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Abstract

There is a pressing need for strategies to slow or treat the progression of functional decline in 

people living with HIV. This paper explores a novel rehabilitation robotics approach to measuring 

cognitive and motor impairment in adults living with HIV, including a subset with stroke. We 

conducted a cross-sectional study with 21 subjects exhibiting varying levels of cognitive and 

motor impairment. We tested three robot-based tasks – trajectory tracking, N-back, and spatial 

span – to assess if metrics derived from these tasks were sensitive to differences in subjects with 

varying levels of executive function and upper limb motor impairments. We also examined how 

well these metrics could estimate clinical cognitive and motor scores. The results showed that the 

average sequence length on the robot-based spatial span task was the most sensitive to differences 

between various cognitive and motor impairment levels. We observed strong correlations between 

robot-based measures and clinical cognitive and motor assessments relevant to the HIV 

population, such as the Color Trails 1 (rho = 0.83), Color Trails 2 (rho = 0.71), Digit Symbol – 

Coding (rho = 0.81), Montreal Cognitive Assessment – Executive Function subscore (rho = 0.70), 

and Box and Block Test (rho = 0.74). Importantly, our results highlight that gross motor 

impairment may be overlooked in the assessment of HIV-related disability. This study shows that 
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rehabilitation robotics can be expanded to new populations beyond stroke, namely to people living 

with HIV and those with cognitive impairments.
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Rehabilitation robotics; HIV; stroke; cognitive impairment; motor impairment; neurorehabilitation; 
upper limb

I. Introduction

TODAY, there are nearly 37 million persons living with human immunodeficiency virus 

(PLWH) worldwide [1]. As PLWH age due to the success of antiretroviral therapy (ART), 

the challenges have shifted to managing the chronic effects of living with HIV. Many of 

these challenges can be attributed to neurological complications caused by HIV-associated 

neurocognitive disorders (HAND), accelerated aging, drug abuse, and HIV-related 

comorbidities [2]. Together, the broad range of impairments experienced by PLWH has been 

shown to impact instrumental activities of daily living (IADLs), such as medication 

management, telephone communication, cooking, and financial management [3]. In one 

study, upwards of 80% of PLWH reported dealing with at least one impairment, activity 

limitation or disability, or social participation restriction [4]. These deficits are often tied to 

impairments in executive function, memory, and visuospatial domains [5]. PLWH also 

experience motor impairments in gait, coordination, upper limb fine motor skills, and 

strength, with 69% of PLWH in one study demonstrating at least one motor impairment [6]–

[9]. As such, there is a pressing need for effective neurorehabilitation strategies to slow or 

treat the progression of functional decline in PLWH.

The gold standard for diagnosing neurocognitive impairment has been established by the 

Frascati criteria, an extensive neuropsychological battery that classifies HAND subtypes as 

asymptomatic neurocognitive impairment, mild neurocognitive disorder, or HIV-associated 

dementia [10]. However, the assessments used to diagnose HAND often test domains in 

isolation, which is not reflective of the dual involvement of cognitive and motor demands in 

most IADL tasks. Differences between HIV and non-HIV populations are also seen in more 

nuanced tasks. Kronemer et al. demonstrated that even when there was no motor impairment 

detected on clinical assessments, PLWH demonstrated upper limb motor impairment while 

multitasking compared to a non-HIV control group that did not relate to HAND stage [11]. 

Assessments of multitasking have been shown to be more reflective of IADL performance in 

PLWH compared to standard clinical assessments [12]. These results demonstrate that 

current clinical assessments and biomarkers of HIV do not necessarily correspond well to 

more subtle impairments in cognition and motor performance [11].

HIV-associated non-communicable diseases, such as cerebrovascular disease (CVD), are a 

secondary effect of HIV infection that can further exacerbate existing cognitive and motor 

impairments. HIV is an independent risk factor for CVD such as stroke [13]. With an 

incidence rate of 3.87 per 1000 years lived, CVDs occur at an average age of 48 years in the 

HIV population [13]. These numbers are 1.5 times higher and 22 years younger than the 

general U.S. population [14]. Augustyn et al. recently showed that stroke survivors with HIV 
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experienced a decline in ADL functions one month after discharge compared to stroke 

survivors without HIV who continued to show improvement, highlighting how HIV can 

impact stroke recovery [15].

Efforts to develop neurorehabilitation strategies have been made in the stroke population, but 

there is a paucity of established solutions for PLWH despite evidence that rehabilitation can 

positively address HIV-related challenges in physical, social, and psychological well-being 

[16], [17]. The rehabilitation robotics field provides a potential solution to address these 

challenges [18]. Robot-assisted stroke therapy has been shown to be as effective as high-

intensity physical therapy for chronic stroke patients [19]. Additionally, robotic systems 

allow for a variety of kinematic metrics to be observed that relate to clinical measures of 

motor impairment [20]–[24].

While the primary focus to date has been on motor impairment, recent studies have started to 

look at robot-based measures of cognitive impairment in stroke and traumatic brain injury 

populations [21], [22]. Both of these studies have demonstrated a relationship between 

robot-based metrics and overall cognitive scores. However, given that cognition is broadly 

defined, more work needs to be done to establish robot-based metrics relating to specific 

domains.

The strengths of a rehabilitation robotics-based approach include the ability to standardize 

assessments with a greater range of objective measures, collect a vast amount of data, and 

develop personalized neurorehabilitation strategies based on the patient’s presenting 

characteristics. Our prior work has also shown the feasibility of deploying cost-effective 

rehabilitation robotics systems in lower-resource contexts [25]. Cost-effective rehabilitation 

robotics systems can bridge healthcare gaps in countries with low-to-middle income 

economies that are dealing with large populations of patients with impairments and a 

shortage of rehabilitation professionals. This approach has the potential to positively impact 

PLWH by building upon the body of work that has been done in the stroke population.

