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Abstract: This paper proposes a parameter identification method for the multiparameter identifica-
tion study of the linear–arch composite beam piezoelectric energy harvester. According to the voltage
response characteristics of the system under short-circuit conditions, the mechanical equation is
solved by transient excitation, combined with the backbone curve theory and logarithmic attenuation
method, to obtain the system’s linear damping, linear stiffness, and nonlinear stiffness. According to
the voltage response characteristics of the system under open-circuit conditions, combined with the
electrical equations, the system electromechanical coupling coefficient and equivalent capacitance
coefficient are obtained; numerical simulation results show that the identification parameters have
good accuracy. Finally, an experimental platform was built for verification, and the results show that
the method has high accuracy and practicability.

Keywords: piezoelectric energy harvester; stiffness; damping; parameter identification

1. Introduction

With the rapid development of wireless sensor network technology, low-power wire-
less sensors have been widely used in large-scale equipment state detection [1]. Vibration
energy harvesting technology has attracted much attention due to its application prospects
in microelectronic equipment power supply and equipment condition monitoring [2–7].
The use of piezoelectric self-capture energy-powered wireless monitoring technology to
replace traditional wired monitoring is expected to greatly alleviate the wiring difficulties
and power supply difficulties of online monitoring of complex environment equipment
in coal mines [8]. For this reason, some experts and scholars have proposed a variety of
structural energy harvesters and performed dynamic modeling and response character-
istics analysis [9–13]. However, it is difficult to accurately express the mechanical and
electrical parameters in the model through traditional mathematical modeling methods,
which results in certain errors in the system dynamic response analysis and experimental
results. Therefore, a lot of attention has been paid to the parameter identification technol-
ogy of piezoelectric energy harvesting systems. Feldman et al. [14] proposed two accurate
identification methods; the stiffness and damping parameters of the nonlinear vibration
system are obtained based on the free vibration of the classical nonlinear system, and the
feasibility of the method is verified numerically.

Lu et al. [15] proposed steady-state excitation parameter identification and transient
excitation parameter identification methods for a vibration system containing both nonlin-
ear stiffness and nonlinear damping. Taking the vibration isolation system with nonlinear
stiffness and nonlinear damping as an example, the two types of parameter identification
methods given are verified by numerical simulation. The results show that the results of
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the two identification methods are relatively consistent, and the steady-state parameter
identification method is more accurate and convenient than the two, but an experimen-
tal platform has not been built to verify the identification algorithm. Yuan et al. [16–18]
used the restoring force surface method and the Hilbert transform method to study the
nonlinear parameter identification of piezoelectric twin-crystal thin plates. According to
the experimental results, the accuracy of the displacement–stiffness function is proved and
the nonlinear characteristics of the system are accurately displayed. Zhou [19] proposed a
tri-stable piezoelectric energy harvester and identified the damping and electromechanical
coupling coefficients of the system through the genetic algorithm (GA) method. The re-
sults show that the algorithm is very accurate in identifying parameters. Chen et al. [20]
proposed an electrical parameter identification method for the laminated disc piezoelectric
energy harvester to identify the electromechanical coupling coefficient and equivalent
capacitance coefficient of the system. The result is highly consistent with the theoretical
value and verifies the accuracy of the algorithm.

