
Quantifying Extinction Probabilities from Sighting
Records: Inference and Uncertainties
Peter Caley1,2*, Simon C. Barry1,2

1 Commonwealth Scientific and Industrial Research Organisation Division of Computational Informatics, Canberra, Australia, 2 Commonwealth Scientific and Industrial

Research Organisation Biosecurity Flagship, Brisbane, Australia

Abstract

Methods are needed to estimate the probability that a population is extinct, whether to underpin decisions regarding the
continuation of a invasive species eradication program, or to decide whether further searches for a rare and endangered
species could be warranted. Current models for inferring extinction probability based on sighting data typically assume a
constant or declining sighting rate. We develop methods to analyse these models in a Bayesian framework to estimate
detection and survival probabilities of a population conditional on sighting data. We note, however, that the assumption of
a constant or declining sighting rate may be hard to justify, especially for incursions of invasive species with potentially
positive population growth rates. We therefore explored introducing additional process complexity via density-dependent
survival and detection probabilities, with population density no longer constrained to be constant or decreasing. These
models were applied to sparse carcass discoveries associated with the recent incursion of the European red fox (Vulpes
vulpes) into Tasmania, Australia. While a simple model provided apparently precise estimates of parameters and extinction
probability, estimates arising from the more complex model were much more uncertain, with the sparse data unable to
clearly resolve the underlying population processes. The outcome of this analysis was a much higher possibility of
population persistence. We conclude that if it is safe to assume detection and survival parameters are constant, then
existing models can be readily applied to sighting data to estimate extinction probability. If not, methods reliant on these
simple assumptions are likely overstating their accuracy, and their use to underpin decision-making potentially fraught.
Instead, researchers will need to more carefully specify priors about possible population processes.
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Introduction

The likelihood that a species has become extinct is a key

question in a number of scientific and management contexts.

Conservation managers are interested in whether a rare species

persists. Land managers need to determine when a weed or pest

has been eradicated. In all cases the extinction of the species

means that associated management resources can be moved to

other priorities, meaning there is significant value in being able to

infer the time of extinction.

The value of this knowledge means that a number of authors

have considered this problem. Early models to estimate the

likelihood of a rare species being present (e.g. [1]) explored the

issues of sampling and power calculations assuming that the

probability of detecting the presence of a population was known.

Subsequently [2–4] considered weights of evidence for, and tests of

the null hypothesis, that a species remained extant assuming a

stable sighting probability, and extended this to a declining

sighting rate arising from a declining population. The application

focus of these models has been to rarely sighted species teetering

on the brink of extinction with low demographic vigor (e.g.

Carribean monk seals Monachus tropicalis Gray 1850, black-

footed ferrets Mustela nigripes Audubon & Bachman, 1851). More

recently there has been a series of papers considering optimal

decision making during eradication attempts of invasive species

[5–7]. These papers consider the question of when to cease an

eradication attempt and assume that the sighting and extinction

probabilities are either known or can be elicited from experts.

Review of this literature reveals a number of gaps in current

knowledge. First, there has not been been a systematic consider-

ation of using the sighting data to infer parameters of the

underlying models. The existing approaches either assume that the

underlying parameters are either known or can be elicited [5], or

consider uncertainty in the sighting parameters implicitly in the

construction of the likelihood needed to test the null hypothesis of

species persistence [2–4], or optimize decision making [7].

Second there has been limited discussion in the literature of the

plausibility of the assumed models and how this may impact on

their performance (though see [8] and [9]). Methods developed in

one context, such as a declining species, are being applied more

broadly. This means that the underlying population processes are

potentially more diverse and this may need to be reflected in the

model. In contrast, the existing models in the literature are simple,

presumably for parsimony and analytical tractability. As an

example, [5] assume a constant probability of detection when

many extinction processes would involve a declining detection

rate. Likewise, recent approaches to incorporating variable
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sighting reliability [10,11] assume a constant sighting rate prior to

extinction.

The approach to model formulation and analysis has also been

somewhat adhoc. Simple models are incrementally modified to

correct identified deficiencies. For example model elaborations

such as declining sighting rate ([3],[7]) are a step in addressing the

issue of model plausibility but may not be the complete solution. In

another example the work by [7] following [2] makes strong

assumptions about priors which will not be applicable in general,

and the observation model they consider is not equivalent to the

model proposed by [5] due to a different formulation of the

extinction process.