This preliminary cross-sectional study aims to establish objective, robot-based measures of 

executive function and upper limb motor impairment in PLWH – including a subset with 

stroke – and assess the strength of the relationship between these robot-based and clinical 

assessment scores. This study tests three hypotheses to demonstrate the utility of a robotic 

approach in assessing impairments in PLWH. Given the heterogeneous nature of 

impairments in this population, the first part of this study tests the hypothesis that robot-

based metrics can differentiate subjects with and without moderate executive function or 

upper-limb motor impairments (H1). The second hypothesis measures the relationship 

between robot-based metrics and clinical assessments used in PLWH by testing whether 

robot-based metrics are good predictors of clinical cognitive assessment scores (H2) as well 

as clinical motor assessment scores (H3). This work lays the foundation for the development 

of novel neurorehabilitation strategies for PLWH.
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II. Methods

A. Subject Population and Procedure

Individuals over the age of 18 years old were recruited from the community through flyers 

posted at local HIV clinics and organizations. Inclusion criteria for the HIV group consisted 

of documented HIV status that was ART-treated and virally-suppressed, the ability to 

ambulate, the ability to comprehend study procedures, and the ability to provide written 

informed consent. Individuals with neuropathy (i.e. distal symmetric polyneuropathy) were 

excluded.

Subjects were included in the HIV-stroke subgroup if they met the inclusion criteria for the 

HIV group and were at least three months removed from a stroke event. HIV-stroke subjects 

with severe aphasia, visual neglect, or basal ganglia stroke were excluded. Subjects were 

excluded if they were more than mildly depressed as assessed by the Beck’s Depression 

Inventory – Fast Screen (score ≥ 4) [26]. Subjects were compensated for time and travel. 

This protocol was approved by the Internal Review Board of the University of Pennsylvania 

(Protocol no. 823511).

Subjects underwent a preliminary phone screen to screen for study eligibility. They were 

then sent a copy of the informed consent to review prior to coming in for their scheduled in-

person appointment. After written informed consent was obtained in-person, cognitive and 

motor assessments were performed. Participants then completed three robot-based tasks in a 

randomized order with the dominant and non-dominant upper-extremity limb.

B. Cognitive Assessments

The cognitive assessments consisted of the Color Trails, Digit Symbol–Coding (WAIS-III 

®), Montreal Cognitive Assessment (MoCA), and International HIV Dementia Scale 

(IHDS) [27]–[30]. These tests have all been administered in PLWH previously to measure 

neurocognitive impairment [8], [30]–[33]. These tests were chosen to reflect the cognitive 

domains commonly affected by HIV.

1) Color Trails: The Color Trails is a set of two cognitive pencil and paper tests based on 

the Trail Making Test but does not require knowledge of the alphabet, thus reducing 

potential bias [27]. Color Trails 1 tests for sustained visual attention and simple sequencing, 

while Color Trails 2 assesses frontal systems such as selective attention, mental flexibility, 

visual spatial skills, and motor speed. Performance was measured by the time to complete 

the task, with a higher time indicating worse performance. These scores were normalized by 

age, gender, and education [27].

2) Digit Symbol – Coding (WAIS-III ®): The Digit Symbol–Coding (WAIS-III ®) test 

is another neuropsychological test assessing processing speed [28]. Subjects use a number-

symbol key to copy symbols under a sequence of numbers. Performance was measured by 

the number of symbols coded in the span of two minutes, with a higher number of symbols 

copied in the time span representing better performance. Scores were normalized by age, 

gender, and education.
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3) Montreal Cognitive Assessment (MoCA): The MoCA is a screening tool to 

detect impairment in a number of cognitive domains – visuospatial/executive, naming, 

memory, attention, language, abstraction, delayed recall, and orientation – and reflects the 

degree of cognitive impairment in a subject [29]. A score above 25 out of 30 generally 

indicates normal cognitive function, while a score below 19 indicates likely moderate 

cognitive impairment.

An executive function subscore (MoCA-EF) was calculated to serve as a proxy in place of a 

more extensive neuropsychological assessment of executive function, based on work by Lam 

et al. demonstrating good convergent validity between this subscore and standardized 

neuropsychological tests of executive function [34]. This subscore, scored out of five points, 

was calculated from summing the scores from the backward digit span, trail making, word 

similarities, and ‘F’-word list generation tasks [34]. Lam et al. demonstrated that a cutoff 

score of 4 had a sensitivity of 0.79 to executive function impairment [34].

4) International HIV Dementia Scale (IHDS): The IHDS is a screening test for 

cognitive impairment designed to screen for HAND, with a score below 10 out of 12 

indicating potential cognitive impairment [30]. It was developed as a culturally appropriate 

adaptation of the HIV Dementia Scale. However, the IHDS has not been validated in the 

stroke population.

C. Motor Assessments

The motor assessments tested gross motor function, fine motor function, and strength. They 

consisted of the Box and Blocks Test (BBT), Grooved Pegboard (GP), and grip strength.

1) Box and Blocks (BBT): The BBT is a test of gross motor function measuring how 

many blocks subjects are able to transfer across a partition in one minute, with a higher 

number of transferred blocks indicating better motor function [35]. Scores were normalized 

by age, gender, and limb. It is typically used to measure reach and grasp function in the 

stroke population.

2) Grooved Pegboard (GP): GP is a common motor assessment in PLWH. It tests fine 

motor function and dexterity, measuring the amount of time a subject takes to insert all of 

the grooved pegs into matched holes on a board. Performance was measured by the time to 

complete the task with longer times indicating worse fine motor function [36]. GP data for 

subjects unable to complete the task were not included in the analysis (one subject).

3) Grip Strength: Grip strength is measured with a dynamometer. Three trials were 

taken with each hand, with the average and standard deviation being recorded. Accelerated 

grip strength decline has been shown in a study of HIV-infected men, which may contribute 

to decreased life expectancy and lower quality of life with aging [37].

D. Robot Assessment

1) Rehabilitation Robot System: The rehabilitation robot used in this study, the 

Haptic TheraDrive, is a one degree-of-freedom robot for upper limb stroke rehabilitation 
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(Fig. 1) [25]. The user operates the TheraDrive by manipulating a vertically-mounted crank 

handle equipped with force sensors and an optical encoder. For assessment purposes, it is 

run in a gravity-compensation mode, which uses force sensors as an input to a proportional-

integral-derivative (PID) controller to calculate the necessary response by the motor to give 

the sensation that there is no resistance or assistance while the user manipulates the handle.