Alper Erturk et al. [21] used a nonlinear least-squares optimization algorithm for a
cantilever beam piezoelectric energy harvester to identify the electromechanical coupling
coefficient and damping coefficient of the system. The comparison of theoretical and ex-
perimental results proved the effectiveness of the algorithm, and it was found that adding
coupling nonlinearity will shift the nonlinear response of the system to the right. Adnan
Kefal et al. [22] proposed a new parameter identification algorithm based on Lyapunov’s
theory, and by analyzing the time-domain response of the array piezoelectric bimorph
under the random vibration of the low-frequency structure, the array parameter values
were identified, and the accuracy of the algorithm was proved. Porfiri et al. [23] proposed
two techniques for estimating the electromechanical coupling coefficient and piezoelectric
modal capacitance; the effectiveness of the algorithm was proved by the comparison of
bi-crystal piezoelectric cantilever beam experiment and finite element simulation analysis.
Delpero et al. [24] proposed a method of measuring the electromechanical coupling coeffi-
cient and applied it to experiments on piezoelectric energy harvesters of different sizes; the
experimental results are in good agreement with the analysis and prediction. Binh Duc
Truong et al. [25] proposed a parameter identification method based on least-squares mini-
mization, which estimates the damping and stiffness coefficients of the system according
to the frequency response function of the system dynamics equation, and the algorithm is
suitable for linear and nonlinear systems.

Excitation in the environment is usually low-frequency and multidirectional; tradi-
tional linear beams can only respond to excitation in a single direction, which is difficult
to achieve in practical applications. In order to realize the self-powering of wireless
monitoring nodes in coal mines. Zhang [26] designed two linear–arch composite beam
multidirectional piezoelectric energy harvesters, as shown in Figure 1; the energy harvester
can collect multidirectional vibration energy. The introduction of the arch structure makes
the system dynamics model complicated, and it is difficult to achieve accurate model-
ing with the traditional modeling method. Therefore, this paper proposes a method to
identify the system mechanical and electrical parameters of the linear–arch composite
beam piezoelectric energy harvester. According to the voltage response characteristics
of the system under short-circuit conditions, the transient excitation of the mechanical
equations is solved. Combining the ridge theory and logarithmic attenuation method,
the system’s linear damping, linear stiffness, nonlinear stiffness, and other mechanical
parameters are obtained with an identification procedure, according to the voltage response
characteristics of the system under open-circuit conditions; combined with the electrical
equations, electrical parameters such as the electromechanical coupling coefficient and
equivalent capacitance coefficient of the system are obtained. The identified parameters are
finally compared with the experimental results to verify the correctness of the procedure.
The parameter identification method proposed in this paper is of great significance for
guiding the modeling under complex nonlinear conditions. It is helpful in improving the



Sensors 2021, 21, 7213 3 of 15

accuracy of theoretical modeling and providing theoretical guidance for optimizing system
parameters.
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down, and the piezoelectric material pasted on the beam deforms at the same time. In this 
way, the positive piezoelectric effect of the piezoelectric material is used to convert the 
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Z-axis at time 𝑡, According to the Rayleigh–Ritz theory, the relative displacement 𝑤(𝑥, 𝑡) 
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𝑤(𝑥, 𝑡) = ෍ 𝜑௜(𝑥)𝑥(𝑡)௡
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where 𝜑௜(𝑥) represents the mode shape of the 𝑖th mode of the linear–arch composite 
beam and 𝑥(𝑡) represents the generalized modal coordinates. 

For the linear–arch composite beam in this paper, one end is clamped and fixed on 
the base, and the other end is free. The mode of the linear–arch composite beam is difficult 
to obtain; therefore, the allowable function is adopted to simplify it. The allowable func-
tion can be expressed as [27] 𝜑௜(𝑥) = 1 − 𝑐𝑜𝑠 [(2𝑖 − 1)𝜋𝑥2𝐿 ] (2)

Since the excitation of piezoelectric energy harvester is mainly low-frequency, the 
first-order modal bending vibration of the linear–arch composite beam plays a leading 

Figure 1. Multidirectional piezoelectric energy harvester based on linear–arch composite beam.

