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Al systems, particularly large language models (LLMs), are increasingly being employed
in high-stakes decisions that impact both individuals and society at large, often without
adequate safeguards to ensure safety, quality, and equity. Yet LLMs hallucinate,
lack common sense, and are biased—shortcomings that may reflect LLMs’ inherent
limitations and thus may not be remedied by more sophisticated architectures, more
data, or more human feedback. Relying solely on LLMs for complex, high-stakes
decisions is therefore problematic. Here, we present a hybrid collective intelligence
system that mitigates these risks by leveraging the complementary strengths of human
experience and the vast information processed by LLMs. We apply our method to open-
ended medical diagnostics, combining 40,762 differential diagnoses made by physicians
with the diagnoses of five state-of-the art LLMs across 2,133 text-based medical case
vignettes. We show that hybrid collectives of physicians and LLMs outperform both
single physicians and physician collectives, as well as single LLMs and LLM ensembles.
This result holds across a range of medical specialties and professional experience and
can be attributed to humans’ and LLMs’ complementary contributions that lead to
different kinds of errors. Our approach highlights the potential for collective human
and machine intelligence to improve accuracy in complex, open-ended domains like
medical diagnostics.

medical diagnostics | collective intelligence | large language models | health informatics | Al

Diagnostic errors are among the most pressing issues in medical practice (1-3), causing
an estimated 795,000 deaths and permanent disabilities in the United States alone each
year (4). Reducing diagnostic errors—without incurring substantially higher costs—is
essential to improve patient outcomes worldwide. This challenge has motivated a recent
surge in diagnostic technologies within the field of health informatics, which exploit
Al to interpret medical records, tests, and images (5, 6). Deep learning approaches in
medical imaging have shown great promise. Notable examples include mammography
interpretation, cardiac function assessment, and lung cancer screening, some of which
have progressed beyond the testing phase and entered clinical practice (7-9).

Recent years have also witnessed the rise of Al foundation models, especially large lan-
guage models (LLMs), which show remarkable abilities to process natural language, pro-
viding accurate answers to questions in almost any domain, including medicine (10-12).
However, a recent meta-analysis (13) found that physicians often outperform LLMs, and
that LLMs differ vastly in performance, also between medical specialties. While LLMs’
performance in the medical domain keeps improving (12), their deployment in clinical
practice remains challenging due to the risk of errors [caused by, e.g., hallucinations
(14-17), biases (18, 19), and lack of common sense (20)] and concerns about their
trustworthiness (21). As these shortcomings may reflect inherent limitations of LLMs
(22), developing more sophisticated architectures or using more data or more human
feedback may not sufficiently address these shortcomings. The tension between the vast
potential of Al-based solutions and the challenges of real-world deployment is not limited
to medical diagnostics. It is also apparent in other domains, especially those involving
high-stakes decisions whose effects are not immediate, such as strategies to address climate
change (23).

Here, we present an approach that complements Al responses with human expert
knowledge in open-ended medical diagnostics. This method, which combines Al with a
collective intelligence (CI) approach, benefits from the diversity of solutions provided by
humans and LLMs. CI approaches harness the contributions of multiple experts to reduce
errors and find creative solutions to complex problems (24, 25). In medical diagnostics,
several studies have found that the collective solution of multiple diagnosticians outper-
forms the average individual across a range of medical contexts (26-32). These studies
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have focused on binary or small-scale decision problems (e.g.,
detecting a specific condition), but CI has also proved successful
in open-ended medical problems. While in earlier studies the
contributions of individual experts are manually harmonized
and aggregated into collective diagnoses (33), more recently
this approach has been fully automatized. Specifically, medical
knowledge graphs and natural language processing methods are
leveraged to harmonize the free-text contributions of individual
experts (34), which can differ significantly due to the open-
endedness of the solution space (35).

In a similar vein, it has been postulated that Al can enhance
human collective intelligence (36, 37). Hybrid systems that
integrate state-of-the-art LLMs as peers in a mixed human-AI
collective hold promise for addressing complex decision problems
such as medical diagnostics. Al can provide complementary
information without perpetuating the errors and biases of human
peers. At the same time, the diagnostic process is not entirely
outsourced to artificial systems, making it possible to benefit
from human experts’ ability to think outside the box, recognize
context, and handle contentious evidence, thus mitigating the
risks of LLMs.