2) Trajectory Tracking Motor Task: The trajectory tracking task is designed to assess 

upper limb motor performance. A single trial consists of the user moving the crank arm 

forward and backward to follow a vertically scrolling sinusoidal path for 15 seconds. This 

task is repeated 15 times after one training trial. The outcome measures include performance 

error, movement smoothness, and the normalized distance traversed. Performance error was 

calculated as the root mean square error (RMSE) of the position relative to the displayed 

trajectory and normalized by the RMSE assuming no movement. A lower performance error 

indicates better tracking performance. Spectral arc length was used as the measure of 

smoothness, which has the benefit of being less sensitive to noise compared to other 

measures of smoothness [39]. More negative values of smoothness indicate less smooth 

movements. Normalized distance traversed was calculated from dividing the total angular 

distance that the subject traversed by the expected angular distance of the displayed 

trajectory path. A value closer to 1 reflects that the actual distance traversed matched the 

expected distance. A lower value could reflect moderate motor impairment, while a higher 

value could reflect inefficient movement.

3) N-Back Cognitive Task: The N-back test is commonly used in the cognitive 

neuroscience field as a test of working memory and working memory capacity [40]. In this 

version, the subject is presented with a sequence of numerical digits (1-4) with three 

different conditions. For the 0-back condition, the easiest condition, the subject indicates 

when the current stimulus shown on the screen is the number ‘2.’ For the more cognitively-

involved 1-back and 2-back conditions, the subject indicates when the current stimulus 

matches the stimulus shown one stimulus or two stimuli prior, respectively. The subject 

indicates a match by pressing a button on the TheraDrive. The number then flashes green or 

red for a correct or incorrect response, respectively. Each subject performed the task with 

each limb, cycling through the 0-back, 1-back, and 2-back conditions four times for a total 

of 12 trials, all with different numerical sequences. The first set of trials is used as a training 

set and not included in the analysis. Ten responses are recorded per trial. Each subject was 

shown the same set of 12 sequences, with each sequence having a minimum of three button 

press responses. N-back performance was measured as the total number of correct responses 

divided by the total number of responses across the trials, resulting in a score ranging from 0 

to 1, with a score closer to 1 representing better performance.

4) Spatial Span Cognitive-Motor Task: The Spatial Span is a test of visuospatial 

working memory based on the Corsi block-tapping task used in neuropsychological 

assessments [41]. While computerized versions of the Spatial Span exist [42], this version 

incorporates an added motor component to concurrently test for arm coordination, 

visuospatial ability, and working memory. A 3-by-3 grid of tiles is displayed to the user on a 

computer screen, and a sequence of tiles is shown one tile at a time. The user must operate 
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the TheraDrive to select the tiles in the order shown. If the user successfully repeats the 

sequence by selecting the correct tiles in order, the next displayed sequence increases in 

length by one to make the task more difficult. If the user is unsuccessful, the sequence 

decreases in length by one. The metrics of interest for the task include the normalized 

distance traversed, movement smoothness, mean sequence length across all the trials, and 

performance. Normalized distance traversed and movement smoothness were calculated the 

same way as in the trajectory tracking task. Mean sequence length is the average number of 

tiles displayed to the user per trial and reflects the capacity of the subject. Spatial span 

performance was measured as the total number correct tile matches divided by the total 

number of tiles shown across the trials. Thus, spatial span performance is a score ranging 

from 0 to 1, with 1 representing perfect performance.

E. Data Processing

A one-sample Kolmogorov-Smirnov test for normal distribution was run on the raw 

continuous demographic, clinical, and robot metrics. Given that the data were not normally 

distributed, non-parametric Wilcoxon rank-sum tests were conducted to test for differences 

between HIV and HIV-stroke groups. To adjust for multiple comparisons, separate 

Bonferroni corrections were applied for the clinical (adjusted p = 0.004) and robot-based 

(adjusted p = 0.006) scores.

All robot metrics were Z-score normalized by the entire subject population in this study, 

resulting in a distribution with a mean of zero and standard deviation of one. This was done 

to ensure metrics were evenly weighted in the regression analysis.

F. Functional Subgroup Comparison Analysis

To investigate the first hypothesis that robot-based metrics can differentiate between subjects 

with and without moderate executive function impairments or upper-limb motor impairment, 

all study subjects were categorized by their motor and cognitive status based on clinical 

score cutoffs. The subject population demonstrated motor impairment on both the BBT and 

GP based on healthy population norms, but BBT was chosen to avoid excluding individual 

subjects who did not complete the GP. To categorize subjects by motor status, raw BBT 

scores were normalized by published gender, age, and limb side norms and converted into a 

Z-score. A BBT Z-score of −2 and below was used to indicate moderate motor impairment. 

To categorize subjects by cognitive status, a MoCA-EF score of 3.5 and below was used as a 

cutoff for likely moderate executive function impairment [34]. Subjects were then 

categorized into one of four functional subgroups based on the possible combinations of 

motor and cognitive status. Because this was done for both dominant and non-dominant limb 

motor status, subjects could be classified into two different functional subgroup 

classifications based on differing motor performance between dominant and non-dominant 

limbs.

For each robot-based metric, a two-way analysis of variance (ANOVA) was conducted 

where the factors were functional group and limb performance side. To adjust for all 

pairwise comparisons between functional groups, a Tukey-Kramer honest significance test 
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was applied if the ANOVA was significant. An alpha level of 0.05 was used to establish the 

significance on all statistical tests.