An example of these issues is the use of existing techniques to

analyse data on invasive species. These species have potentially

robust demographics that can lead to rapid changes in abundance

that may or may not overlap with sighting mechanisms. Their

detectability can vary in complex ways as their distributions

change, and establishment may occur after a prolonged lag-phase

where sightings may be few [12]. In short, populations of invasive

species may be increasing despite populations being small and

observations sparse, so model assumptions need be applicable to

such possible scenarios. Indeed, attempts at eradication of invasive

species often fail, whether they be vertebrates [other than those

undertaken on islands] [13], plants [14], insects [15] or pathogens.

Developing techniques to make formal inference from sighting

data can form the basis for addressing aspects of these knowledge

gaps. Making inference requires specifying prior beliefs about

population processes. They will provide a framework to under-

stand how we learn from sighting data, as well as providing the

opportunity to assess model fit and plausibility. The issue of fit and

plausibility is key here. It is unlikely that the data alone will be able

to fully resolve competing alternative models of the underlying

population dynamics and observational (sighting) processes.

Different processes with substantially different extinctions out-

comes can plausibly produce similar sighting data in some cases.

Thus we argue that the fundamental issue in analysing eradication

data is the inherent uncertainty in the underlying phenomena and

its impact on detectability and extinction probability over time.

This paper explores this issue. We utilize a Bayesian formulation

that can accommodate some of the uncertainty seen in real world

problems through the specification of prior distributions. The

approach is natural in this context, and has been recommended by

[4] and [16], and used in the original contribution of [2]. The

advantage of the formulation goes beyond the specification of

priors. The sighting data will often be sparse and provide weak

information about the underlying process, leading to ridges in the

likelihood where different potential processes cannot be resolved

on the basis of the data. The Bayesian analysis can naturally

accommodate this whereas difficulties arise if trying to use

maximum likelihood techniques when there are multiple maxima

or ridges in the likelihood. Examples of the issue are discussed in

[17] who consider issues in analysing ring recovery data in birds

and [18] who have recently illustrated the difficulties in fitting

occupancy models when data are sparse and underlying models of

detection are unknown.

The paper is arranged as follows. First, it considers the simple

case assuming constant yearly probabilities of survival and

detection, with the implicit assumption that both population size

and sighting effort are effectively constant. These assumptions

underpin the current default models of inferring extinction

probability and underpinning decision making when a declining

population cannot be safely assumed. Second, these assumptions

are relaxed, and probabilities are allowed to vary as simple

functions of population size which is no longer assumed to be

constant or declining. We apply the two models to make inference

on the fate of the recent incursion of the European red fox

(Vulpes vulpes Linnaeus 1758) into Tasmania [19], an island state

of Australia. We compare and contrast the results from these two

sets of modelling assumptions, and discuss the justification for

choosing one over the other. For completeness we also present the

original approach to inferring species extinction of [2] and the

subsequent hypothesis testing approach of [4].

Materials & Methods

Model specification—constant population
General. We begin by considering inference in the simple

model outlined by [5]. This model assumes constant detection and

population persistence probabilities prior to extinction (if this

occurs). Formally, assume we have a population in a defined

region and that we observe the process at certain time intervals. At

each time point t,t~1, . . . ,T we observe whether the population

was detected in that time interval, denoted by yt. We define yt~1
if the population is observed and yt~0 if it is not observed. We

assume that during a time interval the population process under

study may cease (i.e. become extinct) with probability w and that

the probability that it is observed is l if it is extant and 0 otherwise.

We assume that the species is extant at time 0 although this could

be relaxed. The observed data is y1, . . . ,yT . For computational

convenience we augment the formulation with an additional

variable z which is the time to the population becoming extinct

following the most recent non-zero observation, or z~Tz if the

population is not extinct by time T . This augmentation is

convenient as we will want to make inference on the value of z and

it simplifies the algebra and sampler design. We adopt a Bayesian

approach to inference and therefore need to determine the

likelihood of the data to calculate the posterior distribution. The

joint distribution of y and z is

½y1, . . . ,yT ,zjw,l�~½y1, . . . ,yT jz,w,l�½zjw,l�:

Now, further conditioning on z gives

½y1, . . . ,yT Dz,w,l�~
P

z{1

t~1
lyt 1{lð Þ1{yt P

T

t~z
1 z ƒT

P
T

t~1
lyt 1{lð Þ1{yt z ~Tz:

8>><
>>:

Note that we assume that if the population goes extinct during a

year it is not available to be detected. If we collapse z values

greater than T into a single category

½zjw,l�~ (1{w)z{1w z ƒ T ;

(1{w)T z~Tz :

(

The posterior distribution of interest is therefore

½w,l,zjy1, . . . ,yT �!½y1, . . . ,yT ,zjw,l�½w,l�

with ½w,l� the joint prior for w and l. To perform inference on the

parameters we construct a Gibbs sampler. Define the time since

the start of the observation process to the last non zero observation

as k. Given this z can take the values kz1, . . . ,T ,Tz. The

conditional distribution ½zjw,l,y1, . . . ,yT � is therefore a multino-
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mial with T{kz1 categories and probabilities

Pr(z~kzi)!(1{w)i{1(1{l)i{1w

for i~1, . . . ,T{k and for z~Tz:

Pr(z~Tz)!(1{w)T{k(1{l)T{k:

The conditional distribution of w is

½wjl,y1, . . . ,yT ,z�!(1{w)z{1w½w,l�

with 0vwv1. The conditional distribution of l is

½lDw,y1, . . . ,yT ,z�!
P

z{1

t~1
lyt 1{lð Þ1{yt ½w,l� z ƒ T ;

P
T

t~1
lyt 1{lð Þ1{yt ½w,l� z~Tz :

8>><
>>:

with 0vlv1.

The final issue to complete is the posterior distribution for the

time of extinction conditional on the data. We define the indicator

variable E to be 0 if the species is extinct in the time period of the

observed data and 1 if it is still extant. In this case

E~I(z~Tz)

where I() is the indicator function which takes the value 1 if the

argument in the parentheses is true, and zero otherwise. The time

of extinction is z for zƒT . When Z~Tz it means that extinction

occurs at some time in the future. Under the model the predictive

distribution of the number of years A beyond T that extinction

occurs is

Pr(A~a)~(1{w)a{1w

with a~1,2, . . . ,?.

Model fitting. A pictorial explanation of the Gibbs sampling

process is illustrated in Figure 1 using sighting data from the Case

Study (below). Calculation of the posterior distributions requires

specification of prior distributions for w and l. Given their range it

is natural to consider a Beta distribution as priors. That is,

w*Beta(aw,bw) and l*Beta(al,bl). The Beta distribution is a

flexible distribution and conjugate with the conditional distribu-

tions for the parameters which simplifies the sampling. The

sampling is straight forward and standard methods can be used to

summarise the key components of the posterior distributions. In

particular the posterior probability that the species is extant is

consistently estimated by averaging the indicator variable E. That

is

1

N

XN

i~1

Ei

where the sum is over the N samples from the posterior

distribution after a suitable burn-in period.

Model specification—non-constant population
General. The simple model presented in the previous section

makes a number of assumptions that may not be true in practice.

In particular the assumption of a constant detection and extinction

probability would often be questionable in many circumstances.

While it may be argued that the simple model provides a

reasonable approximation in some cases, this is an unsatisfying

approach in the absence of supporting information and analysis. A

principled approach to this issue involves constructing a broader

model space that spans a more plausible set of possible processes.

Inference made over this model space will then factor in a more

plausible range of possibilities.

As an example, [3] assumed that sightings may come from a

non-stationary Poisson process with declining rate function up

until the time of extinction TE :

exp (a0za1t) 0ƒtƒTE

0 twTE

ð1Þ

where a1v0. This is consistent with the sightings being distributed

as Poisson where the rate parameter is proportional to the

population size Nt which changes exponentially:

Nt~N0ert tvTE

0 t§TE :
ð2Þ

In the model of [3], the exponential rate of increase (r) is less than

zero (r~0 is equivalent to zero population growth). We have

argued, however, that this is probably too restrictive in cases of

attempts to eradicate invasive species that could quite possibly

have positive rates of increase.