Combining the contributions of multiple humans and mul-
tiple LLMs is, however, not straightforward. Although many
studies have explored how to combine multiple Al models [e.g.,
ensemble learning is an established practice in machine learning
(38, 39)], little is known about how to best combine the outputs
of multiple LLMs (but see refs. 40—43 for specific use cases),
or how to combine the responses of multiple LLMs with those
of human experts, particularly in open-ended domains. In this
study, we develop a general-purpose method to combine the
responses produced by both human experts and LLMs. Applying
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this method to a set of over 40,000 diagnoses, we show that
hybrid human—AI collectives outperform human-only and LLM-
only collectives in diagnosing text-based clinical vignettes across a
variety of medical specialties and levels of professional experience.
Additionally, we demonstrate that when LLMs fail, physicians
often provide correct diagnoses, thus highlighting the crucial
importance of maintaining expert involvement, even in the
presence of an ensemble of powerful Als.

1. Medical Cases, Human Data and LLM
Responses

The empirical basis for this work is a dataset from the Human
Diagnosis Project (Human Dx), an online collaborative platform
for medical professionals and trainees. Users from around the
world can register on the platform, submit cases, review case
details, and provide diagnoses. The cases submitted are published
only if approved by an editorial board of licensed medical
professionals. Each case is presented as a vignette mimicking
information that physicians encounter in real-world practice
and containing patient information such as symptoms, medical
records, and clinical test results (Fig. 1). When responding to a
case, users can provide either a single diagnosis or a ranked list,
commonly known as a differential diagnosis, either as free text
or by selecting from a medical taxonomy with an autocomplete
feature that activates as they type (see Fig. 14 for an illustration
of the user interface). We refer to this response as a differential
diagnosis, whether it contains one or multiple diagnoses. Once
the user has submitted their differential diagnosis, they are shown
the gold-standard solution as provided by cases’ authors and
vetted by an expert panel, which may consist of one or several
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Fig. 1.

Illustration of the hybrid collective intelligence process, which combines human diagnoses with LLM outputs to arrive at a collective differential

diagnosis. (A) Screenshot of the interface that human users see when diagnosing a patient case on the Human Dx platform via a mobile device. The information
provided can include a patient's symptoms, test results, and medical record. Users can uncover this information piece by piece and update their diagnosis
accordingly. In this analysis, we only consider users’ final differential diagnosis. The same information shown to human users is also given to LLMs as part of
a prompt (Materials and Methods). (B) An illustrative example of the open-ended text responses given by users and LLMs. Next, extending a method presented
in ref. 34 (Materials and Methods and SI Appendix, Fig. S1), each single diagnosis is subjected to several processing steps for standardization, after which it is
assigned a unique ID in the SNOMED CT healthcare terminology. (C) Example of a SNOMED CT entry. Crucially, all listed synonyms are matched to the same
SNOMED CT ID. (D) Diagnoses of humans and LLMs after the matching step. (E) Collective diagnosis after aggregating the diagnoses from humans and LLMs.
In this aggregation, LLMs and humans are assigned different weights based on their performance in the training fold. The rank r of a diagnosis in a differential

diagnosis is taken into account through a 1/r scoring rule (Materials and Methods).
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diagnoses (Materials and Methods). For our main analyses, we
used a set 0f 2,133 medical cases and 40,762 differential diagnoses
from qualified physicians with different levels of professional ex-
perience (Materials and Methods). In SI Appendix, we additionally
present results of the same analyses for medical students.

To compare and combine the human diagnoses with LLM
outputs, we provided the same set of case vignettes to five
commercially available or open-source state-of-the-art LLMs
(Anthropic Claude 3 Opus, Google Gemini Pro 1.0, Meta
Llama 2 70B, Mistral Large, and OpenAI GPT-4) and prompted
the models to provide the five most probable diagnoses, ordered
by their probability of being correct (Materials and Methods).

2. Harmonizing, Aggregating, and Evaluating
Open-Ended Answers from Doctors and LLMs

The process of aggregating human judgments and LLM outputs
into a collective diagnosis is illustrated in Fig. 1. In brief, each
diagnosis is assigned a weighted score, which is determined by
considering both its rank in individual diagnostic lists (with
higher-ranked diagnoses receiving more weight) and the accuracy
of the source providing the diagnosis. To estimate this accuracy,
we used a repeated five-fold cross-validation approach in which
onefold was used as a training fold to optimize LLM prompting
and compute separate weights for LLMs and human experts.
Since many individual human experts only diagnosed one or a
few cases, we did not assign distinct weights to individual experts.
Instead, all human experts were assigned a single weight based
on their collective diagnostic performance on the training fold.
In contrast, because LLMs provided diagnoses for all cases, we
were able to learn separate weights for each LLM. The remaining
four folds were then used to evaluate the performance of these
weighted collective diagnoses (see Materials and Methods and ST
Appendix, Fig. S1 for further details).

