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The genome-scale cellular network has become a necessary tool in the systematic
analysis of microbes. In a cell, there are several layers (i.e., types) of the molecular
networks, for example, genome-scale metabolic network (GMN), transcriptional
regulatory network (TRN), and signal transduction network (STN). It has been realized
that the limitation and inaccuracy of the prediction exist just using only a single-layer
network. Therefore, the integrated network constructed based on the networks of
the three types attracts more interests. The function of a biological process in living
cells is usually performed by the interaction of biological components. Therefore, it is
necessary to integrate and analyze all the related components at the systems level for
the comprehensively and correctly realizing the physiological function in living organisms.
In this review, we discussed three representative genome-scale cellular networks: GMN,
TRN, and STN, representing different levels (i.e., metabolism, gene regulation, and
cellular signaling) of a cell’s activities. Furthermore, we discussed the integration of the
networks of the three types. With more understanding on the complexity of microbial
cells, the development of integrated network has become an inevitable trend in analyzing
genome-scale cellular networks of microorganisms.

Keywords: integrated network, metabolic network, regulatory network, signal transduction network,
microorganism

INTRODUCTION

With the development of bioinformatics and system biology, large-scale cellular network comes
into the sight of researchers. Bioinformatics, based on data processing, model construction and
theoretical analysis, integrates information from different molecular levels to understand how the
biological system works. According to the types of biological information processing encoded
in the network, the cellular networks have been classified into different types: genome-scale
metabolic network (GMN), transcriptional regulatory network (TRN), and signal transduction
network (STN). The most well-studied large-scale biological network is GMN, which is a
fundamental framework in systems metabolic engineering (Kim et al., 2015). With the first GMN
constructed for Haemophilus influenzae Rd (Edwards and Palsson, 1999), the current GMN allows
systematic level predictions of metabolism in a variety of organisms (Yilmaz and Walhout, 2017).
The main concept of transcriptional control was established in bacterial system by Jacob and
Monod (1961). In the past decades, the development of genomic technology and computational
biology promotes the construction of large-scale TRNs (Brent, 2016). The TRN is composed of
the interactions between different transcriptional factors (TFs) and target genes. A TF, which
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is encoded by a gene itself, may influence the expression of one
or more target genes, which may subsequently give rise to the
expression change of a serial of proteins or genes. The STN is
different from the TRN in network structures and timescales. The
STN contains protein–protein and protein–gene interactions,
which includes multiple routes of rapid cell response to the
external stimuli, whereas the TRN may need to produce sustained
patterns of cellular activity over time (Babu et al., 2004; Papin
et al., 2005). On the other hand, some proteins in the STN are TFs,
which indicates some genes/proteins are in common between
STNs and TRNs. The detailed comparisons of these networks
have been described in the review (Wang et al., 2007).

From a system point of view, different kinds of biological
networks are not working alone, but cooperate with each other to
undertake their functions. Integrated network studies will build a
more realistic model by investigating the interacting relationships
and interacting effects among organism’s different information
processing components in its system. This kind of models has
an important sense to the theoretical research of living systems
and the construction of genetic engineering strains (Wang et al.,
2010). In this article, we discussed the research progress about the
integrated networks in microorganisms.

CELLULAR NETWORK

Cellular network analysis has become a hot research area in
bioinformatics and system biology; it utilizes computer model
and experimental data to analyze complex biological system in
a global view, and offers guidance and expectation for in vivo
experiments (Wu and Ma, 2014). Due to the complexity of the
biological system, researchers have classified cellular networks
into GMN, TRN, and STN based on the types of information
processing of biological molecules.

Genome-Scale Metabolic Network
Due to the advances of genome sequencing, high-throughput
data have been rapidly produced, which drives a transition
from the traditional biology research. On the basis of genome
sequencing and annotations in huge amounts of data, metabolic
network reconstruction in a genome-scale has been developed
rapidly (Francke et al., 2005; Notebaart et al., 2006). Currently,
GMN has become an indispensable tool for studying the
biological metabolic system (Pal et al., 2006; Feist and Palsson,
2008). It has important applications on designing classic
paths of metabolic engineering, inverse metabolites synthesis,
metabolic flux analysis, evolution analysis of metabolic pathways
between different species, mining omic data, and identifying
of the marks in enzyme engineering (Soh and Hatzimanikatis,
2010). GMN construction is based on genomic sequences,
combining with genes, enzyme reactions, metabolic databases
and related experimental data, to quantitatively study the
metabolic processes of living organisms from a systematic
perspective. All biochemical reactions in the cell have been
included as a network and the GMN reflects the interactions
between all the compounds involved in the metabolic processes
and all the catalytic enzymes. The construction of a GMN

