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Introduction
Fish is an important component of many meals around the 
world because it has high contents of proteins, essential fats, 
vitamins, and minerals.1-3 Its growing demand is evident from 
the vigorous growth in aquaculture and in the fact that the 
world’s per capita fish consumption has risen from 9.9 kg in the 
1960s to 14.4 kg in the 1990s to 19.7 kg in 2013.4 Nonetheless, 
increased aquatic pollution caused by industrial discharge, 
domestic waste, agricultural runoff, mine drainage, and acci-
dental oil spills indicate that fish could be a serious source of 
human exposure to potentially hazardous substances like trace 
metals.2,5,6 Trace metals are persistent and nonbiodegradable, 
and once they enter aquatic ecosystems, they bioaccumulate in 
aquatic organisms and their concentrations are biomagnified as 
they move up the aquatic food chain.1,5,7 Trace metals in fish 
may be transferred and pose serious health problems to fish 
consumers. Cadmium, for instance, may cause cardiovascular, 
neurological, and reproductive disorders.7,8 Short-term expo-
sure to high doses of Cd can cause nausea, vomiting, abdominal 
disturbances, and fatigue.8 In addition, it has been classified as 
a probable human carcinogen by the International Agency for 
Research on Cancer.9-11 Exposure to Pb has been associated 
with renal, muscular, and cardiovascular problems. It may also 
cause cognitive and development deficits in children and repro-
ductive disorders in men and women.7,11-15 Unlike Cd and Pb, 
Cu is an essential element required for various physiological 
functions in the human body.16 Even so, Cu levels above the 

recommended limit may lead to brain, liver, and kidney  
disorders.17 Short-term exposure to high doses of Cu can cause 
diarrhea, stomach pains, vomiting, and death due to liver and 
kidney failure or due to the depression of the central nervous 
system.17

Because of the aforementioned and many other health 
effects associated with dietary trace metals, there is growing 
interest in food safety with regard to the accumulation of  
these substances in food. Studies around the world show that  
fish and other seafood are a major source of dietary trace  
metals.18-23 Majority of these studies reveal that human 
exposure to trace metals from fish and seafood is within the 
recommended limits. Conversely, other studies indicate that 
consumers of fish and seafood may be exposed to hazardous 
levels of these toxicants and adverse health incidents may occur 
as a result of this exposure.22,24-28 Vegetables and cereals are the 
other major dietary sources of trace metals. Vegetables and 
cereals are valued components of many meals around the 
world. Thus, the presence of trace metals in these food groups 
is raising concern world over as is made evident by these 
studies.29-34

In Kenya, various studies have assessed trace metals content 
in fish,35-39 beef,40 honey,41,42 and vegetables43-45 to determine 
whether they exceeded internationally set standards for these 
substances in food. Nonetheless, exceedance does not always 
represent human health risk.46 Thus, in the present study esti-
mated daily intake (EDI) of Cd, Cu, and Pb via consumption 
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of the commonly consumed fish species in Nakuru town, 
Kenya, were calculated and compared with the provisional tol-
erable daily intake (PTDI) established by the Joint FAO/
WHO Expert Committee on Food Additives ( JECFA).47-49 
In addition, target hazard quotient (THQ) and hazard index 
(HI) were computed to assess human health risks posed by Cd, 
Cu, and Pb in the commonly consumed fish species in Nakuru 
town, Kenya.

Materials and Methods
Questionnaire survey

A questionnaire-based survey was conducted to establish the 
commonly consumed fish species in Nakuru town and the con-
sumption rates of these fish species. Questionnaires were 
administered to 385 randomly selected participants buying fish 
in 5 retail outlets in Nakuru town. The questionnaire acquired 
basic information including gender, age, education, and income 
level of the respondents. It was used to acquire information on 
fish preferences of consumers. It was also used to determine the 
frequency and ingestion rates of the commonly consumed fish 
species in Nakuru town.

The cross-sectional survey established that Oreochromis 
niloticus (Nile tilapia), Rastrineobola argentea (Silver cyprinid), 
Lates niloticus (Nile perch), and Protopterus aethiopicus (African 
marbled lungfish) were the commonly consumed fish species 
in Nakuru town, Kenya. Moreover, the findings revealed that in 
a day consumers of these fish varieties consumed on average 
0.027, 0.012, 0.035, and 0.023 kg of O niloticus (Nile tilapia),  
R argentea (Silver cyprinid), L niloticus (Nile perch), and  
P aethiopicus (African marbled lungfish), respectively.

Sample collection and preparation

Four commonly consumed fish varieties (O niloticus, R argentea, 
L niloticus and P aethiopicus) in Nakuru town were selected 
based on the data obtained by the cross-sectional survey. Ten 
pieces of O niloticus, 10 pieces of L niloticus, and 10 pieces of  
P aethiopicus, and 10 samples of R argentea each weighing 100 g 
were purchased from the first market (market 1). Ten pieces of 
O niloticus and 10 samples of R argentea each weighing 100 g 
were purchased from the second market (market 2). Ten pieces 
of O niloticus and 10 samples of R argentea each weighing 100 g 
were purchased from the third market (market 3). Ten pieces of 
O niloticus and 10 pieces of L niloticus were purchased from the 
fourth market (market 4). Ten samples of R argentea each 
weighing 100 g were purchased from the fifth market (market 5). 
In total, 70 fresh samples of O niloticus, L niloticus, and P aethi-
opicus and 40 sun-dried samples of R argentea each weighing 
100 g were purchased in August 2016 from the 5 major fish 
retail outlets in Nakuru town, Kenya (–0.2833°, 36.06667°). 
The samples were put in sterile polyethylene bags and trans-
ported to the laboratory using a cool box at <5°C. After reach-
ing the laboratory, the fish were washed using double distilled 

water. The samples were carefully dissected to remove muscle 
tissues from the dorsal part of the fish which were washed 
using doubled distilled water. The muscle tissues of the same 
fish species from the same retail market were combined into 
composite samples of 10 individuals. For the small species  
(R argentea), 10 samples of this fish species each weighing 
100 g from the same retail market were pooled into composite 
samples. Because of their small size, the entire individual fish 
were included in the preparation of the composite sample. The 
composite samples of the commonly consumed fish species 
were then kept frozen at –20°C until trace metal analysis.

Trace metals analysis

The composite fish samples were thawed at room temperature, 
oven dried for 72 hours at 105°C until constant dry weight. 
They were pulverized in a dry pestle-mortar then stored in 
sterile containers placed in desiccators awaiting trace metal 
analysis.

The powdered composite samples were thoroughly mixed 
to attain optimum homogeneity. They were then digested 
using Food and Agriculture Organization (FAO) proce-
dures.50,51 Briefly, 1 g of homogenized composite sample was 
weighed into a digestion vessel. Ten milliliters digestion mix-
ture consisting of 65% nitric acid (HNO3) and 30% peroxide 
hydrogen (H2O2) was prepared and added to the digestion ves-
sels, kept overnight to allow various reactions to occur. The 
digestion vessels were heated on a hot plate to 130°C until the 
solutions turned clear and the volume reduced to between 2 
and 3 mL. They were allowed to cool, filtered then diluted with 
double distilled water to 50 mL in volumetric flasks.

Analyses of Cd, Cu, and Pb were performed using flame 
atomic absorption spectrophotometer (Thermo Jarrell Ash). 
The detection limits of Cd, Cu, and Pb were 0.0015, 0.003, and 
0.01 mg/L, respectively. To ensure reliability of the results, dou-
ble distilled water was used throughout the study. Glass vessels 
were precleaned thoroughly using detergent, soaked overnight 
in 20% nitric acid (HNO3) then rinsed using double distilled 
water. The experimental reagents and standards used during 
the study were of analytical grade obtained from Sigma Aldrich. 
The accuracy of the instrument was ensured by running sam-
ples in triplicates. In addition, a reagent blank and a standard 
were run after every 3 samples to check instrumental drift. 
The AAS instrument was calibrated with a series of standard 
solutions prepared in the concentration range of 0 to 15 mg 
L−1. A calibration curve of absorbance versus concentration was 
obtained and used to quantify Cd, Cu, and Pb content in the 
commonly consumed fish species. Trace metal concentration 
was expressed in milligram per kilogram dry weight.

Human health risk assessment

The risk to human health as a result of consuming the com-
monly consumed fish varieties sold in Nakuru town, Kenya, 
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was evaluated by calculating EDI and THQ of trace metals. In 
addition, literature indicates that exposure to 2 or more trace 
metals from the same source may result to additive effects.52 
Thus, THQs of Cd, Cu, and Pb were summed to generate haz-
ard indices (HI) that represent overall health risk posed by the 
3 trace metals in the commonly consumed fish species.

EDI was calculated using equation (1).22,53

EDI EF ED FIR C
BW TA

=
× × ×

×
	 (1)

where EF is exposure frequency (365 days year−1); ED is the 
frequency duration (70 years, equivalent to the average human 
lifespan); FIR is the ingestion rate of fish in kilograms person−1  
day−1; C is the concentration of Cd, Cu, or Pb in the commonly 
consumed fish species in mg kg−1; BW is the average body 
weight which is equivalent to 60.7 kg for an average African 
adult37; and TA is the average exposure time for noncarcino-
gens (365 days year−1 × ED). Computed EDI values were 
compared with PTDI values of Cd (0.001 mg kg−1  day−1), Cu 
(0.5 mg kg−1  day−1), and Pb (0.00357 mg kg−1  day−1)47-49 to 
determine whether the daily recommended values were 
exceeded or not.

Target hazard quotient a ratio between exposure to a poten-
tially hazardous element and its reference dose5 was determined 

using equation (2).22 Computed THQ values less than 1 indi-
cate that the exposed population is unlikely to experience 
adverse effects associated with trace metals. On the other hand, 
computed THQ values greater than 1 suggest possible health 
risks for the exposed consumers.5,54

THQ EDI
RfDo

= 	 (2)

where RfDo is the oral reference dose of trace metals in mg 
kg−1 day−1 based on the safe upper level of element’s oral intake 
for an adult. The oral RfD for Cd, Cu, and Pb is 0.001, 0.04, 
and 0.004 mg kg−1 day−1, respectively.55

THQs of Cd, Cu, and Pb were summed to generate a haz-
ard index using equation (3).56 Assuming additive effects, HI is 
a measure of the potential risk of adverse health effects from 
more than 1 element.5,54 HI greater than 1 suggests likelihood 
of adverse effects on human health and the necessity for further 
action.5,54

HI THQi
i

n

=
=
∑

1

	 (3)

Statistical analysis

SPSS version 22 was used for statistical data analysis. Results 
are presented as arithmetic mean and standard deviation 

Figure 1.  Geographic locations of the main fish retail markets in Nakuru town (Kenya).
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(mean ± SD). One-way analysis of variance (ANOVA) was 
used to assess differences among mean concentrations of Cd, 
Cu, and Pb in fish. It was used to examine variation in trace 
metal content among the commonly consumed fish species. It 
was also used to examine trace metal content in fish based on 
the markets where the fish were purchased. All statistical test 
were regarded significant when P < .05.

Results and Discussion
Trace metal concentrations in the commonly 
consumed fish species

The mean concentrations of Cd, Cu, and Pb in the commonly 
consumed fish species, ie, O niloticus, R argentea, L niloticus and 
P aethiopicus purchased from the 5 main retail markets in 
Nakuru town, Kenya, are presented in Table 1. Metal distribution 
in the commonly consumed fish species followed the sequence 
Pb > Cu >Cd, Pb having significantly higher (P < .05) con-
centrations than Cu and Cd. The results indicated that Cd, Cu, 
and Pb content in fish did not vary significantly (P > .05) 
among the commonly consumed fish varieties (O niloticus,  
R argentea, L niloticus, and P aethiopicus). The results also indi-
cated that trace metal content in the commonly consumed fish 
species did not vary significantly (P > .05) based on the mar-
kets where the fish were purchased.