In order to make the open-ended diagnoses of users and LLMs
comparable and uniquely identifiable, we extended the method
described in ref. 34, which maps free-text diagnoses to concepts
(and their unique IDs) in the Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT) (44) (Materials and
Methods). SNOMED CT is a comprehensive clinical terminology
and coding system designed to standardize the representation
of medical concepts and support the accurate communication
of clinical information in healthcare. After matching diagnoses
to SNOMED-CT concepts, the generation of the collective
differential diagnoses proceeds exploiting the SNOMED-CT IDs
(Fig. 1).

Depending on the use case for an aggregated collective
diagnosis, some performance metrics might be more suitable
than others. For example, if the differential diagnosis of an LLM
(ensemble), a human collective, or a hybrid collective serves as a
consideration set to support the decision of a human physician,
it may be sufficient that the correct solution is included in the
differential diagnosis at all, and less important that it is ranked
first. Therefore, we report several accuracy metrics, including
top-5, top-3, and top-1 accuracy, where a differential diagnosis is
evaluated as correct if the correct diagnosis is among the top five,
top three, or top one diagnoses, respectively (and the accuracy
is the proportion of such cases). For the fraction of cases where
a case author has stated several diagnoses as correct (34%), a
nominated diagnosis is considered correct if it matches any of the
correct diagnoses. Additionally, we report the mean reciprocal
rank (MRR) (45), a well-established performance metric in the
field of information retrieval, defined as

PNAS 2025 Vol. 122 No. 24 e2426153122

MRR:—Z—, [1]

where C corresponds to the number of cases on which the metric
is evaluated and 7; is the rank of the first occurrence of a correct
answer in the final list for case 7. Note that if ; > 5 or if the
correct diagnosis is not present in the ranking, we set 7; = 00 so
that the contribution of case 7 to the MRR is null.

3. Aggregating LLMs Increases Performance in
Open-Ended Medical Diagnostics

We start by presenting the cross-validated results for the baseline
performance of the five individual LLMs and all possible LLM
ensembles. As Fig. 2 shows, the individual LLMs differed
notably in performance, but aggregating multiple LLMs into
ensembles generally increased diagnostic accuracy. The ensembles
performed much better than the worst individual LLM and
generally as well as, or better than, the best individual LLM. For
clarity, error bars are omitted here, but the full Bayesian posterior
distributions, including 95% credible intervals, are provided in §7
Appendix, Figs. S2 and S3). SI Appendix, Fig. S4 shows Bayesian
performance comparisons between the all-LLM ensemble and
individual LLMs. For top-5 accuracy, the ensemble of all LLMs
combined clearly outperformed each LLM individually, and this
result held across the five most common medical specialties
in our data (cardiology, gastroenterology, pulmonology and
respirology, neurology, and infectious diseases; see SI Appendix,
Fig. S5). The same held for top-3 accuracy and MRR when
comparing performance across all cases and for four of the five
medical specialties (S/ Appendix, Fig. S5). For top-1 accuracy,
the ensemble of all LLMs performed better than four of the
five individual LLMs and approximately at the level of the best-
petforming LLM (SI Appendix, Fig. S4). Whether or not it is
advisable to aggregate several LLMs may therefore depend on the
target metric, but if the purpose is to provide a consideration
set to support the decision of a human physician (e.g., top-5
diagnoses), then LLM ensembles have the greatest potential.

To put the LLMs’ performance into perspective, SI Appendix,
Fig. S6 shows the percentage of physicians who were out-
performed by (and/or tied with) individual LLMs and LLM
ensembles across the set of cases they had solved. This percentage
was highest for an LLM ensemble incorporating all five LLMs
(i.e., strictly outperformed 85% of physicians and outperformed
or tied with 93% of physicians). Comparing the individual LLM
performance with that of the human users showed that four of
the five LLMs outperformed the average physician.