allows an in-depth functional analysis of the biological metabolic
system, which is different from the traditional approach analysis
or biological response analysis, but try to understand the whole
metabolic system from the systematic view. GMN brings a
more comprehensive and accurate insight into cell metabolism
of the whole system and the interaction relationships between
different metabolic processes. On the other side, the topology
of the metabolic networks among many organisms can reflect
the dynamics of the metabolic system evolution, which can
help us understand the history of life evolution in the context
of metabolism (Ravasz et al., 2002; Stelling et al., 2002;
Zhao, 2008; Deyasi et al., 2015). In all the genome-scale
biological networks, GMN is the most extensive and deepest
studied network, with its construction procedures generally
normalized in Palsson’s review (Thiele and Palsson, 2010).
The process of constructing of a metabolic network mainly
consists of four parts, including data collection, relationship
model establishment, data curation, and transformation into a
mathematical model (Thiele and Palsson, 2010). To date, the
construction of metabolic network has been able to realize
some degree of automation, and therefore, 100s of metabolic
networks in different organisms have been constructed (Hao
et al., 2012).

Genome-scale metabolic network can be used to simulate
the growth of organisms. Among the GMNs, the most accurate,
comprehensive and classical model in microorganisms is the
GMN of Escherichia coli named iJO1366, which was constructed
by Palsson’s group in 2011. The model achieved 67.7 and 96%
accuracies for the prediction of essential and non-essential genes
in E. coli. It is capable of simulating the growth of E. coli on
334 kinds of nutrients (Orth et al., 2011). Recently, a novel
updated GMN of Clostridium difficile which called iCDF834 has
been presented. This network was constructed based on the
model iMLTC806cdf and transcriptome data, which detailed the
gene expression of the bacteria in various environments. It is
worth mentioning that the synonymous codon usage bias was
introduced into the model to remedy the inconsistence between
gene expression and protein abundance, which is the first time
that codon has been integrated into a GMN. The model achieved
a quite high (92.3%) accuracy in predicting gene essentiality
(Kashaf et al., 2017).

The GMN can be used to guide the metabolic engineering
experiments. Using Bacillus subtilis as an example, Hao et al.
(2013) constructed a GMN of B. subtilis, named iBSU1147. The
model has been used to successfully predict the yields of four
industrial products produced by B. subtilis [i.e., riboflavin, (R,R)-
2,3-butanediol, cellulase Egl-237, and isobutanol]. The results
have provided important guidance for the in vivo experiments
(Hao et al., 2013). Recently, Piubeli et al. (2018) constructed
a GMN iFP764 of halophilic bacterium Chromohalobacter
salexigens to explore the cell factory for producing ectoine. This
model was constructed based on the experimental data, genome
sequences and re-annotation of metabolic genes. The GMN is
capable of simulating the metabolic situation of C. salexigens
in low and high yield of ectoines. The salinity-specific essential
genes and the patterns of correlated reactions in central carbon
and nitrogen metabolisms response to the change of salinity
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were also simulated. The network is a useful tool to improve the
production of ectoines with bacteria (Piubeli et al., 2018).

The GMN also has an important value for drug discovery.
Chen et al. (2015) constructed a GMN of Treponema pallidum.
T. pallidum has a very specific metabolic network compared
to those of other bacterial pathogens. It lacks the oxidative
phosphorylation tricarboxylic and acid cycle pathways as well
as is incapable of synthesizing enzyme cofactors, fatty acids,
and most amino acids. By analyzing topological structure and
minimal cut sets of the network, they found that some hub
reactions in pyrimidine and purine metabolisms play significant
roles in T. pallidum, which may be helpful drug targets in the
treatment of syphilis, a sexually transmitted infection caused by
the T. pallidum (Chen et al., 2015). In the same year, Steinway
et al. (2015) constructed a GMN of intestinal bacteria based on
experimental data. This network summarized the relationships
between clindamycin and clostridium infection. Based on the
analysis of topological and chemical properties of the network,
the drug targets could be screened using the GMN, which can
be used in the design of the drug-molecule model (Cong, 2010)
and subsequently be applied in the treatment of anticlostridium.
They verified that B. intestinihominis can indeed slow the growth
of C. difficile through in vitro experimental validation (Steinway
et al., 2015).