The assumption of exponential population growth/decline is

still very strong, though it is the simplest and most tractable model

to start with when relaxing the assumption of a constant

population. It is, however, a more plausible model and hence

requires a smaller ‘leap of faith’ (after [20]) than the first model

that is most easily interpreted as assuming a constant population

size. Increasing populations are often well described by stochastic

exponential growth [21], as are declining populations [22]. Here,

by necessity, we ignore the stochastic component, though return to

its importance in the discussion. For our illustrative purposes we

choose the simplest detection and survival model possible given the

changing population. Let d be the yearly rate of detection per unit

of population, hence the now time-dependent yearly detection

probability (lt) becomes:

lt~1{e{dNt , dw0: ð3Þ

We note that d and N0 are not uniquely identifiable from

sighting data alone. This is not of concern, as we are primarily

interested in the ability of the model to infer the timing of

extinction arising from estimates of lt and wt.

In a similar vein, let the time-dependent yearly probability of

extinction (wt) be related to the logarithm of population size on the

logit scale:

ln
wt

1{wt

� �
~e0{e1ln(Nt), e1w0: ð4Þ

This model allows considerable flexibility (non-linearity) in how

extinction probability may vary with population size. Taking the

logarithm of Nt ensures that extinction becomes certain as the

population approaches zero.

Quantifying Extinction Probability from Sightings
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As in the first model we need to derive the posterior distribution.

Noting that we again introduce the variable z to denote the time of

extinction. We have

½y1, . . . ,yT ,zjN0,r,e0,e1,d�~

½y1, . . . ,yT jz,N0,r,e0,e1,d�½zjN0,r,e0,e1,d�

In this case

½y1, . . . ,yT Dz,N0,r,e0,e1,d�~
P

z{1

t~1
lyt

t 1{ltð Þ1{yt P
T

t~z
1 zvT ;

P
T

t~1
lt

yt 1{ltð Þ1{yt z~Tz :

8>><
>>:

and

½zDN0,r,e0,e1,d�~
wz P

z{1

t~1
(1{wt) z ƒ T ;

P
T

t~1
(1{wt) z~Tz :

8>><
>>:

The posterior distribution of interest is:

½N0,r,e0,e1,d,zjy1, . . . ,yT �!½y1, . . . ,yT ,zjN0,e0,e1,d�½N0,r,e0,e1,d�

with ½N0,r,e0,e1,d� being the joint prior for the underlying

parameters. To perform inference we again construct an

appropriate Markov chain and sample from it.

Note that the simple model is embedded in this more

complicated model. Consider we have a simple model with

parameters w and l. We look to find a parameterisation of the

non-constant population model equivalent to this. Note that if we

have r~0, then Nt~N0 (i.e. the population is constant). If we then

solve the equations

l~1{ exp ({dN0) ð5Þ

and

ln
w

1{w

� �
~e0ze1ln(N0): ð6Þ

for N0,d,e0, and e1 we will have an equivalent formulation. Note

we have two equations in four unknowns and there are multiple

solutions corresponding to a subspace of the complete parameter

space in the non-constant population model when the rate of

population increase is non-zero.

Sampler. The MCMC sampler was run as before, though

with a Metropolis-Hastings step rather than a Gibbs sample as the

posterior distribution of the detection and survival parameters

conditional on the imputed extinction time no longer had a

standard form.

Worked example—discovery of red fox carcasses in
Tasmania

General background. The apparent incursion of the Euro-

pean red fox into Tasmania has caused considerable alarm due to

predicted severe negative impacts on biodiversity. Indeed,

Tasmania is home to several small mammal species that are

extinct on the Australian mainland other than within predator-free

exclosures, with the introduced red fox inferred to be one of the

main drivers of extinctions of these mainland populations [23,24].

The evidence for the incursion is varied, including sightings,

footprints, carcasses, and DNA extracted from scats etc [19,25].

Some of the data are contentious [26]. An early scientific overview

concluded that ‘‘unknown number of foxes have been deliberately

and/or accidentally introduced to Tasmania since 1998 and that

some of these and possibly their progeny are still living in the wild

in Tasmania’’ [27]. This resulted in an eradication program being

instigated. There is practical interest in knowing the probability

that eradication has been achieved, and theoretical interest in

methods of estimation. Here, we are not interested in debating the

credibility of the broader evidence, but rather in exploring the

information available from the simple sighting records. In

particular, we choose to analyse the irrefutable evidence that fox

carcasses have indeed been found in Tasmania—it were these data

that alerted the authorities to the possibility that an incursion was

underway.