4. Human-Al Collective Intelligence
Outperforms Both Humans and LLMs

Next, we test the complementarity of human and LLM solutions
in a hybrid CI approach. Fig. 3 shows the cross-validated per-
formance when combining the diagnoses of multiple physicians
(human-only ensembles as a baseline) with any one of the five
individual LLMs or with all LLMs. Full Bayesian posterior
distributions are provided in S/ Appendix, Figs. S7 and S8). For
the baseline of human-only ensembles, increasing the number of
physicians increased diagnostic accuracy, with greater marginal
increases in accuracy for smaller than for larger group sizes. These
results are in line with earlier findings from a smaller set of Human

Dx cases (33, 34).
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Fig. 2. Cross-validated performance of five individual LLMs (Anthropic Claude 3 Opus, OpenAl GPT-4, Mistral Large, Google Gemini Pro 1.0 and Meta Llama 2
70B) and ensembles of all possible combinations of LLMs. Panels show performance for four outcome metrics (y axes): Top-k indicates the proportion of cases
for which the correct diagnosis was among the k top-ranked diagnoses (for k = {1, 3, 5}); MRR shows the mean reciprocal rank of correct diagnoses across cases
(Eg. 1). The x axis shows the number of LLMs in an ensemble. The horizontal dashed line shows the average individual performance of the physicians (i.e.,
first averaged within cases, then across all cases). Some of the ensembles overplot each other (see S/ Appendix, Figs. S2 and S3 for the full Bayesian posterior

distributions, including 95% credible intervals).

Crucially, adding one LLM to the human diagnoses consis-
tently increased performance for both individual physicians and
human-only ensembles of different sizes, with the largest increase
attained when adding the best-performing individual LLM or
an all-LLM ensemble. For top-5 and top-3 performance metrics,
adding the all-LLM ensemble was as good as or better than adding
the best-performing LLM. For top-1 accuracy and MRR, adding
either the best-performing LLM or the all-LLM ensemble yielded
the best results—which of the two depended on the size of the
human group. Even adding the worst-performing LLM, which
by itself performed worse than the average individual physician,
generally led to a slight increase in performance across all metrics.
SI Appendix, Figs. S9 and S10 show Bayesian performance
comparisons for hybrid ensembles versus individual LLMs and

SI Appendix, Figs. S11 and S12 for physician ensembles versus
hybrid ensembles with the same number of humans.

From the perspective of human-only ensembles, comparing
the performance of ensembles of 7 humans with that of hybrid
ensembles of 7 — 1 humans plus one LLM (i.e., the same overall
group size of 7 inputs) showed that adding either the best or
second-best LLM or the all-LLM ensemble to a human-only
ensemble outperformed adding another human (for Bayesian
performance comparisons see S/ Appendix, Fig. S13; depending
on the accuracy metric and group size, this finding also tended
to hold for the third- and fourth-best LLM; Fig. 3). From
the perspective of individual LLMs or an all-LLM ensemble,
adding one or more human(s) increased performance; this
increase was most pronounced for the worst-performing LLMs.
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Fig. 3. Cross-validated performance of human-only ensembles and hybrid ensembles of humans and LLMs. Panels show performance for four outcome met-
rics (y axes): Top-k indicates the proportion of cases for which the correct diagnosis was among the k top-ranked diagnoses (for k = {1, 3, 5}); MRR shows the mean
reciprocal rank of correct diagnoses across cases (Eq. 1). The individual performance of the five LLMs (and their combined performance in an all-LLMs ensemble)
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Some of the ensembles overplot each other (see S/ Appendix, Figs. S7 and S8 for the full Bayesian posterior distributions, including 95% credible intervals).
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As SI Appendix, Figs. S14 and S15 show, these results held across
the five most common medical specialties in our data and for
medical students.

5. Complementarity of Human- and
LLM-Generated Diagnoses

The results presented in Fig. 3 suggest complementarity of
physicians and LLMs in diagnosing open-ended medical prob-
lems. However, given that most LLMs outperform the average

A Complementarity of individual physicians and LLMs
Rank of the correct diagnosis

individual physician, how can adding a single physician to an
individual LLM—or even to an ensemble of LLMs—increase
diagnostic accuracy? The key answer to this question is that
humans and LLMs make different kinds of errors. The literature
on both CI (46, 47) and machine ensembles (38, 48) recognizes
that the less correlated the errors of its members are, the more
successful the ensemble will be.

