Rats Immunohistochemistry Deactivation of deep cerebellar nuclei after PAG stimula-

tion
Nisimaru et al. (2013) Rabbits Electrophysiology, immunohistochemistry Hypothalamo-PAG-cerebellar neurons ending in flocculus 

folio P
Watson et al. (2013) Rats Electrophysiology Indirect PAG-olivo-cerebellar connections
Koutsikou et al. (2014) Rats Electrophysiology Connections with Vermis VIII and pyramis
Koutsikou et al. (2015) Rats Electrophysiology, immunohistochemistry Connections with medial cerebellar nucleus
Coulombe et al. (2016) Humans Resting-state functional MRI High PAG–cerebellum functional connectivity
Case et al. (2017) Humans Resting-state functional MRI Higher functional PAG–cerebellum connectivity in sickle-

cell disease patients vs controls
Faull and pattinson (2017) Humans Resting-state functional MRI Functional connectivity with Lobules I–IV, V, VI, Crus I
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parameters such as heart rate (Carrive 2000; Fanselow 
1980, 1994; Kozlowska et al. 2015). As previously outlined, 
this response depends on PAG activation and is related to 
PAG–cerebellum interactions (Koutsikou et al. 2014). More 
recently, a similar response was described in humans (Hage-
naars et al. 2014a, b; Roelofs 2017). In particular, reduced 
body sway and heart rate was observed in human individuals 
after the presentation of visual threatening stimuli such as 
emotionally significant pictures or films (Roelofs et al. 2010; 
Hagenaars et al. 2014a). However, the neuroanatomical sub-
strates of this kind of response are still not clearly character-
ized in humans. Converging evidences from in vivo neuro-
imaging studies suggest that freezing behavior depends on 
prefrontal–amygdala–PAG functional connectivity (Mobbs 
et al. 2010; Hermans et al. 2013), but information is still 
lacking about the interface between the PAG and the motor 
system, that appear to be necessary to elicit such a complex 
and immediate postural response. Recently, PAG functional 
connectivity was evaluated during breathlessness, which is a 
multidimensional biopsychological condition that is associ-
ated with a strong affective component and feeling of fear 
and anxiety that could, in turn, lead to defensive responses 
such as freezing (Lansing et al. 2009; Herigstad et al. 2011; 
Hayen et al. 2013). A resting-state fMRI study found strong 
functional connectivity between the cerebellum and the 
ventrolateral column of PAG, in line with the present study 
and with previous animal findings. Interestingly, the same 
study performed task-related functional connectivity using 
psychophysiological interaction analysis in both breathless-
ness and breathlessness anticipation conditions, revealing 
that the strength of functional connectivity between the cer-
ebellum and PAG is negatively correlated with the perceived 
intensity of breathlessness (Faull and Pattinson 2017). These 
data, thus, suggest an important role for the cerebellar–PAG 
interplay in coping responses to threatening stimuli, demon-
strating how its “breakdown” could lead to a worse response 
to dangerous situations.

In this view, and in line with previous findings in animals, 
our results could be seen as a possible anatomical substrate 
for similar responses in humans. Indeed, we showed that the 
PAG is highly connected with the deep cerebellar nuclei, and 
especially with the fastigial and interposed nuclei, which 
play important roles in both motor and nonmotor vegetative 
functions such as autonomical regulation (Zhang et al. 2017) 
and fear conditioning (Sacchetti et al. 2002).

Moreover, robust connectivity density profiles were 
reported with motion- and posture-related cerebellar regions: 
the aforementioned deep cerebellar nuclei, vestibulocerebel-
lar regions such as uvula and nodulus (Vermis IX–X), and 
vermal pyramis (VIIIa and VIIIb). Therefore, our results 
further reinforce the current idea of the involvement of pos-
terior cerebellar vermis in fear conditioning, acquisition and 
retention (Sacchetti et al. 2002, 2004, 2007, 2009).

The structural connectivity patterns between the PAG 
and the aforementioned cerebellar regions could thus be 
hypothesized as part of a widespread network involved in 
processing fearful or noxious stimuli. However, these results 
should be interpreted with care, due to intrinsic limitations 
of the technique. Nevertheless, as a working hypothesis and 
trigger for further functional and structural investigations, 
we may suggest that such connections could represent the 
direct pathways through which the PAG and the cerebel-
lum can cooperate for orchestrating complex responses to 
threatening stimuli.