G. Multiple Linear Regression Analysis

To investigate whether the robot-based metrics were significant predictors of clinical 

assessment scores, a multiple linear regression approach was used. Bosecker et al. 
previously used a backward multiple linear approach to identify a set of robot-based metrics 

reflective of various stroke outcome measures [23]. Rather than start with all of the robot-

based metrics and remove terms, a forward stepwise approach was implemented here. This 

consisted of individually testing each robot-based metric and subsequently adding it to the 

model only if it was a statistically significant predictor individually. Given the sample size of 

the subject population, the model was limited to two terms. In order to adjust for the number 

of predictors used in the model and to compare performance between models with different 

numbers of predictors, the adjusted R2 is reported. A power analysis revealed that the linear 

regression models were powered to detect a minimum R2 of 0.40 with one predictor and 

0.43 with two predictors (n = 21, power = 0.80, alpha = 0.05). A small, medium, and large 

effect size were defined as an R2 value of 0.01, 0.25, and 0.50, respectively. The non-

parametric Spearman’s rho was also calculated to measure the correlation between predicted 

and actual clinical scores. All analysis was conducted in Matlab 2019A.

III. Results

A. Subject Population Breakdown

The descriptive statistics for demographic and clinical information for the subject groups 

(HIV, HIV-stroke, and combined) are presented in Table 1. Twenty-one subjects in total – 

thirteen male and eight female – participated in the study. Six subjects had a history of 

stroke. The average age of the HIV and HIV-stroke groups were 56.2±5.4 years old and 

54.2±8.1 years old, respectively, while the average age of the entire subject population was 

55.5±6.3 years old. Fifteen subjects had 12 or more years of education. Fourteen subjects 

had MoCA-EF scores below 3.5 and sixteen subjects displayed moderate motor impairment 

in at least one limb based on BBT scores. There were no statistically significant differences 

– even at the unadjusted alpha level of 0.05 – between HIV and HIV-stroke groups or 

between limbs on the clinical motor assessments.

B. Robot-Based Performance for Example Subjects

Performance data from two sample subjects (Subjects 12 and 18) on the trajectory tracking 

and spatial span tasks are presented, highlighting the wide variety of impairments seen in the 

subject population (Fig. 2). Subject 12 is a 56-year-old male HIV subject with moderate 

cognitive and moderate motor impairment, scoring a 13 on the MoCA and more than two 

standard deviations below Box and Block population norms on both the dominant and non-

dominant limb. Subject 18 is a 49-year-old male HIV-stroke subject with low cognitive and 

low motor impairment, scoring a 25 on the MoCA and less than two standard deviations 

below BBT populations norms on both the dominant and non-dominant limb. Qualitatively, 

Subject 12 demonstrates poorer performance compared to Subject 18 (Fig. 2; left). This can 

be seen in comparing the average trajectory of each subject to the desired trajectory and the 
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larger variance across the trials as seen in the shaded regions. On the robotic spatial span 

task, the histogram of sequence lengths across the trials shows a distinct difference between 

the two subjects (Fig. 2; right).

C Raw Robot Performance Metrics

Table II shows the mean and standard deviations for the raw robot-based metrics across the 

HIV-only group, HIV-stroke group, and the entire subject population. The scores for both the 

dominant and non-dominant limb are reported. There were no statistically significant 

differences – even at the unadjusted alpha level of 0.05 – in any robot metrics between 

dominant and non-dominant limbs or between HIV and HIV-stroke groups. However, some 

qualitative differences are notable. For example, while trajectory tracking performance was 

similar on both limbs in the HIV-only group, it was noticeably different for the HIV-stroke 

group, reflecting the presence of motor impairments in the non-dominant limb likely caused 

by stroke. The spatial span mean sequence length in each group was lower than the reported 

average span of 4.8 in a study that developed a computer-based version of the Corsi block-

tapping task [42]. Given that moderate cognitive impairment may mask motor performance, 

the study subjects were further stratified by their cognitive and motor function.

D. Stratification by Functional Subgroups (Hypothesis 1)

Figure 3 shows the distribution of the subject population by their functional groups using 

MoCA-EF subscores and BBT Z-scores to separate subjects by cognitive and motor 

function, respectively. The number of subjects in each of the four functional groups were the 

same when using dominant versus non-dominant BBT z-scores. There were two subjects in 

the low cognitive and low motor impairment group, five subjects in the low cognitive and 

moderate motor impairment group, six subjects in the moderate cognitive and low motor 

impairment group, and eight subjects in the moderate cognitive and moderate motor 

impairment group. Five HIV subjects and one stroke subject had different functional group 

classifications based on their dominant and non-dominant motor scores.

There was a statistically significant main effect of functional group on N-back performance 

(F(3,34) = 6.64, p = 0.001). There was no main effect of limb side or interaction effect. 

Subjects with low cognitive and low motor impairments performed better on the N-back task 

compared to subjects with moderate cognitive and moderate motor impairments (0.96± 0.01 

vs. 0.83± 0.05, p = 0.001) and subjects with moderate cognitive and low motor impairments 

(0.96± 0.01 vs. 0.85± 0.06, p = 0.01). Fig. 4 (top) shows the N-back performance scores for 

each of the functional subgroups.

There was a statistically significant main effect of functional group on trajectory tracking 

performance error (F(3,34) = 7.78, p = 0.0004). There was no main effect of limb side or 

interaction effect. Subjects with moderate cognitive and moderate motor impairment had 

significantly higher performance error scores compared to subjects with low cognitive and 

moderate motor impairment (0.50± 0.25 vs. 0.28±0.08, p = 0.04) and subjects with low 

cognitive and low motor impairment (0.50± 0.25 vs. 0.20±0.04, p = 0.04). Fig. 4 (middle) 

shows the trajectory tracking performance for each of the functional groups.
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There was a statistically significant main effect of functional group on spatial span mean 

sequence length (F(3, 34) = 8.23, p = 0.0004). There was no main effect of limb side or 

interaction effect. Subjects with low cognitive and low motor impairment had longer average 

sequence lengths compared to subjects with moderate cognitive and moderate motor 

impairments (4.48±0.56 vs. 2.39±0.74, p = 0.0004) and subjects with moderate cognitive 

and low motor impairments (4.48±0.56 vs. 3.12±1.00, p = 0.04). Subjects with low cognitive 

and moderate motor impairment also had longer average sequence lengths compared to 

subjects with moderate cognitive and moderate motor impairment (3.31±0.70 vs. 2.39±0.74, 

p = 0.04). Fig. 4 (bottom) shows the spatial span mean sequence length for each of the 

functional subgroups.