2. The Structure and Theoretical Model of the Piezoelectric Energy Harvester

The piezoelectric vibration energy harvester based on a composite beam (PEH-C) is
shown in Figure 2. The system is mainly composed of a base, a load resistor, a composite
beam, a piezoelectric film, and a mass. In order to enhance the directional sensitivity of
the system to vibration sources in the real environment, the composite beam is made of a
combination of linear and arch. The horizontal length of the composite beam is L. Under
the excitation of external vibration along the Z-axis, the composite beam vibrates up and
down, and the piezoelectric material pasted on the beam deforms at the same time. In this
way, the positive piezoelectric effect of the piezoelectric material is used to convert the
vibration energy in the actual environment into electrical energy.
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w(x, t) is the displacement of a point on the linear–arch composite beam along the
Z-axis at time t, According to the Rayleigh–Ritz theory, the relative displacement w(x, t) of
linear–arch composite beam vibration can be discretized as a combination of modes

w(x, t) =
n

∑
i=1

ϕi(x)x(t) (1)

where ϕi(x) represents the mode shape of the ith mode of the linear–arch composite beam
and x(t) represents the generalized modal coordinates.

For the linear–arch composite beam in this paper, one end is clamped and fixed on the
base, and the other end is free. The mode of the linear–arch composite beam is difficult to
obtain; therefore, the allowable function is adopted to simplify it. The allowable function
can be expressed as [27]

ϕi(x) = 1− cos [
(2i− 1)πx

2L
] (2)

Since the excitation of piezoelectric energy harvester is mainly low-frequency, the
first-order modal bending vibration of the linear–arch composite beam plays a leading
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role. This paper only considers the first-order mode of the linear–arch composite beam;
therefore, i = 1, ϕ1(L) = 1, and w(L, t) = x(t).

For the piezoelectric vibration energy harvester based on composite beam (PEH-C)
system, considering the structural nonlinearity, the generalized Hamilton principle and
Lagrange function are used to establish the system parameter model, and the dynamic
equation of the PEH-C system is obtained [28]:

m
..
x(t) + c

.
x(t) + βx(t)3 + αx(t)− ϑv(t) = −Hs

..
z(t)

ϑ
.

r1(t) + cp
.
v(t) + v(t)/R = 0

(3)

where m is the composite beam mass, c is the composite beam first-order damping, α is the
linear stiffness coefficient, β is the nonlinear stiffness coefficient, ϑ is the electromechan-
ical coupling coefficient, x(t) is the response displacement, Hs is the system foundation
excitation coefficient, v(t) is the output voltage, z(t) is the external basic incentive, cp is the
system equivalent capacitance coefficient, and R is the resistance value of external load.

3. Theoretical Modeling of Parameter Identification Method

From Equation (3), when the system is in a short-circuit condition, the output voltage
of the system is 0, so the mechanical equation in the system dynamics equation can be
rewritten in the following form:

m
..
x(t) + c

.
x(t) + αx(t) + βx3(t) = f (t) (4)

where f (t) is the external excitation. x(t) is the end displacement, and the positive direction
of the Z-axis shown in Figure 2 is the positive direction of the displacement.

We select external excitation as unit pulse excitation; that is, f (t) = δ(t). Then,
Equation (4) can be written as

m
..
x(t) + c

.
x(t) + αx(t) + βx3(t) = 0 (5)

Then the solution of Equation (5) can be set as

x(t) = A(t) cos[ϕ(t)] (6)

In the formula, A(t) is the amplitude of the system over time, and ϕ(t) is the phase
angle. When the system moves along the main vibration curve under the condition of free
vibration, the instantaneous frequency and instantaneous phase angle have the following
relationship:

ϕ(t) =
∫ τ

0
ωd(τ)dτ (7)

In the formula, ωd is the instantaneous frequency.
For the system described by the Equation (5), the instantaneous frequency analytic

formula that changes with time is [29]

ω2
d(t) = ω2

dd(t) +
3
4

β

m
A2(t) (8)

In the formula, the damped natural angular frequency ωdd = ωn
√

1− ζ2, the un-
damped natural angular frequency ωn =

√
α/m, and damping ratio ζ = c/

(
2
√

α×m
)
;

we assume A(t) = A0e−ζωnt according to the theory of multiscale method and combine
Equations (7) and (8) to obtain

