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Abstract

Current approaches to understanding medication ordering errors rely on relatively small

manually captured error samples. These approaches are resource-intensive, do not scale

for computerized provider order entry (CPOE) systems, and are likely to miss important risk

factors associated with medication ordering errors. Previously, we described a dataset of

CPOE-based medication voiding accompanied by univariable and multivariable regression

analyses. However, these traditional techniques require expert guidance and may perform

poorly compared to newer approaches. In this paper, we update that analysis using machine

learning (ML) models to predict erroneous medication orders and identify its contributing

factors. We retrieved patient demographics (race/ethnicity, sex, age), clinician characteris-

tics, type of medication order (inpatient, prescription, home medication by history), and

order content. We compared logistic regression, random forest, boosted decision trees, and

artificial neural network models. Model performance was evaluated using area under the

receiver operating characteristic curve (AUROC) and the area under the precision-recall

curve (AUPRC). The dataset included 5,804,192 medication orders, of which 28,695 (0.5%)

were voided. ML correctly classified voids at reasonable accuracy; with a positive predictive

value of 10%, ~20% of errors were included. Gradient boosted decision trees achieved the

highest AUROC (0.7968) and AUPRC (0.0647) among all models. Logistic regression had

the poorest performance. Models identified predictive factors with high face validity (e.g.,

student orders), and a decision tree revealed interacting contexts with high rates of errors

not identified by previous regression models. Prediction models using order-entry informa-

tion offers promise for error surveillance, patient safety improvements, and targeted clinical

review. The improved performance of models with complex interactions points to the impor-

tance of contextual medication ordering information for understanding contributors to medi-

cation errors.
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Introduction

Computerized provider order entry (CPOE) systems streamline medication ordering process

by creating standardized templates for the entry of legible, accurate, and complete medication

orders, thereby mitigating the potential for medication errors [1–6]. By integration with elec-

tronic health record (EHR) systems, CPOE systems promote the coordination of medication

ordering [7], allow real-time collaboration among care team members for medication admin-

istration, delivery and monitoring [8], and reduce the potential for misinterpretation of orders

[9]. Tight coupling of the EHR with an ordering system has also led to the development of clin-

ical decision support tools for alerting clinicians regarding improperly composed orders, clini-

cally inappropriate orders, duplicate orders [10], wrong patient orders, and formulary non-

compliance [11].

With the widespread use of CPOE systems, the volume of medications orders, and corre-

spondingly, medication errors have increased exponentially. Rough estimates suggest that 25–

30 orders are placed per inpatient admission, with nearly 4–6 additional orders per patient per

day [12, 13]. Clinician interactions with CPOE systems are a source of medication errors [14–

17]; errors during CPOE use account for 6–25% of detected medication errors in hospitalized

patients [15]. In spite of its prevalence, much of the prior research on the causes of medication

ordering errors has relied on small samples from retrospective chart reviews, clinician self-

reports, analysis of malpractice claims data, and survey-based studies [18, 19]. One of the

larger analysis of CPOE-based errors used manual reviews to categorize over 10,000 reported

errors drawn from a national database [20], classifying the causes of such errors. Although

such analyses are useful in understanding the sources of CPOE-based medication errors, these

databases include limited details regarding the context of a reported error with considerable

variability regarding the content of reported errors. Additionally, because of the lack of

matched control (non-error) orders, they cannot be used for developing prediction models.

Previous estimates of medication errors have relied on self-reports, which often capture

only the most severe errors or errors that lead to patient harm. Studies using pharmacy-based

reviews are also likely to undercount errors, as orders that seem “plausible” go undetected

even if they are on an incorrect patient. One approach that has received traction is the use of

CPOE-integrated tools that help clinicians record self-intercepted errors within their workflow

(e.g., [14, 21, 22]). Such intercepted ordering errors, although still a fraction of overall medica-

tion errors, provide considerable advantages: first, the volume of self-intercepted errors within

a CPOE system is exponentially larger than manually reported errors to external incident

reporting systems. Second, given that self-intercepted errors are recorded within the CPOE

workflow, additional information regarding the context of the order is also easily available.

We previously described a dataset of self-intercepted errors and identified associated factors

using bivariate and regression analyses [22]. That analysis identified several highly plausible

risk factors for error (or interception) such as order type (e.g., inpatient, prescription) and pre-

scriber role (e.g., physician, pharmacist, student, nurse). However, exploratory data analysis

and manual stepwise modeling with massive scale data, rare outcomes, and large numbers of

variables is inherently limited in its scope.