There was a statistically significant main effect of functional group on spatial span 

performance, but there were no significant differences between any of the functional 

subgroups after correcting for multiple comparisons.

There were no statistically significant main or interaction effects for trajectory tracking 

normalized distance traversed, trajectory tracking smoothness, spatial span normalized 

distance traversed, or spatial span smoothness scores.

E. Estimating Clinical Cognitive Scores (Hypothesis 2)

1) Dominant Limb Predictors: Fig. 5 shows the multiple linear regression models for 

each of the clinical cognitive assessments using dominant limb robot-based metrics as the 

predictors.

Color Trails 1 was predicted by a combination of trajectory tracking normalized distance 

traversed and spatial span mean sequence length (p = 0.03 and 0.001, respectively). The 

robot-based predictors accounted for 60% of the variance in the model, and the predicted 

scores strongly correlated with actual Color Trails 1 scores (rho = 0.83, p = 3.33 × 10−6; 

adjusted R2 = 0.60, p = 1.13 × 10−4).

Color Trails 2 was predicted by spatial span mean sequence length (p = 0.002). The robot-

based predictor accounted for 36% of the variance in the model, and the predicted scores 

strongly correlated with actual Color Trails 2 scores (rho = 0.71, p = 3.34 × 10−4; adjusted 

R2 = 0.36, p = 0.002).

Digit Symbol Coding was predicted by spatial span mean sequence length (p = 1.83 × 10−5). 

The robot-based predictor accounted for 61% of the variance in the model, and the predicted 

scores strongly correlated with actual Digit Symbol Coding scores (rho = 0.81, p = 7.06 × 

10−6; adjusted R2 = 0.61, p = 1.83 × 10−5).

MoCA was predicted by spatial span mean sequence length (p = 0.003). The robot-based 

predictor accounted for 34% of the variance in the model, and the predicted scores 

moderately correlated with actual MoCA scores (rho = 0.64, p = 0.002; adjusted R2 = 0.34, 

p = 0.003).

MoCA-EF was predicted by spatial span mean sequence length (p = 5.30 × 10−4). The 

robot-based predictor accounted for 45% of the variance in the model, and the predicted 
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scores strongly correlated with actual MoCA-EF scores (rho = 0.70, p = 4.07 × 10−4; 

adjusted R2 = 0.45, p = 5.30 × 10−4).

IHDS was predicted by spatial span performance (p = 5.31 × 10−4). The robot-based 

predictor accounted for 45% of the variance in the model, and the predicted scores 

moderately correlated with actual IHDS scores (rho = 0.52, p = 0.02; adjusted R2 = 0.45, p = 

5.30 × 10−4).

2) Non-Dominant Limb Predictors: Fig. 6 shows the linear regression models for 

each of the clinical cognitive assessments using non-dominant limb robot-based metrics as 

the predictors.

Color Trails 1 was predicted by spatial span mean sequence length (p = 0.001). The robot-

based predictor accounted for 39% of the variance in the model, and the predicted scores 

strongly correlated with actual Color Trails 1 scores (rho = 0.70, p = 3.73 × 10−4; adjusted 

R2 = 0.39, p = 0.001).

Color Trails 2 was predicted by N-back performance (p = 0.003). The robot-based predictor 

accounted for 35% of the variance in the model, and the predicted scores moderately 

correlated with actual Color Trails 2 scores (rho = 0.68, p = 7.79 × 10−4; adjusted R2 = 0.35, 

p = 0.003).

Digit Symbol Coding was predicted by spatial span mean sequence length (p = 1.51 × 10−4). 

The robot-based predictor accounted for 51% of the variance in the model, and the predicted 

scores strongly correlated with actual Digit Symbol Coding scores (rho = 0.76, p = 6.38 × 

10−5; adjusted R2 = 0.51, p = 1.51 × 10−4).

MoCA was predicted by N-back performance (p = 0.007). The robot-based predictor 

accounted for 28% of the variance in the model, and the predicted scores weakly correlated 

with actual MoCA scores (rho = 0.48, p = 4.07 × 10−4; adjusted R2 = 0.28, p = 0.007).

MoCA-EF was predicted by spatial span mean sequence length (p = 0.001). The robot-based 

predictor accounted for 41% of the variance in the model, and the predicted scores 

moderately correlated with actual MoCA-EF scores (rho = 0.68, p = 7.00 × 10−4; adjusted 

R2 = 0.41, p = 0.001).

IHDS was predicted by a combination of trajectory tracking smoothness and spatial span 

smoothness (p = 9.76 × 10−5 and 0.02, respectively). The robot-based predictors accounted 

for 53% of the variance in the model, and the predicted scores strongly correlated with 

actual IHDS scores (rho = 0.80, p = 1.46 × 10−5; adjusted R2 = 0.53, p = 4.12 × 10−4).

F. Estimating Clinical Motor Scores (Hypothesis 3)

1) Dominant Limb Predictors: Fig. 5 shows the linear regression models for each of 

the clinical motor assessments using dominant limb robot-based metrics as the predictors.

Dominant limb BBT was predicted by a combination of trajectory tracking normalized 

distance traversed and spatial span normalized distance traversed (p = 0.003 and 0.02, 
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respectively). The robot-based predictors accounted for 53% of the variance in the model, 

and the predicted scores strongly correlated with actual BBT scores (rho = 0.74, p = 1.46 × 

10−4; adjusted R2 = 0.53, p = 4.72 × 10−4).

Dominant limb GP was predicted by trajectory tracking performance (p = 0.002). The robot-

based predictor accounted for 38% of the variance in the model, and the predicted scores 

moderately correlated with actual GP scores (rho = 0.58, p = 0.006; adjusted R2 = 0.38, p = 

0.002).

Dominant limb grip strength was predicted by spatial span normalized distance traversed, 

but it was neither a significant predictor nor correlated to actual grip strength scores (rho = 

0.29, p = 0.20; adjusted R2 = 0.10, p = 0.09).