ϕ(t) ≈
√

1− ζ2ωnt +
3β

16α
√

1− ζ2
A0

2
(

1− e−2ζωnt
)

(9)
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ωd ≈
√

1− ζ2ωn +
3βζωn

8α
√

1− ζ2
A0

2e−2ζωnt (10)

Substituting Equation (9) into (6), we can obtain

x(t) ≈ A0e−ζωnt cos [
√

1− ζ2ωnt +
3β

16α
√

1− ζ2
A0

2(1− e−2ζωnt)] (11)

According to the time-domain attenuation curve of the free vibration of the system
and the Hilbert signal processing method, the system envelope curve is obtained and its
backbone curve is drawn. The least-squares method is used to linearly fit the backbone
curve to determine the system stiffness coefficient, and then the system damping coefficient
is identified by the logarithmic attenuation method.

For identification of system stiffness coefficient, according to Equation (8), we draw
the backbone curve of the system and fit the backbone curve to a straight line by the
least-squares method, which is recorded as

y ≈ b0x + b1 (12)

Then, we combine Equations (8) and (12) and simplify the combination to obtain

α ≈ b1m/
(

1− ζ2
)

(13)

β ≈ 4b0m/3 (14)

For identification of system damping coefficient, for the PEH-C, the envelope under
free vibration attenuation can be fitted with an exponential function, and its equation is
set as

A(t) ≈ Aeat (15)

Combining Equations (6), (11) and (15), we can obtain

ζ ≈ −a/
√

α/m (16)

c = 2ζ
√

αm ≈ −2ma (17)

Combining Equations (13) and (16), we can obtain

α ≈ b1m
1−ma2/α

(18)

Equation (18) can be solved in parallel with vertical Equations (16) and (17) to obtain
the linear stiffness coefficient α, damping ratio coefficient ζ, and damping coefficient c of
the system:

α ≈ b1m + ma2 (19)

ζ ≈ −a/
√

b1 + a2 (20)

c = 2ζ
√

αm = −2ma (21)

For the identification of the system electromechanical coupling coefficient and equiv-
alent capacitance coefficient of the system, we make the system response output of the
electrical equation in the dynamic equation in an open-circuit state, take R = 107Ω, and
add a sinusoidal excitation to make the system output stable at a fixed frequency. At this
time, the output voltage, voltage change rate, and velocity signal response output can be
regarded as the first-order harmonic state, namely

.
r1(t) = p0 sin(ωt) + q0 cos(ωt) (22)

.
v(t) = p1 sin(ωt) + q1 cos(ωt) (23)
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v(t) = p2 sin(ωt) + q2 cos(ωt) (24)

In the equation, p0, q0, p1, q1, p2 and q2 are coefficients, which are measured by
experiment. Substituting Equations (22)–(24) into Equation (3) and solving them, we
can obtain

ϑ[p0 sin(ωt) + q0 cos(ωt)] + cp[p1 sin(ωt) + q1 cos(ωt)] +
[p2 sin(ωt) + q2 cos(ωt)]

R
= 0 (25)

Since Equation (25) is constant, the coefficients of the sin term and cos term of the
equation can be set to 0 at this time, and Equation (25) can be solved to obtain the system
electromechanical coupling coefficient ϑ and the equivalent capacitance coefficient cp
expression:

ϑ =
p2q1 − p1q2

R(p1q0 − p0q1)
(26)

cp =
q2 p0 − p2q0

R(p1q0 − p0q1)
(27)

4. The Verification of Parameter Identification Value
4.1. Numerical Verification of Mechanical Parameter Identification

In order to verify the correctness of the system’s mechanical and electrical parame-
ter modeling, the relevant parameters in the system dynamics equation are selected for
numerical simulation. The parameter values are shown in Table 1.

Table 1. The parameter value table of the energy capture system.