In this paper, we propose the use of machine learning (ML) approaches for characterizing

the risk factors associated with medication ordering errors. Towards this end, we evaluated the

performance of multiple ML methods on a large dataset of self-intercepted medication order-

ing errors. Such automated predictions afford opportunities for characterizing the potential

causes and sources medication errors as well as allowing for automated error surveillance. We

also discuss methodological advantages of using ML for predicting medication ordering errors
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and opportunities for using these approaches to guide patient safety efforts that are targeted

towards medication orders within high-risk contexts.

Method

A TRIPOD checklist was used for the development of the prediction model and is included in

the S1 Checklist.

Setting

Medication orders generated over a 6-year period (2006–2011) at the University of Illinois

Hospital and Health Sciences System (UI Health) were studied. UI Health is a 495-bed tertiary,

urban academic medical center. Orders were placed using Cerner Powerchart and Firstnet.

Pharmacists or nurses entered orders based on verbal, written, or protocol orders from physi-

cians; students entered orders requiring physician approval. Additional details of the data col-

lection are found in a previous report [22]. This study was approved by the Institutional

Review Board of Washington University in St Louis and University of Illinois at Chicago with

a waiver of consent.

Medication order voiding is a CPOE-integrated function for physicians, pharmacists,

nurses, and students to self-intercept and remove erroneous medication orders. As opposed to

Medication Error Reporting Systems (MERS) reports, voiding can be performed within the

ordering workflow, allowing clinicians to document errors without accessing external systems

or requiring providing detailed descriptions of the error. Previous studies have shown that

voided orders are a good proxy for medication errors, with voided medication orders having a

70±10% positive predictive value of being an error [14, 22]. In the paper, medication ordering

errors refer to the errors identified using the voiding process. Although a field for choosing a

reason for voiding existed, we have found it to be unreliable and did not use it for this analysis

[14].

Data

The outcome variable or label was order status (i.e., whether an order was voided or not).

Other variables (predictors or features) included: patient demographics (race/ethnicity, sex,

age), clinician type, type of medication order (inpatient, prescription, home medication by his-

tory), order date and time, and order content. Reported race was categorized into: White,

Black, Hispanic, and other. Order type was classified as: inpatient (i.e., medication order for a

hospitalized patient), prescriptions, and home medications by history (a non-actionable record

of a medication that a patient was taking at home and was not recorded as a prescription).

Time was categorized as: day (7AM–5PM), night (5PM–12AM), or overnight (12AM–7AM); Week-

day was classified as: work weekday (Monday through Friday) or weekend (Saturday or Sun-

day). Clinician type was categorized as: physician, pharmacist, nurse, student, or other. Order

content included: drug name, route, strength, volume, frequency, and dispensing unit (e.g.,

tablet, cap box). For each unique medication and route combination, doses were z-scored. All

data were retrieved from the EHR using custom queries.

Statistical analysis

We constructed the following models: logistic regression (LR), decision tree (DT), random for-

est (RF), gradient boosted decision tree (GBDT), deep embedding logistic regression (DELR),

and multilayer perceptron (MLP) models. DELR is an extension of logistic regression in which

each feature is fed into its own deep, narrow neural network to allow nonlinear transformation
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prior to entry into the logistic regression model [23]. LR, DT, RF, GBDT, and DELR were

selected due to the ease of determining feature importance in each of these model architec-

tures. Despite its generally poor interpretability, MLP was selected for its high accuracy of neu-

ral networks other applications such as image classification [24] and object detection [25].

The dataset was split into training, validation, and testing sets with a ratio of roughly 7:1:2.

Because of the large sample size, repeated k-fold splits were not constructed. Missing categori-

cal variables were added as a level of the feature. For models (such as logistic regression and

MLP) that do not natively handle missing quantitative predictors, missing values were imputed

with the mean observed value and a “missing value” indicator feature was concatenated. For

each model, hyperparameters were searched over a grid of plausible values with tests for

expansion at each endpoint, where possible. Hyperparameters that resulted in the highest area

under the receiver operating characteristic curve (AUROC) in the validation set were selected

and carried forward to the test set evaluation.