2) Non-Dominant Limb Predictors: Fig. 6 shows the linear regression models for 

each of the clinical motor assessments using non-dominant limb robot-based metrics as the 

predictors.

Non-dominant limb BBT was predicted by a combination of trajectory tracking normalized 

distance traversed and spatial span mean sequence length (p = 0.002 and 0.01, respectively). 

The robot-based predictors accounted for 64% of the variance in the model, and the 

predicted scores strongly correlated with actual BBT scores (rho = 0.71, p = 3.41 × 10−4; 

adjusted R2 = 0.64, p = 4.44 × 10−5).

Non-dominant limb GP was predicted by trajectory tracking normalized distance traversed 

(p = 0.005). The robot-based predictor accounted for 31% of the variance in the model while 

the predicted scores were not significantly correlated with actual GP scores (rho = 0.29, p = 

0.21; adjusted R2 = 0.31, p = 0.005).

Non-dominant limb grip strength was predicted by spatial span performance (p = 0.03). The 

robot-based predictor accounted for 19% of the variance in the model, and the predicted 

scores weakly correlated with actual grip strength scores (rho = 0.44, p = 0.04; adjusted R2 = 

0.19, p = 0.03).

IV. Discussion

A. Gross Motor Impairments Are Prevalent in PLWH

This study aimed to use a robot-based approach to explore objective measures of cognitive 

and motor impairment in HIV and HIV-stroke populations. The HIV and HIV-stroke groups 

displayed no significant differences in clinical or robot-based scores. Subjects in both the 

HIV and HIV-stroke groups demonstrated mild to moderate impairment in executive 

function, information processing, and upper limb fine and gross motor domains relative to 

published population normal performance values in uninfected populations. These results 

are consistent with previous research demonstrating impairments in these domains in PLWH 

[6], [10], [43].

We found it notable that the HIV-only group demonstrated not only fine motor impairment 

as previously reported in the literature [7]–[9], [11], but also gross upper limb motor 
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impairment. Gross motor impairment has generally been considered a pre-ART era 

manifestation of HIV infection, and studies since then have focused on the fine motor 

deficits that result from HIV [7]. Moderate bilateral gross motor impairment, as measured by 

the BBT and adjusted to healthy population norms, was present in 7 of 15 subjects in the 

HIV group. The prevalence of moderate bilateral fine motor impairment in the HIV-only 

subjects in this study (5 out of 15), as measured by the GP, is higher than what was reported 

in Wilson et al. (2 out of 12) in a group of PLWH with a similar average age of 57.9 years 

old [7]. These results suggest that gross upper limb motor impairments may be an 

overlooked effect of chronic HIV and that the BBT can be used to identify these 

impairments as an alternative to the GP. This approach could be useful when examining 

patients with both HIV and stroke in particular, when motor impairments may be more 

prevalent [44].

B. Robot-Based Metrics Capture Differences in Functional Subgroups

A wide range of impairments was observed in the subject population and there was no clear 

separation between the HIV and HIV-stroke groups on either the clinical assessments or 

robot-based metrics. As such, subjects were classified into one of four functional groups by 

their cognitive and motor performance. The results provide evidence in support of the 

study’s first hypothesis that robot-based metrics can differentiate subjects with and without 

moderate executive function or upper-limb motor impairments.

Subjects with moderate executive function impairment, regardless of motor status, 

performed worse on the N-back compared to subjects with low cognitive and low motor 

impairment. These results suggest the robot-based N-back can be used to isolate executive 

function deficits. This is consistent with previous findings that the paper-based N-back test, 

although specifically a test for working memory, engages executive function domains 

impacted by HIV [45].

Subjects with moderate executive function and moderate gross motor impairments 

performed worse on the robot-based trajectory tracking task compared to subjects with low 

cognitive impairment, regardless of motor status. This suggests that there might be a 

cognitive component to the trajectory tracking task that exacerbates performance error in the 

presence of executive function impairments.

Similarly to the robot-based N-back, subjects with moderate executive function impairment, 

regardless of motor status, had shorter sequences on the robot-based spatial span task 

compared to subjects with low cognitive and low motor impairment. Additionally, subjects 

with low cognitive and moderate motor impairment performed better than subjects with 

moderate cognitive and moderate motor impairment. These results suggest that a robot-

based spatial span task can be used to detect executive function impairment, even in the 

presence of moderate motor impairment.

Together, these robot-based metrics provide a set of measures that are able distinguish 

between certain functional groups. Going forward, these represent a potential set of 

objective metrics that can be used to track longitudinal performance that relate to functional 
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status in PLWH, stroke, and other conditions presenting with both motor and cognitive 

impairments.

C. Robot-Based Metrics Relate to HIV-Related Clinical Assessments

To our knowledge, we are the first group to explore objective robot-based measures of both 

motor and cognitive impairments in PLWH. This study is a first step in developing more 

targeted neurorehabilitation strategies for PLWH exhibiting both motor and cognitive 

decline. The results support the study’s second hypothesis and show that both individual and 

linear combinations of robot-based metrics can successfully estimate clinical cognitive 

scores. The regression models for Color Trails 1, Digit Symbol–Coding, MoCA–EF and 

IHDS (adjusted R2 = 0.41–0.60) — excluding the non-dominant limb model for Color Trails 

1 – performed the best, exceeding the effect size for which the study was powered. The 

robot-based measures also demonstrated statistically significant relationships with Color 

Trails 2 and MoCA.

This is one of the first studies to establish objective robot-based measures that relate to Digit 

Symbol–Coding, MoCA-EF subscores, or IHDS. Given that the Digit Symbol–Coding, 

MoCA-EF, and IHDS look at more specific cognitive domains related to executive function, 

this suggests the potential of robot-based metrics to identify more specific impairments 

going forward that are relevant to PLWH. Notably, the robot-based metrics that best 

predicted these clinical scores were consistent with the robot-based metrics that showed 

differences between functional groups.