Parameter Name Value Unit

m composite beam mass 0.0042 Kg
c the first-order damping of composite beam 0.02 Ns/m
α linear stiffness coefficient 22.1 N/m
β nonlinear stiffness coefficient 41,963 N/m3

Hs basic excitation coefficient 0.004016 Kg
cp equivalent capacitance coefficient of piezoelectric film 2 × 10−7 C
ϑ electromechanical coupling coefficient 5.192 × 10−4 C/m
R load resistance 1 × 107

..
z(t) vibration acceleration 8× sin(72.5t) m/s2

For the system of Equation (4), the unit pulse excitation δ(t) is selected for simulation
analysis, and the Runge–Kutta algorithm is used to solve the dynamic system. Subse-
quently, the Hilbert transform method is used to process the time-domain attenuation
signal; the system vibration attenuation curve, envelope, and backbone curve are drawn;
and we use the least-squares method to fit the envelope and backbone curve data. The
result is shown in Figure 3.

As shown in Figure 3b, the fitting equation of the envelope of the system displacement
attenuation curve can be expressed as

y ≈ 0.1268e−2.27t (28)

As shown in Figure 3c, the system backbone curve fitting equation can be expressed
as

y ≈ 7.391× 106t + 5259.042 (29)

From Equations (28) and (29), a = −2.27, b0 = 7.391 × 106, and b1 = 5259.042.
Substituting the values of a, b0, and b1 into Equations (19), (14) and (21), the system linear
stiffness coefficient α, nonlinear stiffness coefficient β, and linear damping coefficient c can
be obtained: α ≈ 22.11, β ≈ 41,389.6, and c ≈ 0.0191.

In order to analyze the accuracy of the identification algorithm, an error analysis of
the identification coefficient is performed, as shown in Table 2.
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Table 2. Identification results of mechanical parameters.

Parameter Type c α β

Select value 0.02 22.1 41,963
Identification value 0.0191 22.1096 41,389.6

Error 4.5% 0.43% 1.37%

It can be seen from Table 2 that the identification error of the damping coefficient
based on the logarithmic attenuation method is only 4.5%. According to the backbone
curve of the free attenuation signal, the errors of the linear stiffness and the nonlinear
stiffness are obtained by the identification; they are 0.43% and 1.37%, respectively. The
errors are less than 5%, and the errors of the last two are even less than 2%, which is within
an acceptable range. Therefore, the identification method has good accuracy.

4.2. Numerical Verification of Electrical Parameter Identification

According to the above-given conditions, Equation (3) is dynamically solved and
analyzed by the Runge–Kutta numerical method, and the stable time period data are
selected to obtain the system response characteristic curve. The simulation result is shown
in Figure 4.
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The least-squares method is used to curve-fit the time–velocity signal, time–voltage
signal, and time–voltage change ratio signal in Figure 4; the fitting results are as follows:

.
r1(t) = −0.2084× sin(72.5× t)− 0.5671 cos(72.5× t) (30)

v(t) = 20.08× sin(72.5× t)− 8.056× cos(72.5× t) (31)
.
v(t) = 530.9× sin(72.5× t) + 1476× cos(72.5× t) (32)

According to Equations (30)–(32), p0 = −0.2084, p1 = 530.9, p2 = 20.08, q0 = −0.5671,
q1 = 1476.3, and q2 = −8.06. Substituting these values into the Equations (26) and (27), the
system electromechanical coupling coefficient ϑ and the equivalent capacitance coefficient
cp value can be obtained:

ϑ = 5.1977× 10−4 (33)

cp = 2.0025× 10−7 (34)

In order to analyze the accuracy of the identification algorithm, the electromechanical
coupling coefficient ϑ and the equivalent capacitance coefficient cp are obtained by the
identification and analyzed for error, and the results are shown in Table 3.

It can be seen from Table 3 that the errors of the electromechanical coupling coefficient
and equivalent capacitance coefficient of the system are 0.11% and 0.13%, respectively,
which is mainly due to a certain error in the first harmonic fitting of the system response
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signal. The error of both is less than 0.5%; therefore, the identification method has good
accuracy.