As the dataset was highly imbalanced (0.5% of medication orders were voided), we utilized

two techniques to address class imbalance in the training set [26]. First, class weights were set

as inversely proportional to their proportion. Second, we up-sampled positive training cases

by 201 times, equalizing proportions. For each model architecture, both of these techniques

were applied to the training set. Neither weighting nor up-sampling were performed in the val-

idation or testing sets. The choice of class imbalance resolution technique with better perfor-

mance in the validation set was used in the training model to be evaluated on the test set. That

is, we treated reweighting versus up-sampling as a hyperparameter.

LR was tested with or without L2 (ridge) and L1 ratio (lasso) penalty selected from 1000,

100, 10, 1,.1 and 0,.1,.25,.5,.75, 1. LR with pairwise interactions and filtering by L1 penalty was

attempted, but this classifier was difficult to optimize during training, tested very poorly, and

is not reported. For DT, tree depth ranged from 3 to 8, and minimum sample split was selected

from 2, 1000, 2000, 10,000, and 20,000 (a minimum sample split of 2 represents no early termi-

nation). For RF and GBDT, the number of decision trees was 100, 200, 300, 400, or 500, deci-

sion tree depth ranged from 2 to 8, and minimum sample split ranged from 2 to 20,000. For

DELR, each transformation network had depth of 2 to 6 layers and width of 4 to 6 nodes. For

MLP, network depth ranged from 2 to 6 layers and hidden layer width was selected from 32,

64, or 128 neurons. For both DELR and MLP, two optimizers (stochastic gradient descent

with learning rate 0.1 or 0.01 and Adam optimizer with learning rate 0.001 [24]) were tested.

Presence or absence of batch normalization was also tested.

Once the hyperparameters were fixed, model performance in the testing set was quantified

using the AUROC metric. In highly imbalanced datasets, AUROC can sometimes be deceptive

on evaluating the model performance [25]. As such, we also constructed the precision-recall

curve for each model and calculated the area under the precision-recall curve (AUPRC),

which is a measure of average precision. Confidence intervals for AUROC and AUPRC were

created using the non-parametric logit method [27] in MatlabAUC package [28]. Each classi-

fier was re-calibrated using isotonic regression in the validation cohort [29].

For each model, the most important features contributing to the predictions were identi-

fied. For LR, feature importance was defined by the absolute value of the regression coefficient.

For DELR, feature importance was defined as the product of feature embedding value and

regression coefficient. In models with deep interactions, “explainability” was approached in

multiple ways. Global feature importance was assessed, for example, by permutation; however,

in complex models the direction and magnitude of effect for a feature in a specific example

depends on the context. For DT, feature importance was defined as the weighted entropy

decrease on that feature during training phase. For RF and GBDT, feature importance was

determined for the component DTs and averaged across all DTs in the model. For MLP,
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feature importance was quantified using backpropagation-based salience detection (integrated

gradients) [30]. In this technique, the gradient of the output prediction with respect to the

input feature values for each case was calculated, and the gradient with respect to each feature

was averaged across the population. Integrated gradients and Shapely values were calculated

for each observation, permitting local measures of feature relevance [31]. To highlight impor-

tant deep interactions, we used a large global decision tree that can approximate GBDT and

RF fitted surfaces [32] when appropriately supervised. We also permuted features to assess

global importance to model fit. All analyses were conducted using Python version 3.7, unless

otherwise specified.

Results

The dataset included 5,804,192 orders, of which 28,695 (0.5%) were voided orders. Character-

istics of the orders are shown in Table 1. Nearly two-thirds of orders were inpatient medication

orders, and most orders were placed during day shifts. Overall, there were more order voiding

on orders created by students (4%) or by nurses (i.e., as verbal orders, 1%).

Comparing model performance

Hyperparameters that resulted in superior AUROC in the validation set were identified. For

LR, presence of L2 penalty was selected. For DT, tree depth of 8 and minimum sample split of

20,000 were selected. For RF, decision tree number of 500, decision tree depth of 8, and mini-

mum sample split of 20000 were selected. For GBDT, decision tree number of 100, decision

tree depth of 8, and minimum sample split of 2000 were selected. For DELR, transformation

network depth of 4 layers, hidden layer width of 5 neurons were selected and batch normaliza-

tion was enabled. For MLP, network depth of 3 layers and hidden layer width of 32 neurons

were selected. For DELR and MLP, stochastic gradient descent with learning rate of 0.1 and

0.01 was selected respectively. The inverse weighting method for addressing class imbalance

performed better than the up-sampling method for the DT and GBDT, while the up-sampling

method performed better for the LR, RF, DELR and MLP.

After fixing the hyperparameters, model performance in the testing set was computed (see

Table 2). GBDT achieved the highest AUROC and AUPRC across all models. RF had approxi-

mately the same accuracy as DT, with marginally better AUPRC and marginally worse

AUROC. LR and DELR demonstrated the poorest performance of all the models, especially in

the AUPRC metric. Receiver operating characteristic and precision-recall curves for all models

are shown in Fig 1. All models had acceptable calibration in the test set; the calibration curve

for each model is shown in the S1 Checklist.

Model interpretation

We also investigated the potential for deriving meaningful explanations from the developed

models. Fig 2 represents a partial decision tree for voided orders with an overall depth of 7, 54

decision nodes, and 63 leaf nodes. Displayed leaf nodes had >100 examples in the testing data;

error rates within this tree varied between 0.003% to 46%. A large segment of the presented

tree includes medication ordering without a value for the feature “volume dose unit” (e.g., mil-

liliters, tablets, capsules, allowed to differ from “dispense unit” and “strength unit”). For exam-

ple, the top, left-most leaf node represents orders related to the medication, nalbupine, with a

volume dose unit missing or unspecified. Such orders have a high rate of being voided (~34%).

This is potentially because these orders are often added outside of an order set (e.g., for pain

management after surgery) or using a prespecified “order sentence.” The second node
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highlights orders that are entered by a medical student; for inpatient orders, 24% of such

orders were likely voided.

The root node, missing volume dose unit, also highlights a contextual aspect related to the

source of the medication errors. Medication orders were sometimes created using “order sen-

tences,” where medication-related information was standardized and incorporated into an

order. For instance, for the common blood pressure medication, amlodipine, an order sen-

tence is available for a standard “10 mg, PO (“per os” or by mouth), daily.” If the clinician

wanted an unusual dose or frequency, they would need to enter it as text; for example, “2.5 mg,

PO, 2 AM and 1 PM.” Another situation where this occurs is when no order sentences are

Table 1. Characteristics of orders in the dataset.

Variable Non-Voided Orders Voided Orders

(N = 5,775,497) (N = 28,695)

Age (mean, SD) 45.5 (22.3) 46.5 (22.2)

Age Group

0–19 793,672 (14%) 3,861 (13%)

20–39 1,333,142 (23%) 6,131 (20%)

40–49 826,481 (14%) 3,741 (12%)

50–59 1,127,423 (20%) 7,941 (26%)

60–69 899,144 (16%) 4,888 (16%)

70–79 540,829 (9%) 2,817 (9%)

>80 254,806 (4%) 1,296 (4%)

Sex

Female 3,444,161 (60%) 16,910 (59%)

Male 2,330,629 (40%) 11,778 (41%)

Race/Ethnicity

Black 2,938,539 (51%) 14,075 (49%)

Caucasian 1,217,607 (21%) 6,794 (24%)

Hispanic 729,051 (13%) 3,550 (12%)

Other 890,300 (15%) 4,276 (15%)

Order Type

Normal Order 3,620,733 (63%) 17,455 (61%)

Prescription/Discharge Order 1,689,052 (29%) 5,056 (18%)

Recorded/Home Meds 465,708 (8%) 6,184 (21%)

Shift

Day 3,957,683 (69%) 19,991 (70%)

Night 1,177,477 (20%) 6,148 (21%)

Overnight 640,336 (11%) 2,556 (9%)

Title of Ordering Provider

Nurse 546,650 (9%) 5,684 (20%)

Pharmacist 627,963 (11%) 2,382 (8%)

Physician 3,954,439 (68%) 15,769 (55%)

Student 38,050 (1%) 1,655 (6%)

Other 608,395 (11%) 3,205 (11%)

Normalized Drug Dose

Normalized Strength (mean, SD) 2.6e-4 (0.99) -5.4e-2 (1.16)

Normalized Volume (mean, SD) 5.7e-6 (0.98) -1.9e-3 (2.66)

SD = standard deviation

https://doi.org/10.1371/journal.pone.0254358.t001
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available, usually for rarely used medications or medications with highly varying doses. During

such situations, the volume dose unit is unlikely to be defined, potentially leading to voided

orders. We found that such orders with missing volume dose unit have a higher likelihood of

being errors as highlighted by the sample decision tree (Fig 2).

Discussion

To the best of our knowledge, this is the first study to utilize a large, routinely collected data set

of self-intercepted medication ordering errors to forecast error status and identify associated

features of these errors. Using a database of>5 million medication orders, we compared five

classification algorithms for predicting medication ordering errors based primarily on the con-

textual features associated with a medication order. We found that GBDT was the top per-

forming model (AUROC = 0.797) and was able to predict errors with a 10% PPV at a

sensitivity of 20%. Based on a simplified classification rule using the DT algorithm, most of the

voided orders had a low risk (rate ~0.3%), and about 5% with a much higher risk (rate>4%).

The models highlighted the association of errors to known risk-increasing features of an order

Table 2. Model performance using the test data set (N = 1160839).

Model AUROC AUPRC NORMAL AUROC NORMAL AUPRC

[95% CI] [95% CI] [95% CI] [95% CI]

LR 0.7468 0.0225 0.7518 0.0223

[0.7398, 0.7536] [0.0165, 0.0306] [0.7430, 0.7604] [0.0160, 0.0338]

DT 0.7769 0.0407 0.7810 0.0416

[0.7590, 0.7938] [0.0265, 0.0662] [0.7581, 0.8023] [0.0243, 0.0702]

RF 0.7635 0.0242 0.7679 0.0248

[0.7568, 0.7701] [0.0183, 0.0318] [0.7594, 0.7762] [0.0177, 0.0347]

DELR 0.7561 0.0230 0.7617 0.0239

[0.7493, 0.7627] [0.0172, 0.0308] [0.7532, 0.7700] [0.0168, 0.0339]

MLP 0.7868 0.0562 0.7888 0.0567

[0.7803, 0.7932] [0.0501, 0.0630] [0.7804, 0.7969] [0.0490, 0.0655]

GBDT 0.7968 0.0647 0.8005 0.0661

[0.7905, 0.8030] [0.0587, 0.0713] [0.7925, 0.8083] [0.0586, 0.0745]

https://doi.org/10.1371/journal.pone.0254358.t002

Fig 1. Model performance. Receiver operating characteristic curves (left panel) and precision-recall curves (right panel)

demonstrating performance of each model in the testing set.

https://doi.org/10.1371/journal.pone.0254358.g001
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such as student-formulated orders, and to previously unknown and likely local setting-based

features such as missing fields (e.g., missing volume dose unit).

The methodological approach of using ML algorithms for predicting medication errors has

two potential applications. First, it is possible to identify factors associated with order entry

errors that potentially represent generalizable knowledge for mitigating such errors. In Fig 2,

orders that had a volume dose unit specified, most likely arising from standardized order sen-

tences, had a lower likelihood of being voided. It is not surprising that orders that do not have

a pre-defined dose unit would be associated with more errors. Such orders require more

“clicks” as well as clinician recall or the need to look up dose units, fragmenting the ordering

workflow. Further investigation of the use of order sentences is a promising line of investiga-

tion. Similarly, the high rate of voided student and verbal orders likely represent real and gen-

eralizable finding. Again, although not surprising, these findings have implications for training

of future users. Unlike raw counts, model-based outputs are adjusted for related features,

reducing the effects of confounding.

Second, ML-based medication ordering error identification offers opportunities to guide

patient safety efforts that are targeted towards medication orders within high-risk contexts.

“Context” has two potential meanings here. First, is the modeling interpretation of “interac-

tions between features.” Models that did not include interactions, such as logistic regression,

were less accurate, suggesting that multiple features forming a “context” is potentially required

to identify medication ordering errors. In our example (Fig 2), low naloxone doses in particu-

lar were likely to be voided, suggesting that these are a confusing or easily mistaken option

rather than naloxone itself as a problematic drug.