Fig. 44 shows the percentage of cases in which individual
physicians and LLMs placed the correct diagnosis on the same
rank or both did not rank the correct diagnosis (highlighted

.'g 1 31 1 o0 7 |; 4 1 1 0 8 |¥ 5 2 2 1 8 F 4 1 1 0 10 F 6 3 1 1 14
%2 41110 0 0 2 41110 0 0 2 310 0 O 3 3110 0 0 3 21110 0O O 4
';3" 3 2 0JO0OJO0O 0 1 1 ojoJo o 2 1 ojojJo o 2 1 ojoJo o0 1 2 0J]O0O]JO 0 1
% 4 1 0 O0)JO]JO O 1 0 O0Jofjo o 0O 0 OoOJofjoOo o 1 0 O0Jojo 1 0 0 OoOJoOojoOo 2
% 5 0 0 0 O0O)]JO}O 0O 0 0O Oo0J]JO]oO 0O 0 O ofjo0]oO 0O 0 0O Oo0J]JO]oO 0O 0 O ofjo0f]oO
S -6 6 2 1 1 ﬂ 14 6 2 1 2 ﬂ 12 4 2 2 1 12 3 2 2 1 7 4 2 1 1

1 2 3 4 5 - 1 2 3 4 5 - 1 2 3 4 5 - 1 2 3 4 5 - 1 2 3 4 5 -

Rank by Claude 3 Rank by GPT-4

B Complementarity of physician ensembles and LLMs
Rank of the correct diagnosis

Rank by Mistral Large

Rank by Gemini Pro Rank by Llama 2 70B

él 5 2 1 0 9 5 2 1 1 10 6 2 1 1 11 4 2 1 1 14 F 8 3 3 2 20
%2 5121 0 0 4 41211 0 0 5 3121 0 0 5 51111 0 0 5 21111 0 0 7
.§3 2 100 0 2 2 100 0 3 1 1|0|]0 0 4 1 ojfoJo o 3 1 ojojJo o0 4
534 1 1 o|Jo}|Jo 2 1 1 o0Jojo 2 1 0 o0JoJoOo 3 2 0 ofJoj]JoOo 3 1 0 oJoJo 3
2,5 1 0 0 o001 1 0 0 of-1|1 1 0 0 o0}|0])2 1 0 0 ofjo0o])2 0 0 0 o002
E; -4 2 1 0 1 ﬂ 3 2 1 1 o0 ﬂ 2 1 1 1 o0 ﬂ 2 1 1 0 o0 ﬂ 1 2 1 0 O ﬂ
= 1 2 3 4 5 - 1 2 3 4 5 - 1 2 3 4 5 - 1 2 3 4 5 - 1 2 3 4 5 -

Rank by Claude 3

C overall rank 1 agreement

e
O o QS
) \,'Z’( .\Q‘ ’1:\
S <> ,é'z} ((\\o &
SN RO R NG GPT-4
individual physicians 18 Mistral Large
5-physician ensembles 24 Gemini Pro