Two other studies that examine the relationship between robotic metrics and MoCA scores 

in stroke and traumatic brain injury populations reported correlation coefficients ranging 

between 0.49 and 0.65 that are similar to the values observed in this study (rho = 0.48–0.64) 

[21], [22].

The results provide evidence that robot-based metrics can successfully estimate clinical 

motor scores in PLWH. The dominant and non-dominant limb models for BBT scores 

(adjusted R2 = 0.53 and 0.64, respectively) performed the best, exceeding the effect size for 

which the study was powered and demonstrating strong correlations between predicted and 

actual scores. Using a multiple linear regression with eight robotic predictors derived from 

three tasks, Bosecker et al. demonstrated correlation coefficients between estimated and 

actual scores for the Fugl-Meyer, Motor Status Score, Motor Power Scale, and Modified 

Ashworth Scale of 0.42–0.80 on training models [23]. While the clinical motor metrics 

differed from those used in this study, these values were similar for the dominant and non-

dominant BBT and GP models (rho = 0.31–0.74, respectively) with fewer predictors.

While computerized versions of the spatial span exist [42], the robotic aspect implemented 

in this study allows for kinematic measures to be observed that are reflective of motor 

function. This enables more detailed study of the interactions between cognitive and motor 

domains. The utility of this task can be seen by the high prevalence of metrics from this task 

demonstrating strong relationships with both cognitive and motor clinical scores.
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D. Relevance to HAND Assessment, Neurorehabilitation, Global Health, and Robotics

Taken together, these results show the potential clinical utility of a robotics-based approach 

to assess motor and cognitive function in PLWH. Due to the involved nature of performing a 

complete HAND assessment, other alternatives have been explored to capture HIV-related 

neurocognitive impairments. For example, Fogel et al. used a stepwise multiple linear 

regression approach to predict a global deficit score (GDS) from a set of 24 metrics 

extracted from basic medical history in an older HIV population with an average age of 61.1 

±4.6 years, which was similar to the average of the HIV-only population in this study 

(56.2±5.4 years old) [46]. The GDS was calculated from a set of neuropsychological tests 

encompassing working memory and memory, motor, information processing, and learning 

domains that overlapped with some of the assessments in this study – specifically the GP, 

Trail Making A (equivalent to the Color Trails 1), and Digit Symbol–Coding. The ultimate 

three-term model from the Fogel et al. study had a R2 of 0.29, which is weaker compared to 

the R2 values for the Color Trails 1,Digit Symbol–Coding, and GP models in this study (R2 

= 0.31–0.60) [46]. In Botswana, a lower-resource setting, a six-part neurocognitive battery, 

which also utilizes many of the same assessments as this study, was used to identify 

impairments in cognitive-motor areas in PLWH [8].

From a clinical rehabilitation perspective, increasing access to effective rehabilitation 

interventions and enhancing outcome measurement have been identified as research 

priorities in HIV, disability, and rehabilitation [47]. There is a need to develop interventions 

addressing the rapid aging and frailty associated with HIV to reduce disparities in health 

outcomes that can compound in the presence of other comorbidities or complications. No 

gold standard exists to capture the relationship between cognitive impairment and physical 

frailty as it relates to HIV [48]. While a limited number of studies have shown that physical 

exercise can induce improvements in physical, cognitive, and emotional wellbeing in both 

HIV and non-HIV populations, there is a need for further work to understand what impact 

exercise – including robot-based exercise – might have on the aging immune system in 

PLWH. A benefit to the objective quantification used in this study is the ability to track 

changes during the course of rehabilitation with specific metrics. This approach can be 

practical within a neurorehabilitation context because the metrics are reflective of clinically-

relevant tests and can be administered in a less time-intensive way.

From a global health perspective, this technology-based approach provides a possible 

scalable strategy that is sensitive to subtle signs of functional decline. With more affordable 

rehabilitation robot systems becoming increasingly available, this approach has the potential 

to meet a huge rehabilitation need in lower resource settings where the capacity to supply 

additional rehabilitation professionals is lacking but the prevalence of non-communicable 

diseases necessitating rehabilitation is increasing [25]. This would be valuable particularly 

when medical history may be lacking or harder to assess. This preliminary work lays the 

groundwork for identifying specific impairments and developing HIV-specific 

neurorehabilitation strategies to address the various cognitive and motor impairments 

associated with aging with HIV. Our group is currently exploring this in Botswana.

From a robotics perspective, this study expands the application of rehabilitation robotics 

beyond stroke to PLWH and those living with cognitive impairments. Given that 
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neurocognitive impairment is associated with instrumental ADL function [49], assessments 

and treatments should reflect the integration of both motor and cognitive domains that are 

often assessed in isolation. Like other robotic studies, large effect sizes were observed in this 

study, which can significantly reduce the sample size needed for clinical trials going forward 

[24]. This study also shows that clinical measures can be estimated from both limbs, which 

can be helpful in avoiding confounding factors, such as the presence of unilateral motor 

impairment that could result from stroke. Although these results do not provide enough 

information to generalize to other neurological conditions, this approach allows for future 

studies on other neurological conditions because it is rooted in standard clinical assessments 

used in other populations beyond HIV and stroke.

E. Study Limitations

Given the small sample size, lack of control group (either non-HIV healthy control or non-

HIV stroke group), and predominance of Black persons within the HIV group, we may not 

be able to fully generalize these results. Although, the sample population is small, we were 

able to see significant differences and the population was reflective of the aging HIV 

population in the U.S. While we observed strong correlations between robot-based measures 

and clinical cognitive and motor assessments relevant to the HIV population, correlation 

studies are susceptible to the distribution of the data across the span of the predictor 

variables. While we had adequate distribution across many variables, we were not able to get 

an even distribution across functional groups, which could have biased the analysis. Despite 

these limitations, further studies with a larger sample size and a longitudinal evaluation of 

this approach is warranted.
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Fig. 1. 
The Haptic Theradrive, a one degree-of-freedom rehabilitation robot system used in this 

study. Image used with permission from [38].
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Fig. 2. 
Left: The mean trajectory from the trajectory tracking task is shown for an example HIV 

(blue) and HIV-stroke (pink) subject. The expected trajectory is shown as a black dotted line. 