Table 3. Results of electrical parameter identification.

Parameter Type ϑ cp

Select value 5.192× 10−4 2× 10−7

Identification value 5.1977× 10−4 2.0025× 10−7

Error 0.11% 0.13%

5. Experimental Analysis

In order to obtain the actual dynamic model parameter values of the piezoelectric
energy harvester and verify the correctness of the parameter identification method, an
experimental platform was built for experimental verification, as shown in Figures 5
and 6. The experimental platform is composed of laser vibrometer (LV-S01), vibrometer
controller (LV-S01), oscilloscope (DSOX3024T), shaker (E-JZK-5T), handheld vibrometer
(CoCo-80), computer (Lenovo), controller (VT-9008), amplifier (E5871A) and acceleration
sensor; the resolution of laser vibrometer was 1 µm/s. During the experiment, we used the
laser vibrometer to collect the response output velocity signal of the PEH-C and used the
handheld vibrometer for data collection and storage; next, under the excitation conditions,
the output terminal of PEH-C was directly connected to the oscilloscope probe, and the
voltage signal was obtained through the oscilloscope. The length of the composite beam in
the X-axis direction was 40 mm, the width of the composite beam was 8 mm, the thickness
was 0.2 mm, the length of the linear beam was 20 mm, and the radius and chord length of
the arched part were 10 mm and 20 mm. The width of the PVDF pasted on the composite
beam was the same as that of the composite beam; the thickness was 0.11 mm.
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We set the excitation amplitude of the vibration platform to 10 m/s2 and the excitation
frequency to 13 Hz, and we conducted a fixed frequency experiment under simple harmonic
excitation. The result is shown in Figure 7. Figure 7a shows the original velocity data
signal collected by CoCo80. The signal has an obvious external interference signal, which
is mainly caused by the external environment. We intercepted the signal of the attenuation
part and conducted variational mode (VMD) processing to filter out the interference signal,
and we obtained the velocity signal under the open-circuit condition of the composite beam
piezoelectric vibrator, as shown in Figure 7b. As shown in Figure 7c, the displacement
signal was obtained by integrating the velocity signal. The image has obvious distortion
in 2–4 s, indicating that the envelope of the displacement signal is no longer smooth at
this time, which may be caused by the VMD decomposition filtering of the signal and the
signal curve not being smooth. We intercepted the 1-s signal, and the result is shown in
Figure 7d.
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For the signal data shown in Figure 7d, the Hilbert transform method was used
to process the displacement time-domain attenuation signal and draw its envelope and
backbone curve; the results are shown in Figure 8a,b.

It can be seen from Figure 8a that the expression of the fitting equation for the envelope
of the displacement attenuation curve is

y ≈ 4.5244e−0.9484t (35)

It can be seen from Figure 8b that the expression of the system backbone curve fitting
equation is

y ≈ 3.809× 106t + 6812.33 (36)
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From Equations (35) and (36), a = −0.9484, b0 = 3.809, and b1 = 6812.33. Substituting
the values of a, b0, and b1 into Equations (19), (14) and (21), the actual linear stiffness
coefficient α, the nonlinear stiffness coefficient β, and the linear damping coefficient c in
the dynamic model of the PEH-C can be obtained:

α ≈ b1m + ma2 = 4.2× 10−3 ×
(

6812.33 + (−0.9484)2
)
= 28.62 (37)

β ≈ 4b0m
3

=
4× 3.809× 4.2× 103

3
= 21330.6 (38)

c ≈ −2ma = 2× 4.2× 10−3 × 0.9484 = 0.008 (39)

In order to ensure the accuracy of the damping coefficient of the PEH-C, the velocity
attenuation signal in Figure 8b was processed by Hilbert transform to obtain its envelope;
finally, the curve fitting was performed based on the least-squares method. The result is
shown in Figure 9.
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The envelope curve fitting equation is

y ≈ 443.8e−0.9483t (40)

Thus, we can obtain the size of the damping coefficient as 0.008; the comparison shows
that the damping coefficient identified based on the velocity attenuation curve is consistent
with the identification result based on the displacement attenuation signal.