Theoretically speaking, the number of completed genome
sequenced species should be as same as the number of
corresponding GMNs. However, the current number of GMNs
is much less than the number of sequenced species. The main
reason is that the network construction pipeline still needs
manual proofreading procedures due to the imperfect genetic
annotation algorithm. In addition, the incomplete understanding
of biochemical mechanisms also affects the development of
metabolic networks (Wang et al., 2010).

Genome-Scale Gene Transcriptional
Regulatory Network
Gene transcriptional regulation is the most basic and important
regulation mechanism in organisms. Therefore, computational
analysis of the gene transcriptional regulation is helpful for
the understanding of the interactions between transcriptional
processes and TRNs, and could provide support for the
understanding of the mechanisms of biological activities
(De-nan, 2014).

The basic components of TRNs are the interactions
between transcription factors (TFs) and the related target
promoters which function in the activation or repression
of gene transcription. In this definition, the intracellular
signals that regulate TF activities or any other additional
mechanisms that may influence the expression of genes were
excluded, as well as the upstream environmental. Although
the development of TRN is not as mature as that of GMN, the
current TRN construction is more and more standardized and
automated. The detailed construction method of the TRN in
microorganism can be seen in this paper (Feist et al., 2009).
The network construction method is roughly divided into
four steps: Step 1: an automated genome-based construction
with automated procedures and applying automated tools,

such as SMILEY algorithm, GapFind/GapFill, and PathoLogic;
Step 2: construction of the TRN based on bibliomic data
or high-throughput data; Step 3: transforming a genome-
scale reconstruction of the interactions into a computational
model; Step 4: curation the network by adding physiological
or in vivo experimental information to the genes and the
network.

Transcriptional regulatory network is a very complex non-
linear system. Therefore, it is difficult to be described in a
mathematical model. So far, the studies of the TRN are still
in the exploration stage in many aspects, and scientists are
constantly exploring new and better ways to construct a more
complete TRN. Using Bacillus as an example, in Sierro et al.
(2008) improved the database of transcriptional regulation in
B. subtilis (DBTBS), which is constructed in 1999 for collecting
the information of experimentally characterized TFs, and they
nearly doubled the information in DBTBS. Freyre-Gonzalez
et al. (2013) examined each regulatory element that constituted
the TRN of B. subtilis and presented some lessons from the
construction processes. Arrieta-Ortiz et al. (2015) used the
TRN of B. subtilis to calculate the activity of TFs with a new
combination of composition analysis based on a large number of
known transcriptome data and experimental data of B. subtilis.
They predicted 2258 new regulatory interactions and recalled
74% previously known interactions with this model. The accuracy
of predicted new regulation edges was 62% (391/635) (Arrieta-
Ortiz et al., 2015). Faria et al. (2016) expanded a TRN for
the central metabolism of B. subtilis reconstructed in 2008
by integrating the regulation information in DBTBS. They
demonstrated that atomic regulons (ARs), which are the sets
of genes with the same expression profile, are the effective
references for improving the regulatory networks by finding
the closely correlated genes in the ARs. The expanded model
contains the regulatory information for 2500 of the 4200 genes
in B. subtilis 168 (Faria et al., 2016). In addition, Gui et al.
(2012) searched for the homologous TFs and their regulatory
genes in the genetically closest pattern bacteria – B. subtilis, and
used comparative proteomics to forecast a regulatory networks
of Bacillus pumilus, which contains 195 TFs and 1201 controlled
genes. The results of their study showed that comparative
genomics is a reliable method to speculate the gene regulation
network of some species based on the gene transcriptional
regulatory relationships of their genetically close organism, which
is the best and a widely studied model organism. This method
offers a feasible way to explore some organisms’ regulatory
networks without large-scale gene expression data (Gui et al.,
2012).