The shaded region represents the standard deviation across all the trials. Right: Histograms 

showing the distribution of sequence lengths on the spatial span task for the same HIV and 

HIV-stroke subject.
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Fig. 3. 
Distribution of subjects by cognitive and motor function, using a score of 3.5 for the MoCA-

EF cutoff and −2 as the BBT Z-score cutoff. The left figure is the distribution using the 

dominant limb BBT scores, while the right is from non-dominant limb BBT scores. (CI = 

cognitive impairment; MI = motor impairment; mod = moderate).
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Fig. 4. 
Box plots for each of the functional subgroups on N-back performance (top), trajectory 

tracking performance error (middle), and spatial span mean sequence length (bottom). CI = 

cognitive impairment; MI = motor impairment (* = p < 0.05, ** = p < 0.005 after correcting 

for multiple comparisons).
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Fig. 5. 
Multiple linear regression for clinical assessments using dominant limb robot-based metrics. 

The robot-based predictors for each model are included in the equation at the top of each 

subplot. Spearman’s rho and adjusted R2 are shown. (* = p < 0.05, ** = p < 0.001).
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Fig. 6. 
Multiple linear regression for clinical assessments using non-dominant limb robot-based 

metrics. The robot-based predictors for each model are included in the equation at the top of 

each subplot. Spearman’s rho and adjusted R2 are shown. (* = p < 0.05, ** = p < 0.001).
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TABLE I:

Subject Demographics and Clinical Scores

Characteristics HIV-only mean±standard 
deviation (n = 15)

HIV-stroke group mean
±standard deviation (n = 6)

Subject population mean
±standard deviation (n = 21)

Age (years old) 56.2 ± 5.4 54.2±8.1 55.5 ±6.3

Gender (Male/Female) 10M/5F 3M/3F 13M/8F

≥ 12 years edu (count) 10 5 15

Color Trails 1 (seconds) 50.27±21.74 41.83±13.48 47.86±20.10

Color Trails 2 (seconds) 125.53±67.30 105.50±22.60 119.81±58.85

Digit Symbol–Coding Score 45.07±12.48 49.67±6.16 46.38±11.24

MoCA (out of 30) 21.47±4.43 23.83 ±2.19 22.14±4.06

MoCA-EF (score out of 5) 2.87±1.31 2.83±0.69 2.86±1.17

IHDS (out of 12) 7.47±2.60 8.00±2.75 7.62±2.66

Dominant BBT (blocks) 54.20±9.73 52.75±11.57 53.79±10.01

Non-Dominant BBT (blocks) 54.40±9.54 47.83±18.62 52.52±12.63

Dominant GP (seconds) 91.60±26.36 102.92±40.55 94.83±30.41

Non-Dominant GP (seconds) 111.53±49.49 160.33±84.63 125.48±63.36

Dominant Grip Strength (kg) 29.56±12.15 30.93±3.22 29.95±10.31

Non-Dominant Grip Strength (kg) 28.08±13.60 22.13±10.97 26.38±12.93
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TABLE II:

Group Robot Performance Results by Dominant (D) and Non-Dominant (ND) Limbs (Mean ± Standard 

Deviation)

Robot Metrics HIV-only HIV-Stroke Subject
population

N-back
performance

D: 0.86±0.08
ND: 0.87±0.07

0.85±0.07
0.84±0.03

0.86±0.07
0.86±0.06

Trajectory tracking performance 0.34 ±0.15
0.34±0.14

0.44±0.23
0.54±0.37

0.37±0.18
0.39±0.24

Trajectory tracking normalized distance traversed 1.01±0.11
1.04±0.10

1.06±0.07
0.96±0.29

1.02±0.10
1.02±0.17

Trajectory tracking smoothness −9.19±1.16
−9.56±1.23

−10.26±1.06
−10.41±2.46

−9.50±1.21
−9.80±1.65

Spatial span mean sequence length 2.83±0.97
3.22±0.99

2.97±0.88
3.02±1.32

2.87±0.93
3.16±1.06

Spatial span performance 0.62±0.13
0.69±0.09

0.67±0.06
0.59±0.20

0.63±0.12
0.66±0.13

Spatial span normalized distance traversed 1.57±0.56
1.61±0.35

1.58 ±0.26 1.50±0.29 1.57±0.48
1.59±0.33

Spatial span smoothness −2.18±0.41
−2.35±0.51

−2.36±0.42
−2.59±0.97

−2.23±0.41
−2.42±0.65

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 March 23.


	Abstract
	Introduction
	Methods
	Subject Population and Procedure
	Cognitive Assessments
	Color Trails:
	Digit Symbol – Coding (WAIS-III ®):
	Montreal Cognitive Assessment (MoCA):
	International HIV Dementia Scale (IHDS):

	Motor Assessments
	Box and Blocks (BBT):
	Grooved Pegboard (GP):
	Grip Strength:

	Robot Assessment
	Rehabilitation Robot System:
	Trajectory Tracking Motor Task:
	N-Back Cognitive Task:
	Spatial Span Cognitive-Motor Task:

	Data Processing
	Functional Subgroup Comparison Analysis
	Multiple Linear Regression Analysis

	Results
	Subject Population Breakdown
	Robot-Based Performance for Example Subjects
	Raw Robot Performance Metrics
	Stratification by Functional Subgroups (Hypothesis 1)
	Estimating Clinical Cognitive Scores (Hypothesis 2)
	Dominant Limb Predictors:
	Non-Dominant Limb Predictors:

	Estimating Clinical Motor Scores (Hypothesis 3)
	Dominant Limb Predictors:
	Non-Dominant Limb Predictors:


	Discussion
	Gross Motor Impairments Are Prevalent in PLWH
	Robot-Based Metrics Capture Differences in Functional Subgroups
	Robot-Based Metrics Relate to HIV-Related Clinical Assessments
	Relevance to HAND Assessment, Neurorehabilitation, Global Health, and Robotics
	Study Limitations

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	TABLE I:
	TABLE II:

