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DNA recombination is a ubiquitous process that ensures genetic diversity. Contrary to
textbook pictures, DNA recombination, as well as generic DNA translocations, occurs
in a confined and highly entangled environment. Inspired by this observation, here,
we investigate a solution of semiflexible polymer rings undergoing generic cutting and
reconnection operations under spherical confinement. Our setup may be realized using
engineered DNA in the presence of recombinase proteins or by considering micelle-
like components able to form living (or reversibly breakable) polymer rings. We find
that in such systems, there is a topological gelation transition, which can be triggered
by increasing either the stiffness or the concentration of the rings. Flexible or dilute
polymers break into an ensemble of short, unlinked, and segregated rings, whereas
sufficiently stiff or dense polymers self-assemble into a network of long, linked, and
mixed loops, many of which are knotted. We predict that the two phases should behave
qualitatively differently in elution experiments monitoring the escape dynamics from a
permeabilized container. Besides shedding some light on the biophysics and topology of
genomes undergoing DNA reconnection in vivo, our findings could be leveraged in vitro
to design polymeric complex fluids—e.g., DNA-based complex fluids or living polymer
networks—with desired topologies.

DNA topology | topological gel | living polymers | MD simulations

Recombination of genetic material involves the transient cleavage of two DNA segments
that are spatially proximate in three dimensions (3D)—although not necessarily adjacent
in one dimension—followed by alternative rejoining of DNA ends. Beyond its role in
meiosis (1), similar topological processes involving the reconnection of DNA segments
are also seen in the proliferation of transposable elements (2, 3) and the integration of
viral DNA in the host genome (4). More recently, artificially driven DNA translocation-
and recombination-like events have been used to map highly accessible genomic sites (5)
and scramble synthetic yeast chromosomes (6). Recombination operations on a plasmid in
vitro are known to yield linked or knotted DNA products (7–9). This observation suggests
that unrestricted DNA recombination in vivo may pose a pressing topological problem
to the cell (10, 11), but also that recombination may be employed to design topologically
nontrivial DNA molecules.

Enzyme-mediated recombination has been well studied on short plasmids in dilute
conditions (8, 12–15). On the other hand, the topological consequences of recombination
operations on long and entangled DNA are far less investigated or understood. Inspired by
this problem, here, we study a system of ring polymers continuously undergoing cutting
and reconnection operations—hereafter called “reconnecting” or “recombinant” rings—
inside a sphere (Fig. 1A). We note that, at variance with meiotic recombination, where two
finite chromosome sections are exchanged, our reconnection operations are performed
by introducing an exchange event on a single site, followed by alternative rejoining of
the polymer segments (Fig. 1A). Therefore, our model entails a highly simplified view of
recombination, and its aim is consequently limited to exploring the generic and qualitative
topological feature of recombination in confinement, rather than making quantitative
predictions. At the same time, our system can be viewed more generally as a confined
melt of living polymer loops. Living polymers are reversibly breakable: Like the polymers
in Fig. 1A, they can break and rejoin locally (i.e., reconnect), while remaining in thermal
equilibrium (16). A melt of living polymer loops can form spontaneously following
polymerization of monomers, given an appropriate choice of the reaction kinetics (17).
As we discuss below, such melts can, in principle, be realized experimentally and, hence,
are potentially relevant to materials science.

We discover that, depending on polymer stiffness and the radius of the confining
sphere, these systems display a topological transition between a regime with many short,
unlinked, and segregated rings and another one with few long, mixed, and linked rings.
Geometrically, this transition is naturally explained as the result of a competition between
bending energy of the loops and entropy of the system. Topologically, it can be seen
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Fig. 1. Phases of reconnecting rings. (A) We study ring polymers allowed to
recombine/reconnect within a sphere of radius R. (B and C) The two panels
show two possible states of the system at equilibrium and after relaxing
the confinement. B is a sketch of an ensemble of many, small, and mostly
unlinked rings, whereas C shows an ensemble of few, long, and linked rings.
The snapshots are taken after releasing confinement for ease of visualization.