The TRN can also be used to treat the human disease.
Recently, Fowler and Galan (2018) built a regulatory network
of Salmonella typhi, a pathogen causing typhoid fever. Typhoid
fever, which is a frequently happened disease in human,
was mainly caused by the typhus toxin secreted by S. typhi.
Typhoid fever toxin is expressed uniquely by intracellular
bacteria with unknown regulatory network. Fowler and
Galan (2018) built the TRN of S. typhi and developed an
algorithm called FAST-INSeq to identify the genes and
mutants which influence the expression of typhoid toxins.
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This network can help to understand the expressional
regulation of typhoid fever toxin in S. typhi, which would
contribute to the treatment of typhoid fever (Fowler and Galan,
2018).

Genome-Scale Signal Transduction
Network
Signal transduction is an important cellular activity, a living
cell can recognize, connect and interact with each other
through signal transduction pathway, and realize the overall
functional coordination and unity. Signal transduction carries
plenty of biological functions, and is closely connected with
the development of many diseases (Liu et al., 2008). In the
early years, scientists believed that the STN is a linear cascade
of information transmission and amplification. However,
due to more studies of the system, scientists found that
the concept mentioned above is incorrect. Therefore, a
new view taking a STN as a system consisting of multiple
complicated elements interacting in a multifarious fashion
emerges. This view conflicts with the protein-centric or single-
gene approach commonly used in the traditional research
(Levchenko, 2003). Scientists found that except a few STNs
that contain fewer signals and simpler network structures,
such as Jak-STAT pathway, most STNs are fairly complex
(Papin and Palsson, 2004). In the cellular signaling system,
a large amount of phosphorylation and dephosphorylation
reactions makes the signal transduction process usually
reversible. The lacking of mass flow and the complexity of
network state changes make the STN different from the GMN
and TRN.

To determine the relationships between the mechanism and
molecular regulations in STNs, it requires a large number
of experiments. However, the standard single cell technique
contributes little to the STN because the states of signal change
dynamically and are different between individual cells (Kamps
and Dehmelt, 2017). Fortunately, computational approaches such
as bioinformatics analysis using known data and biological
knowledge can help to interpret the STN (Shlomi et al., 2006).
As early as Gomez et al. (2001) used a statistic model to calculate
the molecular interactions in Saccharomyces cerevisiae on the
basis of protein structure domain and network topology. This
method can generate potential signaling pathways and also
be applied to multiple species (Gomez et al., 2001). Rother
et al. (2013) summarized the approaches of constructing a
STN and classified them into three types: network topology-
based method where network simulation could be applied using
Boolean models, network specific-state based method where
the network is simulated using differential equation models,
and reaction-contingency based method where the network is
simulated using agent based models, site-specific logical models
or bipartite Boolean models (Rother et al., 2013). Each of the three
methods performs well in small network modules. However,
when the scale of network extended to the genome level, none
of them is perfect for dealing with the whole information in
the entire STN (Le Novere et al., 2009). In recent years, lots
of small-scale STNs has been studied, such as the STN of
HRas (Herrero et al., 2017), mTOC1 (Hoxhaj et al., 2017), cell

circle (Wang et al., 2018), and cellular adhesion (Zheng et al.,
2014). At the meantime, much more efforts are being made
to construct large-scale STNs. Therefore, it is challenging to
model the large STNs. Even though signaling network in bacteria
is not as complex as those in eukaryotes, the construction of
a large-scale STN is still a major challenge. Vinayagam et al.
(2011) constructed a protein–protein interaction network to
resembling the signal transduction flow between 1126 proteins,
in which the interactions were obtained from yeast two-hybrid
experiments of more than 450 signaling proteins. This network
has been used to predict 18 previously unknown modulators
in EGF/ERK signaling. Their results shows that the integration
of genetic experiments and the computational approach is
valuable for elucidating interactions between signaling proteins
and facilities the identification of proteins in STNs (Vinayagam
et al., 2011). Wang et al. (2011) also performed an approach called
CASCADE_SCAN to construct STN with high-throughput data,
which further showed that the high-throughput experiments are
becoming a powerful tool for assisting in reconstructing large-
scale STNs. Besides, the integration of different techniques such
as optogenetics, protein design, surface patterning, and chemical
tools was reported to provide some valuable information of
the dynamic state of signals in the network and contribute
in the construction of large-scale STNs (Kamps and Dehmelt,
2017).