The mean concentrations of Cd in the commonly con-
sumed fish species ranged from 0.11 ± 0.045 to 1.11 ± 0.931 mg 
kg−1. Similar Cd concentrations in the range of 0.05 ± 0.02 to 
0.95 ± 0.09 mg kg−1 were reported by Oyoo-Okoth et al36 in  

O niloticus, R Argentea, and L niloticus from the coastal zone of 
Lake Victoria, Kenya. Cd concentrations in the present study 
also compared fairly well with 1.12 ± 1.13 and 1.66 ± 2.48 mg 
kg−1 in cultured fish from Machakos and Kiambu counties, 
Kenya,39 and 1.06 ± 0.004 to 1.73 ± 0.002 mg kg−1 in Cyprinus 
carpio from Lake Naivasha, Kenya.38 They were 2-fold higher 
than those reported by Oyoo-Okoth et  al35 in R argentea 
from Lake Victoria. According to FAO,19,57 permissible limit 
of Cd in fish is 0.5 mg kg−1. Some concentrations were above 
this proposed limit but generally they did not significantly 
(P < .05) surpass it.

Cu content in O niloticus, R argentea, L niloticus, and P 
aethiopicus ranged from 0.48 ± 0.013 to 3.00 ± 0.009 mg kg−1. 
Cu concentrations in O niloticus, R Argentea, and L niloticus in 
literature was reported in the range of 2.1 ± 1.1 to 18.8 ± 1.1 mg 
kg−1 from the coastal zone of Lake Victoria, Kenya,36 and in 
the range of 5.38 ± 1.27 to 6.20 ± 1.54 mg kg−1 in R argentea 
from Lake Victoria, Kenya.35 Similar Cu concentrations to 
those in the present study were reported by Mutia et al38 in C 
carpio from Lake Naivasha, Kenya, but Otachi et al37 reported 
lower Cu concentration in the muscle tissues of Oreochromis 
leucostictus from the same lake. Permissible limit of Cu in fish 
according to FAO is 30 mg kg−1.19,57 The amount of Cu meas-
ured in all the samples of the commonly consumed fish species 
were below this permissible limit suggesting no appreciable 
health risk to consumers.

Pb concentrations in O niloticus, R argentea, L niloticus, and 
P aethiopicus varied between 3.42 ± 0.045 to 12.78 ± 0.108 mg 
kg−1. Lower concentrations of Pb were reported in the range of 

Table 1.  Trace metal concentration (mg kg−1 dry weight) in O niloticus, R argentea, L niloticus, & P aethiopicus sold in 5 retail markets in Nakuru 
town, Kenya.

Sampling site Fish species Cd Cu Pb

Market 1 O niloticus 0.67 ± 0.035 2.26 ± 0.707 9.99 ± 0.470

Market 1 L niloticus 0.15 ± 0.045 0.65 ± 0.056 7.23 ± 0.149

Market 1 R argentea 0.22 ± 0.050 2.83 ± 0.203 4.44 ± 0.309

Market 1 P aethiopicus 0.75 ± 0.027 0.60 ± 0.026 6.90 ± 0.020

Market 2 O niloticus 0.65 ± 0.017 1.90 ± 0.115 6.30 ± 0.003

Market 2 R argentea 1.00 ± 0.058 2.32 ± 0.175 12.78 ± 0.108

Market 3 O niloticus 0.41 ± 0.009 0.48 ± 0.013 3.42 ± 0.045

Market 3 R argentea 0.11 ± 0.045 3.00 ± 0.009 5.33 ± 0.030

Market 4 O niloticus 0.17 ± 0.020 0.65 ± 0.063 7.40 ± 0.046

Market 4 L niloticus 0.19 ± 0.033 0.74 ± 0.017 4.00 ± 0.051

Market 5 R argentea 1.11 ± 0.931 2.45 ± 0.523 10.00 ± 0.850

Permissible limits of trace metals in fish 0.5 30 0.5

All values are given as means ± SD of 3 replicates of composite fish samples. Permissible limits (mg kg−1) were adopted from FAO.19,57
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0.18 ± 0.03 to 0.57 ± 0.02 mg kg−1 in R argentea from Lake 
Victoria35 and 0.024 ± 0.03 mg kg−1 in the muscle tissues of  
O leucostictus from Lake Naivasha, Kenya.37 Pb concentrations 
similar to those observed in the present study were reported in 
farmed fish from Machakos and Kiambu counties, Kenya.39 
FAO has set 0.5 mg kg−1 as the permissible limit of Pb in 
fish.19,57 The lowest measured Pb content in fish in the present 
study is above this limit. Pb is not required for physiological 
functions in the human body; thus, short-term exposure to high 
doses of this trace metal may cause gastrointestinal disorders. 
Chronic exposure may cause cognitive and learning deficits in 
children. It may also cause renal, muscular, cardiovascular, and 
reproductive disorders.7,11-15