The second meaning of “context” is that many of these findings are likely situated within

the context of the customized CPOE of our dataset and would neither be apparent or relevant

to a multi-institutional or national database. To revisit the above example of missing volume

Fig 2. Example partial tree from the DT model showing the causal patterns for medication errors. In this tree, if the decision is

false (i.e., not a voided order), take the right branch; similarly, if the decision is true (i.e., voided order), take the left branch. Red and

green boxes highlight the positive rates of greater than and less than 5% respectively. Note that this is a small portion of the total tree.

https://doi.org/10.1371/journal.pone.0254358.g002
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dose unit, other CPOEs may not use the same structure to indicate “written without an order

sentence/order set.” More specifically, the high rate of voided nalbuphine orders likely reflects

ordering options that are not working as intended. In the limiting case, it is also possible to

narrow the explanation to an individual clinician’s medication ordering characteristics [33].

Such an approach can account for the context of historical errors that are aligned with a spe-

cific clinician’s ordering characteristics or characteristics of a medication (e.g., a high-risk

drug). These local findings are important to find issues in a specific CPOE implementation

and user behaviors that can affect patient safety. Our methodological approach, hence, can be

applied directly to hospital-scale data.

Finally, there may be value in using model-based predictions to target orders for further

scrutiny. With the use of voiding function (or similar self-interception detection techniques),

observed counts of errors can be a valuable source for patient safety investigations. However,

in any self-report mechanism false negatives are also likely. Orders sharing characteristics with

frequently voided ones (i.e., high forecasted probability) could be prospectively reviewed even

if the yield is below the threshold to justify clinician-facing decision support. In our case, at a

20% sensitivity, the 10% positive predictive value implies a 20-fold decrease in the number of

orders to review to discover one error. Drawing these enriched samples is a prerequisite for

feasible patient safety review given that the total error rate is very low, especially for smaller

clinical units within a hospital. Additionally, if units within a hospital have differential accu-

racy in error reporting, then forecasted error rates may be necessary to identify safety issues.

Another way to understand this application is that the predicted error rate can act as a prior

for a more stable estimate than the naïve reported rate in a small or noisy population. Con-

versely, medication ordering errors that are “easily explained” (e.g., a student order, redundant

order-set orders) can be filtered out, and more complex errors investigated in greater detail for

safety and quality improvement purposes.

Conclusions and limitations

Our study has several limitations. The data was from a single academic medical center. The

content findings are likely of limited generalizability. However, the methodology we have

developed can be easily applied to similar datasets to identify contributors to medication

ordering errors; a key advantage of ML approaches is that they are designed to be theory

agnostic and account for tuning and discovery using split-sample methods. As described in

our previous studies, not all voided orders were true errors. Based on chart review of voided

orders in a previous study, we found that voided orders had a 60%-80% positive predictive

value of being a true error [22, 34]. Approximately 22% of the self-intercepted voided orders

reached the patient [34]. As voiding is optional for clinicians, certain types of orders may have

been preferentially voided more frequently than others. For instance, clinicians may have pref-

erentially voided duplicate student orders over physician orders, thus biasing the feature

importance metrics. We would also like to highlight that the performance of these models is

below what is needed for directly incorporating into clinical practice. For example, the false-

positive rate of 90% to capture 20% of voided orders would create an unacceptable alarm bur-

den (see Fig 1 right panel). Our dataset does not allow direct review of false-negative orders

(unmarked errors); doing so would be impossible given the scale of orders that would be

required. Our goal was not to replicate the domain knowledge dependent clinical decision sup-

port integrated into pharmacy systems, but to consider medication order-related factors that

contribute to medication ordering errors. As such, our models did not consider details regard-

ing the patient medical history, laboratory values, or other drug orders, which are central to

most heuristic based CDS. Future studies can incorporate additional features of the
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medication, patient, and prescriber to improve performance. As this study was based on his-

torical data with different configurations and order sentences, we could not verify some of the

settings of the order entry system. Finally, the considered models have very different degrees

of interpretability in the discussed potential applications. Logistic regression and decision trees

can be directly “read off” to identify the driving factors. Although many promising efforts [35,

36] are increasing the interpretability of other classifiers, these are inherently much more com-

plex and vulnerable to misinterpretation. Future applications will have to balance their need

for interpretability and the benefits of complexity.

Medication voiding offers a promising approach for detecting, tracking and organizing

medication errors. Our findings, based on applying ML models to voided orders, highlight the

potential for identifying common failures of CPOE use and finding orders likely to be errors

based on contextual factors. This opens new opportunities for supplementation of clinical

decision support development, real-time error surveillance of efficacy of innovations in CPOE,

and pragmatic patient safety efforts.
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