Figure 10a shows the output voltage diagram of the PEH-C under the same conditions.
In order to eliminate the interference of hybrid wave on the signal, the experimental
data were filtered, and the steady-state output voltage was intercepted within 6–7 s. The
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result is shown in Figure 10b; the time interval in which the voltage is negative at 6–8 s
is significantly longer than the time interval in which the voltage is positive. The voltage
signal in the figure is obviously asymmetric, and the voltage is not completely stable, which
may be caused by the manufacturing error of the PEH-C and the arched section of the
composite beam. Figure 10c shows the voltage change rate curve at the same time. In order
to avoid the problem of asynchrony when collecting voltage and velocity signals, according
to the theoretical simulation results, the velocity signal change trend should be 180◦ out of
phase with the voltage change rate trend. The result is shown in Figure 10d.
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As shown in Figure 10, we used the least-squares method to curve-fit the time–voltage
signal (Figure 10b), time–voltage change rate signal (Figure 10c), and time–velocity signal
(Figure 10d), The fitting results are as follows:

v(t) = −0.135× sin(81.68× t) + 1.44× cos(81.68× t) (41)

.
v(t) = −118× sin(81.68× t)− 5.86× cos(81.68× t) (42)

.
r1(t) = 0.394× sin(81.68× t) + 0.00265× cos(81.68× t) (43)

From Equations (41)–(43), we can see that p0 = 0.394, p1 = −118, p2 = −0.135,
q0 = 0.00265, q1 = −5.86, and q2 = 1.44. Substituting these values into Equations (26) and
(27), the system electromechanical coupling coefficient ϑ and the equivalent capacitance
coefficient cp value can be obtained:

ϑ = 8.57× 10−5 (44)
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cp = 2.85× 10−7 (45)

According to Equation (41), the system resonance frequency ωn = 81.68 rad/s and
the simultaneous equation ωn =

√
α/m; we bring the mechanical parameter α into it, and

therefore, α = 28.02, Table 4 shows the identification results of system mechanics and
electrical parameters.

Table 4. The identification results of the mechanical and electrical parameters of the PEH-C.

Parameter α β c ϑ cp

Identification value 28.02 21,330.6 0.008 8.57× 10−5 2.85× 10−7

We substitute the identification result into (3) for a solution and give the system
external excitation as sin(81.68× t); the simulation result is shown in Figure 11.
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Comparing Figures 7, 10 and 11, it can be seen that the theoretical analysis is consistent
with the experimental results, and it is not difficult to find that the identification method
has good accuracy.

6. Conclusions

Based on the unique short-circuit and open-circuit output characteristics of the PEH-C,
this paper proposes a high-precision identification method for the damping coefficient,
stiffness coefficient, electromechanical coupling coefficient, and equivalent capacitance
coefficient of the PEH-C. The analytical expressions of the parameters are obtained through
theoretical modeling, and then the Runge–Kutta numerical method is used to verify the
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accuracy of the algorithm. The results show that the error of the damping coefficient
identified by the algorithm is 4.5%; the errors of linear stiffness and nonlinear stiffness are
0.43% and 1.37%, respectively; and the errors of electromechanical coupling coefficient
and equivalent capacitance coefficient are 0.11% and 0.13%, respectively. An experimental
platform was built for verification, and the experimental results show that the parameters
obtained through parameter identification have good accuracy and applicability. The
error in this study is less than 5%, which is within an acceptable range when compared
with the error analysis of related studies in the reference literature. We can use this
parameter identification method to obtain the mechanical and electrical parameters of the
system, solve the system dynamics model more accurately, and better guide the design of
piezoelectric energy harvesters.
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