INTEGRATED NETWORKS IN
MICROORGNISMS

The establishment of various biological networks simulates and
validates key activities in cells. With the recent advances in high-
throughput studies, it has been realized that it is necessary to
integrate different levels of biological information processing
networks to fully investigate the biological mechanisms of the
organisms (Kitano, 2002; Ryll et al., 2014). Therefore, the
integrated network based on different network types has become
a trend in the field of system biology and bioinformatics.

Integrated Metabolic-Regulatory
Networks
Metabolism and transcriptional regulation are two closely related
cellular activities. Metabolites (substrates or reaction products)
involved in metabolic reactions affect the activities of certain TFs
or signal transduction pathways. On the other hand, enzyme-
catalytic metabolic reactions are regulated by other genes or
proteins, and the expression of enzymes is different in different
environmental conditions. In recent decades, the integrative
modeling of metabolic-regulatory networks has become an
important research area in the modeling of microorganisms
(Imam et al., 2015).

Covert et al. (2004) reconstructed the first genome-scale
metabolic-regulatory integrated network of E. coli (iMC1010)
based on the information derived from literature and databases.
The network contains 906 metabolic genes and 104 regulatory
genes, which regulate the expression of about 53% genes
(479/906) in the E. coli metabolic network. This model is
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capable of predicting the previously unknown TFs, which
play important roles in regulating metabolic processes, and
interactions between metabolites and TFs (Covert et al., 2004).
In 2005, they further used the literature-curated network
iMC1010v1 to evaluate the performance of the functional
states calculated in 15,580 growth environments for E coli.
The results showed that the TRN responds mainly to the
electron acceptors, which agrees with known experimental
data. They also found that a complicated network had a
small amount of dominant modes and the network clusters of
activity profiles can be organized based on the activities of a
few TFs. The integrated network gives crisper references than
the single metabolic network for the further experiments to
determine the functional states of an organism (Barrett et al.,
2005).

Goelzer et al. (2008) reported a manually curated metabolic-
regulatory integrated network of B. subtilis. The network
includes post-translational regulations translational regulation,
and modulation of enzymatic activities in the central metabolism.
They decomposed the complex network into different locally
regulated modules and found that these modules were managed
by global regulators. Their results exhibited the functional
organization of the metabolic-regulatory integrated network of
B. subtilis (Goelzer et al., 2008).

Chandrasekaran and Price (2010) proposed an algorithm
named probabilistic regulation of metabolism (PROM) and
constructed a genome-scale regulatory-metabolic integrated
network model for E. coli and Mycobacterium tuberculosis.
Before this effort, another method named regulatory flux balance
analysis (rFBA) has been used to integrate transcriptional
regulatory with metabolic networks. rFBA used the Boolean
logic to link transcriptional control to the metabolic process,
which permits only on/off states of the network components
(Shlomi et al., 2007). PROM introduces probabilities instead
of Boolean rules to represent gene expression and the
interactions between gene and TF (Simeonidis et al., 2013).
The analysis of integrated E. coli network demonstrates that
metabolic-regulatory integrated network is more accurate and
comprehensive than the models constructed based on manual
curation of literature. The integrated M. tuberculosis model
incorporated data from more than 2,000 TF, 1,300 microarrays,
1,905 KO phenotypes and 3,300 metabolic reactions. The
application of PROM on this model shows the capability of
PROM on various organisms. Particularly, they demonstrated
the outstanding capability of PROM in predicting the cellular
phenotypes, drug targets, and functions of less studied regulatory
genes.

Jiang et al. (2012) constructed a metabolic-transcriptory
integrated network of Corynebacterium glutamicum by
combining public databases and literature databases. The
network contains 1,384 reactions, 1276 metabolites, 88
regulators, and 999 transcriptional regulations. The study
systematically reorganized and analyzed the transcriptional
regulation information of C. glutamicum, and expanded it to
the metabolic network. They also preliminarily analyzed the
metabolic network of C. glutamicum on the basis of the bow-tie
structure of the network (Ma and Zeng, 2003). This work showed

that the integration of the TRN and the metabolic network with
the gene-enzyme-reaction relationship could be the foundation
for the large-scale data integration and simulation analysis. The
advantages of this integrated network are the discoveries of the
relationships between transcription and metabolism in cells,
which can’t be achieved if using either metabolic network or
TRN only (Jiang et al., 2012).