Figure 1. Schematic diagram of the model process and parameters. Solid circles are observed data on the discovery of red fox carcasses in
Tasmania used in the worked example.
doi:10.1371/journal.pone.0095857.g001
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Carcass discovery data. Data on the discovery of fox

carcasses are taken from publicly available data provided by the

Fox Eradication Branch of the Tasmanian Department of Primary

Industries, Parks, Water and Environment (http://www.dpiw.tas.

gov.au/). The dates of carcass discoveries span the years 2001 to

2006 (Table 1). We did not include the ‘‘Longford’’ fox carcass in

calculations (reported as shot in July 2001 with the purported skin

was produced as evidence, but not the carcass) as its authenticity

has been questioned. If included the effect would have been to

slightly increase the estimated detection probability, and hence

increase the probability that the process has ceased given the

sighting data. The year of first introduction is rumored to be 2001,

although ‘‘accumulated evidence also indicates that such an act

may have also occurred in 1999 and 2000’’ (Saunders et al: 2006).

For our modelling purposes, the sighting data are

y~(1,0,1,0,1,1,0,0,0,0,0,0), assuming the incursion started in

2001 with the first detection also in 2001 and the last year with no

detection being 2012. If we assume the population incursion and

associated carcass generation process started in 1999 (two years

prior to the first detection), then the sighting data are

y~(0,0,1,0,1,0,1,1,0,0,0,0,0,0). We undertake calculations using

both starting times to illustrate the effect of such uncertainties on

model inference (see below). This is clearly a very small dataset

(n~4 sighting years with at least 8 non-sighting years). It is,

however, equivalent to the Caribbean monk seal data (n~5) used

by [2,4], as being an invasion arising from an introduction, we

have chosen the start of the observation period based on available

knowledge. Such small and challenging datasets will often arise

when dealing with eradicaton programs in reponse to incursions of

invasive species.

Model fitting—constant population. Given the uncertainty

and contentious nature of the processes underlying generation and

discovery of red fox carcasses in Tasmania, it may seem

appropriate to use uninformative priors for both survival and

detection (e.g. aw~bw~al~bl~1, corresponding to Uniform

distributions on the interval [0,1]). It can be argued, however, that

w isn’t very close to 1 (i.e., it is likely that the population is extant

for more than one year). In a similar vein, a prior on l that

downweights values near 0 and 1 makes sense, as if l~0 there

would be no sightings and if l~1 there would be annual sightings.

Hence weakly informative priors seem a better approach, and we

chose aw~bw~al~bl~1:1, which is reasonably uninformative

(flat) other than at 0 and 1, which have probability zero. Other

priors may be used if further information of a credible nature

becomes available. The choice of priors corresponded to an

implicit prior probability of an extant population at the end of the

observation period of 1.8%

We ran the sampler for 1 million iterations. Posterior

distributions of detection probability, survival probability, and

time to extinction were taken directly from the chains without any

thinning. We also used the model to explore how the estimated

probability of extinction may change in future up until 2015,

assuming no further carcasses are discovered.

Model fitting—non-constant population. We chose largely

flat priors for all parameters, largely unconstrained other than to

reflect biological limits. The prior distribution for the population

growth rate (r) was uniform on [21.6,0.69]—that is, the

underlying trend in population growth rate lies somewhere

between a 5-fold decrease and 2-fold increase each year. Without

strong prior knowledge on either N0 or d it makes sense to simply

fix the initial population to one, such that all subsequent

population sizes are scaled relative to this. The corresponding

rate of detection d was constrained to be positive and uniform on

[0.01,4.6], which corresponds to a very wide range of possible

yearly population detection probabilities, with the limits corre-

sponding to the initial population being detected with probability

between 1% and 99%. A Uniform [220,20] prior distribution was

chosen for e0 and Uniform [0,20] for e1. These lower and upper

bounds are arbitrary and naive—we do not have well informed

prior beliefs on how non-linear the probability of extinction could

possibly be.

The chosen priors correspond to a implicit prior probability of

3.9% and 3.5% that the population is extant as of 2013 for a 2001

and 1999 start, respectively. The sampler was run for 1 million

iterations, as the chain mixed quite slowly (this could potentially be

rectified technically but is not the focus of this paper), after a

‘‘burn-in’’ period or 100,000 iterations. Again, following [28] we

didn’t thin chains.

Model fitting—earlier approaches. The methods of [4]

can be used to first undertake a null hypothesis test of whether the

population is extant and second estimate the time to extinction

conditional on rejecting the null hypothesis. We also revisit the

Bayesian formulation of [2], that underpins the calculations of [7],

and requires a prior on the probability that the species is extant.

The methods assume the sighting process to be Poisson with a

constant underlying rate of carcass discovery up until extinction, if

this occurs. We did not consider the method of [3] for inferring

extinction under the assumption that the population (and hence

sighting rate) is declining, as in the case of the red fox incursion in

Tasmania, and typically in other situations of trying to eradicate

an invasive species, the assumption of a declining population is

inappropriate (see Introduction). Rather than discarding the first

sighting in 2001, and choosing this as the start of the process, we

include the first sighting and specify the start time separately, as we

have reasonably strong independent information as to when this

occurred. This also highlights differences in using the models of [4]

to infer the extinction of a long-established species on the verge of

extinction, in which case a 2001 start time would be used in our

worked example, with an introduced species where the introduc-

tion date may be known with varying degrees of certainty, and

Table 1. Details of fox carcasses found in Tasmania, including the cumulative number (n), year and month of discovery, time from
discovery of first carcass (tn), and the location of the finding.

n Year Month tn Location and name (if applicable)

1 2001 September 0 Symons Plains—the ‘‘Bosworth fox’’

2 2003 October 25 Burnie—‘‘Burnie road kill’’

3 2005* December* 51 Lillico Beach, Devonport

4 2006 August 59 Cleveland

*Although officially reported as February 2006, this carcass was first sighted in December 2005.
doi:10.1371/journal.pone.0095857.t001
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possibly prior to the first sighting. For the method of [2] we

explore the effect of varying the prior belief of population

persistence (p) from 0.1 through to 0.9.

All analyses were undertaken using the R software [29]

including use of the MASS library [30]. R code to run both

samplers is provided (see Supporting Information).

Results

Constant population model
Conditional on the model the data clearly informs the posterior

distributions for w and l (Figure 2). Assuming the carcass

generation process started in 2001 and after no detections during

2007–2012, the median yearly survival probability for the

population is ~ww = 18.6% (95% C.I. 2.3–50.7) and the median

yearly detection probability is ~ll = 51.3% (95% C.I. 20.3–81.9)

(Figure 2A). If the incursion started in 1999, the estimates are
~ww = 14.0% (95% C.I. 1.3–42.0) and ~ll = 40.1% (95% C.I. 15.3–

70.4) (Figure 2B).

The probability that the population is extant as of 2013 is either

6.2% or 13.9% assuming a 2001 or 1999 start to the incursion,

respectively. Should there be no further carcass discoveries, this

probability will continue to drop in an exponential manner, and in

2015 reach either 1.6% (2001 start) or 4.7% (1999

start)(Figure 3A).

The most probable year the carcass generation process ceased

to operate is 2007; either with probability 79.5% assuming a 2001

start or 67% assuming a 1999 start (Figure 3B).

Non-constant population model
Allowing the population to vary prior to extinction changes our

inference substantially, and the following pertain to the incursion

starting in 2001. The data appear to have informed the prior for

the rate of increase, which infers the population is in decline (i.e.

rv0), although the rate of decline remains uncertain (~rr~{0:28,

95% C.I. 20.72–20.04)(Figure 4A). The detection rate parameter

is somewhat informed (~dd~1:92, 95% C.I. 0.48–4.3)(Figure 4B).

The data, however, reveal little about the shape of the relationship

between population size and extinction probability, as evidenced

by weakly informed marginal posteriors for e0 (~ee0 = 213.7, 95%

C.I. 219.7–23.3) and e1 (~ee1 = 5.5, 95% C.I. 0.3–

18.5)(Figure 4C&D). Though constrained within the bounds of

the priors, the inferred possible relationships between extinction

probability and population size are diverse (Figure 4E). The

probability that the population is extant as of 2013 is 26.9%

(Figure 4F). Assuming an earlier incursion start lessens the inferred

rate of population decline (~rr~{0:12, 95% C.I. 20.37–

0.05)(Figure 4A), decreases the detection rate (~dd~0:88, 95% C.I.

0.20–2.57)(Figure 4B) and increases the probability the population

persists into 2013 to 40.7%.

Figure 2. Posterior distributions for ‘constant’ population model with weakly informative priors for the yearly probability of
process cessation(w) and yearly detection probability (l). The carcass generation process is assumed to have started in either (A) 2001, or (B)
1999. Dotted lines are prior distributions.
doi:10.1371/journal.pone.0095857.g002
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The uncertainty in the density-dependence of the extinction

probability is further illustrated by the pairwise scatter plot and

associated flat joint posterior densities, remembering these

estimates are on a logit scale (Figure 5). Ridges are also evident

in many of the joint posterior distributions, particularly those

involving the detection probability (Figure 5), illustrating the

understandable difficulty the sparse data has in resolving the

parameter values through the likelihood (in combination with

prior information) [31]. It stands to reason that if the model has

not been able to identify, and hence estimate the yearly extinction

probability through the parameters e1 and e2, then the estimates of

time to extinction are probably poorly resolved also.

Figure 3. Results of simple models estimating extinction probability and timing. (A) Probability that the process generating the discovery
of fox carcasses in Tasmania is extant up until 2015 (assuming no further carcasses are found) based on ‘constant’ population model with weakly
informative priors. The process generating fox carcasses is assumed to start in either 1999 (circles) or 2001 (squares). The horizontal dotted line is at
5%. (B) Year of cessation of carcass generation process as of year-end 2012 assuming ‘constant’ population model, with the process first started in
either 2001 (solid bars), or 1999 (black bars). Priors for yearly detection probability (l) and probability of carcass generation process cessation (w) are
assumed weakly informative. (C) Left vertical axis: Probability of the null hypothesis (H0) given the sighting data for different prior beliefs (p) that the
population is extant, for values from 0.1–0.0 in intervals of 0.1. Right vertical axis and red dashed line: Significance level for testing the null hypothesis
that the process generating fox carcasses in Tasmania is extant versus the alternative that the process is no longer operating.
doi:10.1371/journal.pone.0095857.g003
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Earlier approaches
The estimated probability of the null hypothesis (that the

population is extant) given the sighting data, as a function of year

and prior belief of extinction (p), is shown in Figure 3C. The

results are sensitive to the value of p chosen, which is independent

of the sighting data. Assuming p~0:5 (the ‘‘Principle of

indifference’’), then as of the end of 2012 the estimated probability

the population is extant is about 0.3. There are, however, some

limited data to inform our beliefs. [32] lists two of three

introductions of the red fox to islands as being successful, hence

a prior for p in the order of 0.5–0.8 appears reasonable, which

corresponds to a probability of persistence of 0.3–0.6 (Figure 3c)—

the limited extent to which the data have informed the prior

illustrating the weakness in the data. The frequentist approach

provides contrasting inference. As of the end of 2012, the p-value

for testing the null hypothesis that the fox population is extant has

fallen below 0.05—the null hypothesis is struggling to retain

credibility in the face of a recent lack of fox carcasses (Figure 3C

red line). If we assume the process of carcass generation has

ceased, then using the parametric estimator of [4], the MLE

estimate for the time this happened is 15 months (December 2007)

after the last carcass discovery. The upper 95% confidence interval

is 66 months (February 2012) after the last carcass discovery.

Figure 4. Marginal posterior distributions from ‘non-constant’ population model with weakly informative priors assuming 2001
introduction (solid line), 1999 introduction (dashed) line. Distributions are for (A) instantaneous rate of population increase (r), (B) detection
rate (d) and (C)–(D) parameters (e0 , e1) generating yearly extinction probability from population size, (E) sub-sample (n~200 for clarity) of relationship
between yearly extinction probability and population size (2001 introduction only), and (F) year of extinction (TE ). Dotted lines are prior distributions.
doi:10.1371/journal.pone.0095857.g004
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Discussion & Conclusions

The analysis raises questions about current approaches to

analysing and understanding sighting data. There is an apparent

paradox between the simpler constant population model that

reveals reasonably strong identification (i.e. certainty) of parameter

values and inference about extinction times and the more

complicated non-constant population model where there is

considerably more uncertainty about the process involved and

therefore the trajectory to extinction. This result can be explained

by noting that the non-constant population model’s parameter

space accepts a wider range of possibilities about the potential

dynamics of the population. The data, through the likelihood,

cannot fully resolve these possibilities. As these possibilities imply a

wide range of extinction outcomes, these are reflected in the

posterior estimates. The more precise estimates from the simpler

model reflects that it is equivalent to using a prior in the non-

constant population model that effectively disallows (i.e. sets prior

probability to zero) parameter sets that are not solutions to

Figure 5. Pairwise plots of parameter values from posterior distribution for model with non-constant population and fox
introduction during 2001. The lower-left diagonal panes show pairwise scatter plots from a sub-sample (n = 1000) of the posterior distribution for
pairs of variables as labeled on the diagonal (thinned for visual clarity). The upper-right diagonal panes show corresponding joint posterior density
surfaces.
doi:10.1371/journal.pone.0095857.g005
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Equation 5 and 6—a considerable restriction on the form the

model may take.

The implicit assumption that all other processes have zero

plausibility is quite stringent and represents strong knowledge of

the system in question. This would appear to be at odds with the

inherent uncertainties in either rare populations with weak

demographics on the verge of extinction, or invasive populations

with potentially high population growth rates. It is a salient point

that the simple model chosen is only one of a large number of

plausible models that could lead to materially different out-

comes—why the simple model is a natural starting point is not

considered in the literature.

The restricted nature of the simpler constant population model

would not be an issue if the inferences were equivalent between it

and the more elaborate non-constant population model. This

would occur if the simpler model represented a rigorous margin-

alisation of the more elaborate model. That is, the simpler model

arises from integrating the more complex model over the

parameter space of the variables being omitted. This has not

occurred in this example and would appear unlikely in many cases.

An alternative argument may be that the simpler model provides a

reasonable approximation to the more complicated model. This

would not appear to be the case in this example and there has

been no discussion of this in the relevant literature to this point.

The non-constant model has a number of issues. Specification of

priors is difficult and the sparse data are not particularly

informative. There are additional challenges. The more elaborate

non-constant population model still pays scant regard to popula-

tion processes. For example, it takes no account of the possible

spatial dimension of the underlying population nor stochasticity.

Typically an invading population could have temporally varying

overlap with sighting mechanisms, invalidating our assumption of

constant sightability for a given population size. This has the

ability to bias our estimates of extinction probability upwards in

the case of the population subsequently establishing in areas of

lower detection probability—inaccurate delineation of the infes-

tation area is a common problem underlying failed eradication

programmes. In our case study, the inference is quite sensitive to

the assumed timing of the start of the sighting process. Back-dating

the incursion by two years from the first sighting increases the

probability that the population is extant in 2012 by a factor of

around two.

Although we consider the Bayesian analysis of the constant

population model useful in some circumstances, the assumptions

are difficult to justify. The alternate inference from the more

elaborate model is also problematic due to the sparse data and the

challenges in specifying plausible population and sighting process-

es and associated priors. The question regarding the best way to

analyse sighting data to infer extinction timing is unresolved. This

paper has demonstrated the limitations of the simple models, but

developing appropriate models and priors may well be case

specific and require considerable resources. Thus we are not

advocating indiscriminate use of the non-constant model, but

rather see its value as illustrating the difficulties inherent in this

field, and as a tool for sensitivity analysis.

The challenges of sparse data and complex ecological processes

has been identified elsewhere in the literature. Sparse data is the

norm in field studies, and renders parameter estimation for related

models that seek to quantify detection and occupancy far more

difficult that is generally acknowledged [18]. More work is needed

to enable inference on population persistence to be based on more

biologically plausible models. Approximate Bayesian Computation

Techniques [33] offer promise as a method in this context.

Our lack of certainty shouldn’t deter managers from applying

quantitative methods such as the ones we have presented here and

others in the literature to support inference on the success or

otherwise of invasive species control programs. They should,

however, treat the results cautiously, as such simple models may

not necessarily provide good answers to potentially complex

problems.

Supporting Information

Code S1 R code to run sampler for constant model.
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Code S2 R code to run sampler for non-constant model.
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