Human health risk assessment

To assess human health risk associated with Cd, Cu, and Pb in 
the commonly consumed fish species, EDI, THQ, and HI 
were computed. Human health risks were calculated with the 
assumption that an adult weighing 60.7 kg37 consumes 0.027, 
0.012, 0.035, and 0.023 kg day−1 of O niloticus, R argentea,  
L niloticus, and P aethiopicus, respectively. The EDI of Cd, Cu, 
and Pb through consumption of O niloticus, R argentea,  
L niloticus, and P aethiopicus from Nakuru town, Kenya, is  
presented in Table 2. The results show that the trends of the 
computed EDI values decreased in the following order 
Pb > Cu >Cd and ranged from 0.00086 to 0.00438, 0.00021 
to 0.00099, and 0.00002 to 0.0003 mg kg−1 day−1, respectively.

The highest EDI value of Cd (0.0003 mg kg−1 day−1) was 
much lower than the PTDI, whose values is 0.001 mg kg−1 day−1 
of body weight48,49 corresponding to 0.0607 mg kg−1 for an 

adult weighing 60.7 kg. Daily Cd intake through consumption 
of the commonly consumed fish varieties was lower than or 
similar to the daily intake reported for adult consumers from 
other developing countries—Ghana: 0.000092 mg kg−1 day−1,58 
Nigeria: 0.000063 mg kg−1 day−1,54 Ethiopia: 0.000029 mg 
kg−1 day−1,59 D. R. Congo: 0.00012 to 0.00094 mg kg−1 day−1,60 
Egypt: 0.000048 to 0.00022 mg kg−1 day−1,61 Iran: 0.00012 mg 
kg−1 day−1,62 and Bangladesh: 0.00027 to 0.00246 mg 
kg−1 day−1.63 Daily Cd intake was higher than that reported for 
adults in Yaoundé, Cameroon, 0.000017 mg kg−1 day−1,64 and 
roughly 26 times higher than that reported for adults from 
Dares salaam, Tanzania.65

With respect to Cu, the highest daily intake (0.00099 mg 
kg−1 day−1) corresponded to consumers of O niloticus from 
Market 1. Compared with the current provisional maximum 
tolerable daily intake (PMTDI) whose value is 30.35 mg 
kg−1 day−1 for an adult weighing 60.7 kg,47 the highest Cu 
intake was tens of thousands fold lower than its permissible 
daily limit. This implies that Cu in the commonly consumed 
fish species does not pose any threat to consumers. Lower or 
similar Cu EDI values are reported in literature in the range of 
0.00000066 to 0.00093 mg kg−1 day−1.54,58,63-65 Higher daily 
intake of Cu through fish consumption is reported for consum-
ers in Egypt, 0.0124 – 0.0250 mg kg−1 day−1, and Congo, 
0.12586 – 0.0211428 mg kg−1 day−1.60,61,63

As for Pb, the greatest daily intake (0. 00438 mg kg−1) was 
also observed in consumers of O niloticus from market 1. The 
PTDI of Pb according FAO/WHO48 is 0.00357 mg kg−1 day−1, 
corresponding to 0.2168 mg kg−1 day−1 for an adult weighing 
60.7 kg. All the EDI values of Pb were below this permissible 
limit. Nonetheless, they were significantly higher than those of 

Table 2.  Estimated daily intake of Cd, Cu, and Pb by consuming the commonly consumed fish species in Nakuru town, Kenya.

Sampling site Fish species Fish intake, kg day−1 Cd intake, mg kg−1 Cu intake, mg kg−1 Pb intake, mg kg−1