Wang Z. et al. (2017) performed another algorithm called
Integrated Deduced And Metabolism (IDREAM) to construct
enhanced metabolic-regulatory integrated networks. IDREAM
integrated Environment and Gene Regulatory Influence Network
(EGRIN) models with the PROM framework. IDREAM performs
better than PROM in the prediction of the phenotype and genetic
interactions between TFs and metabolic processes in S. cerevisiae
(Wang Z. et al., 2017).

Currently, large-scale metabolic-regulatory integrated
network has been constructed for several microorganisms
such as E. coli (Chandrasekaran and Price, 2010), S. cerevisiae
(Herrgard et al., 2006), Helicobacter pylori (Schilling et al., 2002),
Phaeodactylum tricornutum (Levering et al., 2017), comma
shaped gram negative anaerobic bacteria (Mahadevan et al.,
2006) and C. glutamicum (Kromer et al., 2004). Integration
of metabolism and transcription processes is generally quite
straightforward. Metabolic network produces precursors to
synthesize the metabolites such as nucleotides and amino acids
which are required by transcription processes. On the other hand,
the TRN couples back to the metabolic network by managing
the expression of the enzymes in the metabolic network and
thus regulating the flux distribution among different metabolic
functions (Feist et al., 2009).

Integrated Regulatory-Signaling
Networks
The integration of microbial transcriptional regulatory and
signaling network is still in the preliminary stage. Wang and
Chen (2010) combined the transcriptional regulation and signal
transduction pathway (e.g., mainly presented in the form of
protein–protein interaction) to construct the integrated yeast
cellular network. The network connects these two networks
together to form an integrated network using the nodes (i.e.,
TFs) between the TRNs and signaling pathways. The integrated
cellular networks related to heat shock, hyperosmotic stress, and
oxidative stress were constructed and the connections between
these networks were further analyzed. With the hyperosmotic
stress related network, the highly connected hubs related to the
stress response were predicted. The analyses of these networks
have identified a few TFs to serve as the core in the bow-tie
structure and the essential elements for the rapid response to
stress. In addition, they also identified a couple of genes/proteins
related to stress responses or potential drug targets. This method,
however, only integrates the transcriptional regulatory data
with the protein–protein interaction in the signal transduction
pathways, but not the completed STN. In order to get a more
complete integration, it also needs to list all the components in
a STN, and then combined with the TRN for the integration
(Wang and Chen, 2010). Recently, Ignatius Pang et al. (2018)
construct another regulatory-signaling integrated network of
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S. cerevisiae with protein–protein interaction as the bridge
to link the regulatory (TF-gene pairs) and signaling (kinase-
substrate pairs) parts. This network was used to investigate the
negative genetic interactions and the genes in the negative genetic
interactions closely related to the toxicity (Ignatius Pang et al.,
2018).

In the study of algorithms, Roy et al. (2013) proposed
a method called MERLIN (Modular regulatory network
learning with per gene information) to reconstruct the
regulatory network by identifying the connections from
regulators, including proteins and TFs, to target genes. The
regulatory network constructed by MERLIN actually reflects
the integration of transcriptional regulation and signaling
networks. The application of MERLIN on S. cerevisiae captured
the co-regulatory relationships between downstream TFs and
signaling proteins, and therefore uncovering the upstream
signaling systems which control transcriptional responses (Roy
et al., 2013). With the investigation of the integrated network,
the regulation program of each gene in the human cells is much
clearer than the application of either individual TRN or STN.

Integrated Metabolic-Signaling Networks
The development of integrated network for metabolic and
signaling networks is still in the very beginning stage. Few
metabolic-signaling integrated networks have been published.
Imam et al. (2015) discussed the challenges in the integration of
these two network types. Firstly, signaling mechanisms are closely
related to the specific concentrations of related molecules, while
constraint-based approaches widely used in metabolic network
analysis cannot reflect the metabolite concentrations. Secondly,
lots of kinetic parameters are required in the construction of

dynamic quantitative signaling network, but these parameters
are rarely available. This aspect limits the integration of
metabolic and signal transduction. Boolean or stoichiometric
methods which do not require kinetics parameters or metabolite
concentrations might be a possible choice for the integration of
metabolic and signaling networks in the future.