as a gelation transition and understood in terms of the critical
overlap concentration c∗, above which linking is expected to be
entropically favored. Our gel of recombinant polymers is funda-
mentally different from other types of topological gels formed
by nearly monodisperse loops in the presence of topoisomerase-
like enzymes, such as the kinetoplast DNA network (18) or
Olympic gels (19, 20), because in our case, multicomponent
links are generically polydisperse and typically contain one or
very few loops that are much longer than the rest and are often
knotted. Similarly, our setup is distinct from that of previous
works investigating the segregation of fixed-size polymer rings in
a melt or under confinement (21–28) because the latter did not
consider reconnection operations, which can change loop sizes
and global topology.

The topological gelation we find in this work suggests that
unregulated single-site reconnection of DNA in vivo should be
highly detrimental. On the other hand, being able to construct a
phase diagram for gelation in vitro can be useful from a materials-
science perspective, as it may provide an avenue to design ex-
periments with DNA rings, which undergo recombination under
confinement to yield linked and knotted products with desired
topologies or materials with topologically controlled mesoscopic
properties—e.g., Olympic ring-like gels (19, 20).

A Model for Reconnecting Polymers

Unless otherwise specified, the system is initialized as one ring
with N = 1,000 beads of size σ (see SI Appendix for results with
N = 10,000). The beads interact via a purely repulsive Lennard–
Jones potential, and adjacent beads are connected by finitely
extensible nonlinear elastic bonds. A key parameter of our system
is the stiffness, K , of the chains, which is proportional to the
chain persistence length, imposed via a Kratky–Porod potential
(29, 30) (Materials and Methods). The simulations are performed
in LAMMPS (31) by using a Langevin thermostat and a time
step Δt = 0.001τB , with τB the Brownian time (see SI Appendix
for more details). The polymer is initialized inside a large sphere
that is slowly compressed to R = 7σ and subsequently allowed
to equilibrate. After this equilibration step, we allow the ring
to undergo reconnections—i.e., transient single-site breakage

followed by alternative joining—between any two segments that
are proximal in 3D (Fig. 1; effectively, we consider only segments
closer than rc = 1.3σ). Reconnection moves are attempted at
every integration step (if the distance condition is satisfied) and are
performed via a modified fix bond/swap (32–35) (SI Appendix).
Since we accept or reject the moves according to a Metropolis test,
the actual reconnection rates κr depend on the stiffness parameter
K : for instance, κr = 0.235 τ−1

B at K = 0 and κr = 0.004 τ−1
B

at K = 5. By mapping our Brownian time to real units (assuming
σ = 30 nm and a medium with viscosity η = 100 cP as the
nucleoplasm), these rates can be converted to 0.5 to 30 s−1.
These are overall faster than the 1/min recombination rates in
biological systems (36), but of the same order as recombination
in wormlike micelles (16, 37). Importantly, the precise value of
κr does not affect our conclusions, as we are interested in the
long-time, steady-state behavior of the system, rather than the
transient dynamics.

Every 102τB = 105Δt , we take a snapshot of the sys-
tem, reconstruct its topology, and record the chain number,
Nr (t), as well as their length distribution Lr (n, t). The
total number of beads in the system is kept constant to
N = 1,000 =

∑Nr (t)
n=0 Lr (n, t), so that the monomer density is

ρ= 3N /(4πR3)� 0.7σ−3 or, equivalently, the volume fraction
φ= 0.37. We have further checked that our system yields similar
results with N = 10,000 beads and also starting from different
initial conditions. For more details on our model, see Materials
and Methods and SI Appendix.

Results

Geometry of Confined Reconnecting Rings. We begin by charac-
terizing the geometrical features of the system as a function of the
stiffness parameter K (proportional to the persistence length of
the rings, lp) for a fixed value of spherical confinement R. We
monitor the average number of rings and their average length:
In our simulations, both these quantities evolve to reach a well-
defined steady-state value (Fig. 2 A and B).