Limitations

This study is prone to limitations due to some intrinsic weak-
nesses of the technique which have been recently summa-
rized in a recent review (Maier-Hein et al. 2017). Tractogra-
phy deals with the axial symmetry of diffusion signal which 
prevents to distinguish afferent from efferent connections. 
At the same time, this technique is not able to the detect 
synapses, thus neglecting the recognition of monosynaptic 
pathways from polysynaptic ones. Consequently, inferences 
on the layer of the cerebellar cortex to which reconstructed 
fibers arrive are not allowed (Chung et al. 2011; Parker et al. 
2013).

The diameter of axons is too tiny for MRI voxels; indeed, 
even at the highest definition, a single voxel contains thou-
sands of axons, making the diffusion signal overestimated 
in respect to the scale of interest (Jbabdi and Johansen-Berg 
2011).

Moreover, results reported in tractography studies are 
strongly influenced by different ways of modelling diffu-
sion signal and depend on reconstruction parameters. An 
additional issue is represented by different fiber geometry 
(crossing, kinking, bending) resulting in very similar intra-
voxel diffusion signal profiles, being instead different each 
other (Donahue et al. 2016b). Therefore, we employed a 
CSD-based signal modelling, together with restrictive recon-
struction parameters, to overcome potential reconstruction 
biases that may be related to other modelling techniques 
(Dauguet et al. 2007; Descoteaux et al. 2009). Moreover, 
PAG–cerebellum connections not only have been described 
in animals via tract tracing techniques, but they have been 
reported by studies conducted on humans by diffusion trac-
tography and fMRI.

The quantitative estimates of structural tractographic-
based connectivity are still an open issue. As previously 
stated, an MRI voxel covers a multitude of axons; thus, the 
NOS is the most frequent measure employed to assess the 
strength of connections. However, although the NOS does 
not correspond to number of axons neglecting an anatomic-
wise quantitative analysis (Jbabdi and Johansen-Berg 2011; 
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Jones et al. 2013), a positive correlation between diffusion 
path probabilities and results of tract tracing studies has been 
recently demonstrated, thus validating the use of tractogra-
phy-derived quantitative measures (Donahue et al. 2016a).

As it is well known, probabilistic tractography could lead 
to “false-positive” results and could thus overestimate quan-
titative connectivity measures (Jbabdi and Johansen-Berg 
2011). Many authors in the field introduce a threshold, in 
the attempt to limit the effect of spurious tracking in prob-
abilistic tractography (Rubinov and Sporns 2010; Drake-
smith et al. 2015; Roberts et al. 2017). Therefore, tracts that 
do not contribute with a minimum percentage to the total 
tractogram are excluded. However, the choice of a proper 
threshold remains rather empirical and still constitutes sub-
ject of debate (van Wijk et al. 2010; Qi et al. 2015). Here, 
we employed a connectivity threshold > 1% to define tracts 
which consistently contributed to the total PAG–cerebellar 
streamlines. However, despite quite conservative and in line 
with previous studies, the threshold here employed remains 
arbitrary and should be acknowledged as an intrinsic limita-
tion of the overall approach.

This is particularly important if we consider that several 
reconstructed tracts with δNORM < 1% showed a COV > 1, 
demonstrating a high variance in the connectivity density 
of these pathways among subjects.

Recently, Roberts et al. proposed the use of COV as an 
alternative connectivity measure for distinguishing less 
reliable from more reliable connections. This new approach 
would not underestimate long-range connections that usu-
ally show lower connectivity strength. In the present study, 
where only short range connection are taken into account, 
connectivity patterns with δNORM < 1% show the highest 
COVs suggesting that they may less likely have anatomical 
plausibility (Roberts et al. 2017).

Finally, despite employing high-definition T1-weighted 
scans at 0.75 × 0.75 × 0.75 mm resolution, we were not able 
to reach the necessary definition to distinguish the four lon-
gitudinal columns of the PAG and thus to characterize the 
columnar PAG connectivity.
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