Integrated Metabolic-Regulatory-Signaling
Networks
The integration of metabolic-regulatory-signaling networks is
a challenge issue in the study of integrated networks. On the
graphic view, there are common components (proteins or TFs)
in metabolic, regulatory, and signaling networks (Figure 1).
Therefore, it is theoretically possible to merge these three
types of cellular networks into one integrated network. While
actually, lots of elements should be considered in the integration
process, such as the logics and computability. On a small scale
network integration, Covert and Palsson (2002) developed a
method named integrated FBA (iFBA) to model the dynamic
behavior among metabolic, signaling, and regulatory networks.
This method combines FBA with ordinary differential equations
(ODE) and regulatory Boolean logic (Figure 2). They used
this approach to construct an integrated network model of
E. coli which combines a FBA based central carbon metabolic-
regulatory network with an ODE based model of carbohydrate-
uptaking-controlling network. They compared the prediction of
E. coli single gene perturbation disturbance phenotypes and wild-
type for diauxic growth on glucose/glucose-6-phosphate and
glucose/lactose using rFBA and ODE methods. They found that
iFBA is capable of identifying the dynamics of three transporters
and three internal metabolites which cannot be predicted by

FIGURE 1 | Graphic view of the integrated cellular network.
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FIGURE 2 | Schematic diagram of iFBA.

rFBA alone. Furthermore, iFBA obtained different and more
accurate phenotype predictions in the wild-type simulations and
single gene perturbation simulations than the ODE model, which
indicates that iFBA is an improvement over either individual
rFBA or ODE method in network integration (Covert et al.,
2008).

Lee et al. (2008) proposed a method called integrated
dynamic FBA (idFBA) which could dynamically simulate cellular
phenotypes with integrated networks. idFBA was applicable
for the analysis of the integrated stoichiometric network of
metabolic, regulatory, and signal transduction processes. In this
method, the quasi-steady-state conditions were assumed for
“fast” reactions and then the “slow” reactions was incorporated
into the stoichiometric equation (Figure 3). idFBA has been
applied to a representative small network of S. cerevisiae, in which
metabolic, regulatory, and signaling activities have been included.
Finally, idFBA got similar results with an equivalent kinetic
model in the prediction of the influence of the extracellular
environment on the cellular phenotypes. The advantage of idFBA
is that it is capable of solving a linear programming problem
without the detailed kinetic parameters, which makes it a
possible approach for the genome-scale integration of metabolic,
regulatory, and STNs (Lee et al., 2008).

For a large-scale network integration, Karr et al. (2012)
collected information from 900 data sources, including reviews,
books and databases, and constructed a whole cell model
of Mycoplasma genitalium. This model includes data on
metabolism, signal transduction and transcriptional regulation,
and offers deep understanding on many previously unknown
cellular behaviors, such as the inverse relationship between
the replication rates and durations of DNA replication
initiation. Furthermore, experimental analysis based on the
model predictions has certified several previously undetected
biological functions and kinetic parameters (Karr et al., 2012).
However, due to the particularity of the species itself (e.g.,
unclear medium component, too small genome, etc.), the
experimental data is rare, so the model was built using lots
of data from other species, which makes it not suitable for
other species. The good news is that Carrera et al. (2014)
proposed a widely applicable modeling methodology for
integrated network reconstruction and reconstructed an E. coli
metabolic-regulatory-signaling integrated network by combining

high-throughput transcriptome and phenomic data. The
methodology is composed of four different algorithms including
Expression Balance Analysis (EBA), flux Variability Analysis
(FVA), TRAnscription-based Metabolic flux Enrichment
(TRAME) and FBA, which were sequentially used to calculate
the gene expression caused by the genetic or environmental
perturbations, the flux balance bounds modified by the predicted
gene expression, the metabolism-transcription interactions,
and the optimized objective function under the modified flux
bounds. With this methodology, the metabolism, transcription,
and signal transduction information were integrated into one
computable model. The application of this methodology on
E. coli showed that the integrated network has a more powerful
capability in phenotype prediction than the approaches using
metabolic network alone (Carrera et al., 2014).