Our data are suggestive of a smooth transition or cross-over
between a regime in which many short rings populate the sphere
(at low stiffness K ) and another one in which few long rings
remain in steady state (at high stiffness K ). We temporarily refer
to these as the short-ring and the long-ring regimes, respectively.
A typical snapshot of the system in the two regimes is shown
in Fig. 1 B and C (where the confining sphere is removed for
ease of visualization). The transition can be understood in terms
of the competition between the bending energy of the loops—
regulated by K , which favors the long-ring regime—and their
combinatorial and translational entropy—which favors the short-
ring regime. To estimate entropy, we note that if we allow all rings
to freely reconnect, the number of ways in which N beads can be
distributed into m rings (without leaving any one of these empty)
is given by the Stirling number of the second kind {N ,m} ∼
mN /m! for large N . Including the bending energy as well as the
configurational entropy of rings (see SI Appendix for details), the
total free energy of the system—apart from an irrelevant additive
constant—can be estimated as

F

kBT
=

2lpλπ
2m2

L
+m logm −m −m log aV , [1]

with λ a numerical factor related to the specific shape taken by a
curved polymer and a numerical factor specified in SI Appendix.
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Fig. 2. Geometrical transition of reconnecting rings. (A and B) Time evolution of the average number (n.) of reconnecting rings Nr (A) and their average contour
length Lr (B). Different curves refer to different values of the stiffness parameter K . All the data refer to a spherical confinement of radius R = 7σ. (C and D)
Average steady-state values of 〈Nr〉 and 〈Lr〉, respectively, as a function of K . The black line in C and C, Inset shows the theoretical prediction from Eq. 1 with
λ = 5.3 and a = 0.27. (E and F) Distributions of ring size in steady state, for K = 1 (E) and K = 5 (F), indicating that the system is always highly polydisperse.
(G) Probability that a ring of length Lr mixes with other rings as a function of Lr , for different values of K . (H) Heatmap of the radial distribution (G(r)) of monomers
in rings of length Lr as a function of r, the distance from the center of the confinement sphere, and Lr .

We note that we assumed the curvature to scale as ∼1/L, which
is valid for short rings such that L�mlp ; we shall see below that
this assumption holds for our system.

By minimizing the free energy with respect to m , we can
find the average number of rings as a function of K and R.
As seen in Fig. 2C (and Fig. 2 C, Inset), this mean-field theory
captures the numerical results for the average number of rings,
〈Nr 〉, very accurately. In particular, both our simulations and our
theory predict that 〈Nr 〉 ∼K−1. Eq. 1 also naturally describes
the behavior of the expected mean length 〈Lr 〉, thanks to the fact
that the total number of monomers is conserved. As shown in
Fig. 2D, the mean length displays a smooth transition, reaching
a plateau at large values of K . Therefore, our theory shows that
increasing K leads to a transition (or cross-over) between the
short-ring and the long-ring regimes. In SI Appendix, we give
more details about our semianalytical theory and show that a
similar transition can be observed at fixed stiffnessK by decreasing
the sphere radius R (SI Appendix, Fig. S1).

An intriguing feature of our reconnecting polymer system is
that the rings obtained in steady state have a very broad size
distributions (Fig. 2 E and F and SI Appendix, Figs. S2 and S3).
Notably, this is true for both small and large K , and the
size distribution is a power law, P(Lr )∼ 1/Lr , for all cases
(SI Appendix, Fig. S2). As reconnection changes polymer length,
but does not violate detailed balance in our model, the system
is effectively in thermodynamic equilibrium, and the size
distribution should be linked to the Boltzmann weight of rings
of different sizes. Neglecting the dependence on K , which is
expected to be a fair approximation for sufficiently long rings,
we therefore expect the size distribution to be ∼L−c

r —i.e.,
the probability of forming a loop of size Lr . We note that a
power-law size distribution of rings is also found, for analogous
reasons, in living (reversibly breakable) polymers in the phase
where loops are favored over linear chains (17). As discussed in
more detail later, the inherent polydispersity of reconnecting

rings plays an important role to determine the emerging
macroscopic properties of our system.