Market 1 O niloticus 0.027 0.00030 0.00099 0.00438

Market 1 L niloticus 0.035 0.00008 0.00037 0.00412

Market 1 R argentea 0.012 0.00004 0.00055 0.00086

Market 1 P aethiopicus 0.023 0.00028 0.00023 0.00262

Market 2 O niloticus 0.027 0.00028 0.00083 0.00276

Market 2 R argentea 0.012 0.00019 0.00045 0.00248

Market 3 O niloticus 0.027 0.00018 0.00021 0.00150

Market 3 R argentea 0.012 0.00002 0.00058 0.00104

Market 4 O niloticus 0.027 0.00007 0.00029 0.00325

Market 4 L niloticus 0.035 0.00011 0.00042 0.00228

Market 5 R argentea 0.012 0.00022 0.00048 0.00194

PTDI for an adult weighing 60.7 kg 0.0607 30.35 0.2168

Provisional tolerable daily intake (mg kg−1 day−1) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA).47-49 60.7 kg is the average body weight 
of an African adult.37 Abbreviation: PTDI, provisional tolerable daily intake.
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Cd and Cu suggesting that Pb may pose serious health risk to 
consumers due to the likelihood of bio-accumulation over a 
period of time. The EDI of Pb compared very well with Pb 
intake of adult fish consumers elsewhere in developing coun-
tries.54,61,63 Lower EDI values in the range of 0.0000053 to 
0.0008 mg kg−1 day−1 were reported for adult consumers from 
Cameroon, Congo, Ethiopia, Ghana, and Tanzania.58-60,64,65

Target hazard quotient and hazard index

Noncarcinogenic THQs and hazard index of the 3 trace metals 
through consumption of the commonly consumed fish species 
sold in Nakuru Town, Kenya, are presented in Table 3. The 
trend of THQ values for consumers of the commonly con-
sumed fish species decreased in the order of Pb > Cd > Cu. 
The THQ values of Cd, Cu, and Pb varied from 0.022 to 0.331, 
0.005 to 0.025, and 0.230 to 1.168, respectively. Target hazard 
quotient is a ratio between potential exposure to a given trace 
metal and its oral reference dose. It is used to assess potential 
health risk associated with long-term exposure to dietary trace 
metals.5,54 If the computed ratio is greater than 1, the exposed 
population is likely to develop adverse health effects.55,56,66 
According to the New York State Department of Health 
(NYSDOH), if the computed THQ value is greater than 1 but 
less than 5, the risk is low; if it is greater than 5 but less than 10, 
the risk is moderate; however, if the THQ value is greater than 
10, the risk is high.67 Computed THQ values of Cd and Cu 
were all below 1, suggesting that health effects associated with 
Cd and Cu are unlikely to occur. In contrast, THQ values of Pb 
for consumers of O niloticus and L niloticus bought from market 
1 were above 1, indicating a likelihood—albeit low—of adverse 
health effects occurring.

Hazard index is the numerical sum of the computed THQ 
values.5,54 Like THQ, HI values should not exceed 1 otherwise 

they would present significant health risks to consumers.5,54 HI 
values of Cd, Cu, and Pb in this study ranged from 0.286 to 
1.488. THQ values of Pb were significantly higher than those of 
Cd and Cu and contributed between 66% and 92% to the HI 
values. Consumers of O niloticus and L niloticus from market 1 
and O niloticus and R argentea from market 2 had HI values 
greater than 1, suggesting significant health risks for these con-
sumers posed by the possible additive effects of Cd, Cu, and Pb.

Conclusion
Estimated daily intake, THQ, and hazard index were used to 
assess consumers’ exposure to Cd, Cu, and Pb via consumption 
of the commonly consumed fish species (O niloticus, R argentea, 
L niloticus, and P aethiopicus) in Nakuru town, Kenya. Daily 
intake of Cd, Cu, and Pb through consumption of the com-
monly consumed fish species were within FAO/WHO recom-
mended limits. THQ values of Cd and Cu suggest no health 
risk to consumers of the 4 commonly consumed fish species. In 
contrast, THQ values of Pb indicate that long-term exposure 
to Pb content similar to those reported in the present study 
may pose serious health risk to fish consumers in Nakuru town, 
Kenya. There is therefore a need for similar studies to be car-
ried out regularly to monitor trends of trace metals in fish and 
educate consumers on safe quantities of fish to consume. 
Similar studies done in the future should also determine the 
sources of fish and trace metal contamination in aquatic eco-
systems. Only then strict monitoring and mitigation measures 
can be implemented to reduce trace metals contents in fish and 
by that reduce the associated human health risks.
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Table 3.  Target hazard quotient and hazard index of consumers of commonly consumed fish species from 5 retail markets in Nakuru town, Kenya.
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