THE INTEGRATED NETWORKS OF
MICROORGANISMS AND HUMAN
DISEASES

As many microorganisms are closely related to non-infectious
human diseases, their biological networks naturally provide a
possibility for studying the complex mechanisms of human
diseases. For example, signal and metabolic network are usually
used to understand the mechanism of disease and drug discovery
(Hasan et al., 2012). In this point of view, another type
of integrated network, microbe-disease association network
integrated with microorganisms and human diseases, is also
a quite helpful tool for improving the treatment of human
diseases or development of new drugs. Up to date some
efforts has been made to develop the algorithms or models
for predicting the disease-related microorganisms based on
the microbe-disease association network. Chen et al. (2017)
developed a computational model KATZHMDA (KATZ measure
for Human Microorganism–Disease Association prediction)
based on an assumption that microorganisms with similar
function likely to have similar interactions and non-interactions
with diseases. With the similar assumption, Huang Y.A. et al.
(2017) also developed a computational model called NGRHMDA
(a neighbor- and graph-based combined recommendation
model for human microbe-disease association prediction) to

Frontiers in Microbiology | www.frontiersin.org 7 February 2018 | Volume 9 | Article 296

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00296 February 23, 2018 Time: 11:57 # 8

Hao et al. Genome-Scale Integrated Network in Microorganisms

FIGURE 3 | Schematic diagram of idFBA.

predict the association between microorganisms and diseases.
They used a graph-based scoring method and neighbor-based
collaborative filtering to calculate the possibility of association
between microorganisms and diseases (Huang Y.A. et al.,
2017). Huang Z.A. et al. (2017) developed a computational
model PBHMDA (Path-Based Human Microorganism-Disease
Association prediction) based on the Gaussian interaction profile
kernel similarity calculation for microorganisms and diseases.
Besides, this model also integrated the known microbe-disease
relationships, and part of the results predicted with this model
has been confirmed by previous published literature (Huang
Z.A. et al., 2017). Similarly, Wang F. et al. (2017) proposed a
semi-supervised computational model LRLSHMDA (Laplacian
Regularized Least Squares for Human Microorganism-Disease
Association) by integrating the Gaussian interaction profile
kernel similarity and Laplacian regularized least squares classifier.
This model got good performance on the prediction of chronic
obstructive pulmonary, colorectal carcinoma, and asthma
diseases in the case studies (Wang F. et al., 2017). No matter
what kind of algorithms, the predictions were made based on
the known knowledge of microorganisms and microbe-disease
relationships. Therefore, as we know more about microbes and
diseases, the computational models are expected to offer more
insights in the identification of microbe-disease associations in
the future.

FUTURE OF MICROBE CELLULAR
NETWORK

Construction and analysis of biological information processing-
specific large-scale cellular networks (i.e., metabolic, signaling,
and gene regulatory networks) has output many important
biological insights in novel pathways, regulatory, and metabolic
mechanisms. Given the fact that these networks are highly
interconnected, the analysis of the integrated networks is
expected to supply more novel understanding on biological
behaviors which cannot be achievable using the biological
information processing-specific network models alone. From
biological information processing-specific networks to integrated

network, it is an irresistible trend of the analysis of cellular
networks. The integrated networks may provide better answers
to the issues such as how transcription-regulatory interactions
redirect flux distribution in a metabolic network; how a
environmental or genetic disturbance influences the phenotype
of an organism; or giving more accurate suggestions to the
experiment designs and driving biotechnology applications. As
lots of information is required in the reconstruction of a large-
scale integrated networks, high-throughput experiments will play
an increasingly significant role in the network integration. With
the development of sequencing technology in recent years, many
other types of cellular molecules involved in the regulatory
process has been identified with high throughput experiment,
and their related cellular networks have been studied, such
as the network of mRNA, microRNA (Ferguson et al., 2018),
lncRNAs (Zhang et al., 2018), and ceRNA (Xue et al., 2018).
These small molecules participate in the regulatory network and
control the RNA activity or gene expression directly or indirectly.
Therefore, the integration of these molecules with TFs provides
more information to the TRNs (Wong and Matus, 2017). With
the involvement of more types of elements in the molecular
networks, the integrated cellular networks will perform better
to simulate the activity of the real cells. Although integrating of
multiple types of information into a network will largely increase
its complexity and calculation difficulties, the integrated network
makes a computational network closer to a real cell, which pushes
us go further from the dream of reproducing real creatures on
computers.
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