Radial Positioning and Mixing of Reconnecting Rings. In vivo,
chromosomes segregate into territories, which position themselves
nonrandomly with respect to the nuclear lamina. In this process,
entropic effects play an important role (38, 39). Motivated by this,
we ask how entropy and stiffness affect mixing and nonrandom
positioning of reconnecting rings (which may be viewed as toy
chromosomes) inside the sphere (a toy nucleus).

To this end, we construct a parameter, similar to the conditional
entropy used to measure the entropy of mixing (40, 41), which
quantifies the probability of finding monomers from other rings
within a sphere centered at a monomer in a given ring. In
Fig. 2G, we show that this mixing probability decreases with ring
length and increases with stiffness K , as expected for concentrated
solutions (42). In other words, longer and more flexible rings are
less mixed. To further characterize the spatial arrangement of the
rings, we compute the normalized radial density of monomers,
G(r) (Fig. 2H and SI Appendix, Fig. S4). Uniform positioning
of beads, and hence of rings, within the sphere corresponds to a
constant G(r). Instead, we see that smaller loops (small Lr ) are
depleted in the interior of the sphere and enriched at the periphery
r � 7σ (Fig. 2H and SI Appendix, Fig. S5). This is a consequence
of steric depletion (43) and geometry, as smaller soft objects can
approach a surface more frequently than larger ones. This finding
also suggests that smaller plasmids or extrachromosomal DNA
may be found more frequently toward the periphery of the cell
(in bacteria) or nucleus (in eukaryotes).

The Short- and Long-Ring Phases are Separated by a Topological
Gelation Transition. Up to now, we have shown that increasing
the stiffness K in a melt of reconnecting rings drives a transition
or cross-over between a short-ring and a long-ring regime. As
anticipated, and as shown in SI Appendix, the same transition
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Fig. 3. Critical point for gelation. (A) Filled squares: critical length L∗, for
which the concentration c of a ring in a sphere with R = 7σ equals c∗, as a
function of K . Filled circles: mean ring length versus K . The critical point for
gelation is expected to be where the two curves cross. (B) Calculation of L∗. At
L∗, the curves (c∗ as a function of K ) and the dotted line (c as a function of K )
intersect. c∗ is predicted for an ideal polymer ring (Eq. 2). Crit., critical.

or cross-over can also be achieved by increasing the ring density
at a fixed value of the stiffness. More insight into this transi-
tion, and its underlying physical mechanism, can be gained by
analyzing the overlap between reconnecting rings of different
stiffness. For increasing values of stiffness, the average length of
the rings in steady state is larger (Fig. 3A; blue circles are the
same as in Fig. 2D), in turn entailing more overlaps. Calling L
the average length of the rings, we can define a critical overlap
concentration as

c∗ =
3L

4πσR3
g

, [2]

with Rg the radius of gyration of the rings. This is the concentra-
tion above which rings of size L start to overlap with each other.
For our case, assuming that R2

g = (L/2lp)(2lp)
2/12 for K ≥ 1

and that R2
g = Lσ/12 for K = 0, we find c∗ as a function of L

(Fig. 3B). Using this curve, we can predict the critical value of the
length for which c = c∗ as a function of stiffness, in turn, yielding
the red curve in Fig. 3A. This curve is a decreasing function of K ;
in other words, increasing K makes it easier for rings to feel and
overlap with each other.

Importantly, as a consequence of the opposing dependencies
of the average ring length and of the critical overlapping length
as a function of K , there is a point at which the two curves cross
(Fig. 3A). The crossing point marks the critical point separating
the short-ring from the long-ring regime. In more detail, when
the red curve (filled squares) in Fig. 3A is above the blue curve
(filled circles), then c < c∗, and we expect that rings should not
overlap and therefore segregate, leading to the short-ring phase
(Fig. 1B). Instead, when the red curve is below the blue one, then
c > c∗, and we expect rings to mix and reconnect significantly
with each other, leading to the long-ring phase (Fig. 1C ). This
reasoning suggests that the transition we observe is akin to a
gelation transition, where rings can be seen as soft particles, which
start to interact once c/c∗ becomes large enough. It is indeed
natural to expect that the system should behave as a gas or liquid
of soft particles (the rings) for c < c∗ and as a gel (or a solid-like
structure) for c sufficiently larger than c∗. The main difference
with respect to colloidal gels of soft particles is that, in our case,
there are no direct attractive interactions between rings. However,
we expect topological interactions to be present, as above c∗, rings
can link with each other, as occurs in concentrated solutions of
fixed-size crossable rings (44). For this reason, we refer to the
transition between the short- and long-ring phases as “topological
gelation,” and we shall reinforce this interpretation in the analysis
described in the following sections. We note that in our system,

increasing K leads to a decrease in c∗, whereas a decrease in R
leads to an increase in c. This is why the system can be made to
gel either by increasingK (Fig. 3) or by decreasingR because both
of these variations increase the value of c/c∗ and, hence, favor the
gel phase.

We note that, for K = 5, an isotropic-to-nematic transition is
expected around monomer density ρ= 0.85σ−3 (29, 30), which
is larger than the monomer density at which we work, at ρ=
0.7σ−3. While alignment effects may be important, we argue that
the main role in driving the topological transition is played by
the overlap concentration c∗, as explained above. In line with
this, in SI Appendix, we show that a similar unlinked-to-linked
transition is observed for fully flexible (K = 1) chains, albeit at
larger densities, ρ� 0.76σ−3.

Topological Gelation Is Accompanied by the Formation of a
Percolating Network of Linked Loops. We now discuss in more
depth the topological nature of the gelation transition between
the short- and long-ring phases. To quantify the topological
entanglement between the rings in the system, we first compute
the Gauss linking number (Materials and Methods). We find
that, as the reconnecting rings get stiffer, the typical topologies
found at fixed confinement radius R are markedly different.
Fig. 4 A and B show the time dependence of the number of
linked pairs and of 〈|Lk |〉, the total absolute value of the linking
number (see Materials and Methods and SI Appendix for its precise
definition). These curves, and the steady-state averages plotted in
Fig. 4 C and D, show that both of these quantities increase
with the stiffness K , as expected from our argument that the
short- to long-ring transition is akin to gelation (Fig. 3). Flexible
rings are therefore typically short and unlinked, whereas stiffer
loops are typically longer and linked (see SI Appendix, Fig. S6
for the 〈|Lk |〉 distribution). The transition or cross-over that we
observe by increasing stiffness is thus associated with an increase
in topological entanglement and in linking between chains. In
keeping with our interpretation of the long-ring phase as a gel, we
expect that the topological entanglement between rings should
endow our system with a nonzero elastic modulus.

As topological gelation is approached, the nature of the typical
network of linked rings forming in steady state changes qualita-
tively, as shown in Fig. 4 E and F. For low K (in the liquid phase),
the network has low connectivity, and clusters have typically one
or very few nodes (Fig. 4E). In sharp contrast, for large K (in the
gel phase), there is a large connected component that accounts
for a substantial fraction of all rings (Fig. 4F ). More precisely,
we can quantify topological gelation by measuring the probability
that the network condenses into a single connected cluster of
nodes, which appears to depart from zero abruptly at a critical
value of K (Fig. 4F ). From Fig. 4 E and F, one can appreciate
a dramatic step-wise change at the critical value K � 2, which is
where c/c∗ � 1, according to our theory (Fig. 3A). Gelation is
therefore accompanied by a percolation transition in the network
of linked rings. In our system, rings outside the largest connected
component are typically unlinked, so that the average fraction
of rings in the largest component is approximately equal to the
linking probability for any ring in the network. Fig. 4F shows
that gelation occurs when this linking probability proxy is about
1/2; interestingly, this is equal to the bond-percolation threshold
for the square lattice, but significantly higher than that of most
standard 3D lattices.

Rings in Reconnecting Topological Gels Often Form Complex
Knots. We now turn to a more detailed analysis of the topology
of the gel phase, which, as we shall see, features some unique
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Fig. 4. Topological gelation. (A and B) Time dependence of the number of linked pairs of rings NLk (A) and average of the total unsigned linking number, 〈|Lk|〉,
(B). Different curves refer to different values of the stiffness parameter K . (C and D) Average steady-state values of NLk and 〈|Lk|〉, respectively, as a function
of K . (E and F) Probability of observing a single cluster as a function of K (E) and as a function of the linking probability (F). (G) Examples of knots and catenanes
found in the steady-state configurations at K = 5. (H) Snapshots of clusters of linked rings in simulations with K = 1 and K = 5. Each sampled configuration
is associated with a network; linked rings (vertices) are connected by edges. A connected component of the network represents a cluster of linked rings. Av.,
average; n., number; pr., probability; tot., total.

properties that cannot be found in topological gels with strand-
crossing rings of fixed size. While classic Olympic gels (19, 20)
are typically made by singly linked monodisperse rings [see also
kinetoplast DNA (18, 44, 45)], topological gels from confined
reconnecting rings possess much more complex and exotic struc-
tures (Fig. 4 G and H ). First, recombination of rings can create
knots, and, accordingly, we find that often, some rings in our
gel phase are knotted. We typically observe that only the longest
component in a link is knotted. Such knots can be relatively
complicated—for instance, one of the two examples featured in
Fig. 4G can be identified as a 931 knot. Second, even unknotted
rings may form complex catenanes: The one shown in Fig. 4G
displays three rings that form an eight-crossing link (note that
only two of the rings are pairwise linked, as a Solomon knot).
Results for larger systems (where longer chains are confined in
a larger sphere; SI Appendix, Fig. S8) are even more exotic. For
instance, SI Appendix, Fig. S8 shows a circular catenane and a 75
knot linked to two unknots in two different ways—as a Hopf

link with one and as a Solomon knot with the other. As found
for the total linking number 〈|Lk |〉, we also observed that the
complexity in topology tends to increase with K , or c/c∗, so that
deeper in the gel phase, topologies are more complex than close
to gelation.

How do such complex topologies form spontaneously through
recombination/reconnection? We argue that this is due to the fact
that the reconnection process allows ring length to vary. Indeed,
in dilute conditions, multicomponent links made of equal-size
rings that can exchange material are unstable for entropic reasons,
and, as a result, one of the rings expands at the expense of all
the others (46). Our results suggest that a similar entropic drive
leads to the growth of a single ring in a multicomponent link also
under confinement. Then, the larger ring is more likely to contain
a knot, while the shorter rings are more likely to be unknotted;
this is because knots have a statistical size that increases with
their topological complexity (47). Clearly, this argument shows
why topologies like those in Fig. 4H and SI Appendix, Fig. S8 are
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Fig. 5. Escape dynamics of reconnecting rings from a permeabilized sphere. Results of simulated elution experiments from a permeabilized sphere. The
different structures correspond to a system of reconnecting rings with different K . After permeabilizing the sphere, K was set to 1 for all systems, and the
reconnection was disallowed, in order to focus on the effect of topology on the escape dynamics. (Left) Number of monomers inside the sphere as a function
of time for an initial value of K equal to 0 (A) and 3 (B). Corresponding snapshots are shown in Right (with and without the sphere to ease visualization of the
topological structures). Simulations are performed inside a box with periodic boundaries.

impossible to obtain starting with monodisperse rings subject to
strand-crossing moves, as these do not allow material exchange
between rings.

Topological Gelation Traps the Reconnecting Rings Inside a
Permeabilized Sphere. The topological transition we uncovered
in the previous section can be vividly appreciated by the following
procedure, which is inspired by elution experiments in biophysics
and could, in principle, be realized in the laboratory (48). After
a steady state is reached in our simulations, we permeabilize the
confining sphere by converting it into a spherical mesh with
pores of controlled size. We then disallow further reconnection
and monitor the number of monomers still inside the sphere
as a function of time, n(t). The curves n(t) are reported in
Fig. 5 A and B for the liquid (K = 0) and gel (K = 3) regimes,
respectively. It is apparent from the markedly different curves that
the two regimes lead to very different escape dynamics. Note that,
to single out the effect of the different topological states, after
permeabilization, we set the stiffness to the same value (K = 1)
in all cases.

In the liquid phase, the “dust” of overwhelmingly small
and unlinked rings rapidly diffuses out of the sphere, as their
translational entropy increases if confinement is removed, and
such rings are small enough to translocate through the pores
(snapshots in Fig. 5A). In this liquid or gas phase, longer rings,
if present, are typically unlinked and can eventually exit the
sphere. This behavior is qualitatively equivalent to that observed in
experiments in permeabilized cells that show elution of sufficiently
small molecules, such as diffusing proteins or DNA fragments of
small size (48).

In sharp contrast, when the system is in the gel phase, the
network of linked loops that emerges after reconnection is too
large and topologically complex to translocate through the pores;
most of the system is thus kinetically trapped inside the per-
meabilized sphere. This is apparent from the plateau of n(t),
suggesting a long-lived steady state with a substantial proportion
of rings still inside the sphere (Fig. 5B). This second scenario is also

reminiscent of elution experiments, where large superstructures,
like microphase-separated protein droplets or chromatin–protein
aggregates, such as transcription factories, resist elution and re-
main inside the permeabilized nuclei (48).

In SI Appendix, we also consider the case where reconnections
are still possible, and the stiffness is not reset, after permeabiliza-
tion (SI Appendix, Fig. S9). This situation may correspond more
closely to an actual experiment with confined living polymer
rings. While the escape dynamics is, again, vastly different in the
liquid and gel phases, in this case, all rings escape the sphere at
small K , and the number inside the sphere decays as a stretched
exponential. Instead, the behavior in the gel phase is very similar
to that shown in Fig. 5, and the value of n(t) reaches a nonzero
plateau at large times.

Discussion and Conclusion

In summary, here, we have used coarse-grained molecular dynam-
ics simulations to study the behavior of a solution of polymer
rings undergoing recombination-like reactions (which we call
reconnections; Fig. 1) inside a spherical container. There are two
potential avenues to realize this system experimentally and to
test our theoretical predictions in vitro. First, the system may be
recreated by using a concentrated or confined mixture of suitably
engineered DNA plasmids and recombinase enzymes. We note
that a similar system was built to create synthetic scrambled yeast
chromosomes (6). Second, one may use a confined ensemble of
living ring polymers. The latter may be realized, for instance,
by using fibril-forming proteins or patchy particles above the
critical micellar concentration. As in wormlike micelles, rings
are normally absent or irrelevant (16), it would be necessary to
select proteins or particles whose geometry favors the formation
of loops (49, 50). Additionally, the system we have considered
here may be used as a very simplified framework to model the
behavior of recombinant DNA in vivo [e.g., in the scrambled yeast
chromosome system (6)].

6 of 8 https://doi.org/10.1073/pnas.2207728119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207728119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207728119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207728119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207728119/-/DCSupplemental
https://doi.org/10.1073/pnas.2207728119


Our main finding is that a confined solution of reconnecting
polymer rings harbors a transition, or cross-over, between two
fundamentally distinct regimes, which can be triggered either by
stiffening the polymers or by increasing their density. For flexible
or sufficiently dilute polymer rings, reconnection results in the
production of a gas, or fluid, or short segregated and unlinked
loops. For polymers with a sufficiently large persistence length,
or for a sufficiently dense solution, a network of long linked
loops emerges in steady state. This transition is a topological
analog of the gelation transition observed for sufficiently dense
suspensions of sticky colloids, where the formation of force chains
is substituted by topological linking. Like gelation and vitrifi-
cation, our topological transition is accompanied by a dramatic
slowdown in the system dynamics, which could be quantified
experimentally, for instance, by measuring the rate of escape from
the confining sphere when the latter is pierced by appropriate-
size pores to permeabilize it, as in elution experiments with DNA
or chromatin. For large enough stiffness, our system is expected
to undergo an isotropic-to-nematic transition involving spooling
(51). Arguably, nematic alignment of polymer segments in this
system may prevent proficient linking between different loops.
Indeed, our simulations suggest that the onset of the topological
gelation is mainly determined by the overlap concentration c∗,
which depends on the equilibrium size of the polymer loops
(itself dependent on the stiffness). Accordingly, in SI Appendix,
we show that the unlinked–linked transition can be seen also for
very flexible chains (K = 1) at large enough volume fractions.

The recombinant topological gel we have found here is funda-
mentally distinct from other topological gels obtained in DNA-
ring solutions either in vitro or in vivo by using topoisomerase,
such as Olympic gels (19, 20) or the kinetoplast DNA (18,
44, 45). In these two cases, DNA rings are monodisperse in
length, typically unknotted and singly linked. In our recombi-
nant gel, instead, rings are polydisperse, with a broad length
distribution (SI Appendix, Fig. S2); they are also often knotted
(SI Appendix, Fig. S10), especially at high concentrations, or un-
der tight confinement. The difference between these two types
of topological gels is inherently due to the difference between
recombinase-like and topoisomerase-like operations, as the former
does not need to preserve the ring lengths.

Besides being of fundamental interest as an example of a
topological phase transition in a soft condensed-matter system,
our results can therefore be exploited to design DNA gels with
complex topologies. In this respect, it is important to note that
topological (knot or link) complexity tends to increase with
stiffness, or confinement, so that by selecting parameters ap-
propriately, it should be possible to sieve networks with desired
topologies. We anticipate that topological gelation can also be
found if confinement is replaced by crowding—for instance, by
varying the stiffness of a suspension of recombinant polymer
loops of a sufficiently high-volume fraction. In such a geometry,
the transition could be characterized, for instance, by measuring
the bulk rheology response of the system, as the elastic modulus
should be nonzero in the gel phase.

In the context of recombinant DNA in vivo, we speculate that
our results suggest that recombination, when left unchecked, is
likely to create a topological gel, given the high genomic density

found under physiological conditions in the nuclei of living cells.
Gelation is likely detrimental for the cell, as it would lead to
entanglements hindering, for instance, chromosome segregation
during cell division. Interestingly, specific biological mechanisms,
such as topoisomerase action and active chromosome movement,
are indeed in place to remove chromosome interlocks (52–54),
which are recombination-driven entanglements that form during
early meiosis (55).

We hope that our work will inspire and inform future experi-
ments on reconnecting DNA plasmids or living polymer rings at
large density.

Materials and Methods

We simulate confined bead-spring polymers made of beads of size σ and mass
m at a temperature T , inside a spherical container of radius R. The equations
of motion, force fields, and the implementation of the reconnection moves are
described in SI Appendix.

An attempted reconnection move, which would change the configuration of
the system from ω to ω′ (Fig. 1A and A Model for Reconnecting Polymers), is
accepted with probability

pswap(ω
′, ω) =

{
exp(−ΔE/kBT) ΔE ≥ 0
1 ΔE < 0, [3]

where ΔE is the energy difference between ω and ω′.
The pairwise topological complexity of the system of rings is estimated by

computing the Gaussian linking number for each pair of rings γi and γj, which is
given by

Lk(γi, γj) =
1

4π

∮
γi

∮
γj

r1 − r2

|r1 − r2|3 · (dr1 × dr2). [4]

For each pair (i, j) and sampling time t, we defined

χ(i, j)(t) =
{

1 |Lk(γi, γj)|(t)> 0.5
0 |Lk(γi, γj)|(t)≤ 0.5, [5]

and, by summing over all pairs, we obtained the number of linked pairs of a given
configuration at time t:

NLk(t) =
1
2

Nr(t)∑
i,j

χ(i, j)(t), [6]

where Nr(t) is the number of rings at time t. The total absolute value of the linking
number of a configuration is computed as

|Lk|(t) =
1
2

∑
i,j

|Lk(γi, γj)|(t). [7]

Different averages of NLk and |Lk| are shown in Fig. 4 A–D. Additional model
details and supporting results are given in SI Appendix.

Data, Materials, and Software Availability. All study data are included in the
article and/or supporting information. Data have also been deposited in GitLab,
and are accessible at https://git.ecdf.ed.ac.uk/taplab/topological-gelation (56).
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