Llama 2 70B

D Rank 1 agreement | both diagnoses incorrect

o ®
» \3’& . Q‘o °
N > & o
& & &S S
(o) © ) © >

individual physicians = 20 19 17 18 12

5-physician ensembles | 2/ 27 26 25 19

Llama 2 70B

Rank by Mistral Large

GPT-4

Mistral Large

Gemini Pro

Rank by Gemini Pro Rank by Llama 2 70B

e’b
y 'o\’b
C

&
¥
\\/
>
<§
<
&
e”)
'a"b
(o)
> (
)
3
N
3
@
N
A\

Fig. 4. Complementarity of solutions from individual humans and human-only ensembles and LLMs. Panels (A and B) show, for each of the five LLMs, matrices
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or not ranked). (A) Results for individual physicians. (B) Results for five-physician human-only ensembles. The highlighted diagonal indicates cases where an LLM
and the humans assigned the correct diagnosis the same rank. Panels (C and D) show the percentage of cases in which the same diagnoses were assigned rank
one, comparing individual physicians and 5-physician ensembles to LLMs (Left side), and different LLMs to each other (Right side). (C) Overall rank one agreement,
regardless of whether the correct diagnosis was included. (D) Rank one agreement when both diagnosticians were incorrect. Results were extracted from the
ten-times repeated cross-validation procedure by recording the frequencies with which physicians and LLMs assigned the same or a different rank to either
the correct or an incorrect diagnosis, averaged across all cases and the five folds (Materials and Methods). Note that due to rounding to integers, there may be
small inconsistencies when summing rows or columns across matrices or when comparing sums of values to respective percentages reported in the main text.
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diagonal cells) and the percentage of cases in which individual
physicians and LLMs placed the correct diagnosis on different
ranks (or it was only mentioned by either a physician or an
LLM; all other cells). The results show that individual physicians
and LLMs did not assign the correct diagnosis to the same rank
in a substantial number of cases (range across LLMs: 46% to
51%). Crucially, when LLMs did not list the correct diagnosis
at all (range across LLMs: 34% to 54%; Right-most columns),
individual humans did mention it in a substantial number of
cases (range across LLMs: 30% to 38%; Right-most columns
excluding Bottom-Right cells), most frequently ranking it first
(range across LLMs: 20% to 26%, Top-Right cells). In other
words, diagnoses missed by LLMs were often made by individual
physicians, frequently in first place. Thus, although individual
physicians performed worse overall than most LLMs (Fig. 2 and
SI Appendix, Fig. S6), in a substantial number of cases, they
were able to compensate for the LLMs’ errors. Similarly, when
individual humans did not list the correct diagnosis at all (49%,
Bottom rows), LLMs did in a substantial number of cases (range
across LLMs: 31% to 51%; Bottom columns excluding Bottom-
Right cells), most frequently ranking it first (range across LLMs:
15% to 33%, Bottom-Left cells).

Fig. 4B shows the same analysis for five-physician collectives
and LLMs. Given that human collectives outperformed indi-
vidual humans (Fig. 3), the diagnoses given by five-physician
collectives are even more complementary to the LLMs than are
the ones given by individual physicians. When LLMs did not list
the correct diagnosis at all (range across LLMs: 34% to 54%;
Right-most columns), human ensembles did so in the majority
of cases (range across LLMs: 55% to 65%; Right-most columns
excluding Bottom-Right cells), most frequently ranking it first
(range across LLMs: 27% to 36%, Top-Right cells). Intriguingly,
the opposite pattern was less pronounced. When human-only
ensembles did not list the correct diagnosis at all (22%; Bozrom
rows), LLMs did so in only the minority of cases (range across
LLMs: 17% to 32%). For a similar complementarity analysis of
LLMs with respect to each other, see ST Appendix, Fig. S16.

Fig. 4 C and D shows how often individual physicians, five-
physician ensembles, and LLMs agree with each other on their
top-ranked diagnosis. LLMs agree more among themselves than
with physicians (Fig. 4C) and this difference is particularly
pronounced in situations where both human and LLM diagnoses
are incorrect (Fig. 4D). Furthermore, when humans and LLMs
both make errors (Fig. 4D), they are less likely to assign the same
incorrect diagnosis to the first rank compared to their respective
overall agreement rate (which includes cases where either or both
have ranked the correct diagnosis first; Fig. 4C). SI Appendix,
Figs. S17 and S18 show that the above conclusions about error
diversity also hold when considering the full range of ranks 1 to 5.
This error diversity is crucial for a CI approach to be effective,
and it is significantly more pronounced among hybrid pairs of a
physician and an LLM compared to between pairs of different
LLMs. Our key finding here is that in a collective aggregation
scheme based on (weighted) majority voting, this error diversity
ensures that correct diagnoses accumulate more frequently than
incorrect ones, allowing the correct solutions to rise to the top of
the collective differential diagnosis.

6. Discussion

Our results demonstrate the potential of combining human med-
ical expertise with LLMs to enhance accuracy and reduce errors
in open-ended medical diagnostics. Integrating the differential
diagnosis of a single human diagnostician with the output of
a single LLM yielded a better performance than cither alone.

6 of 10 https://doi.org/10.1073/pnas.2426153122

Adding an LLM to multiple physicians’ diagnoses also improved
performance in nearly all scenarios. The individual accuracy of
the LLM influenced the performance gain, with the highest gain
from the best-performing LLM. But even the worst-performing
LLM, which was less accurate than the average human, showed
positive effects.

Taking an LLM perspective, also the performance of LLMs
could be boosted by adding human judgements. Adding a
single physician increased performance for all LLMs even though
individual physicians, on average, performed worse than most
LLMs; and LLM performance increased steadily with adding
more humans. The increase in performance was highest for the
worst-performing LLM and lowest for the best-performing LLM.

An important component of (hybrid human—machine) CI is
that different users or machines produce independent and diverse
errors (46, 47, 49, 50). We find that humans and LLMs indeed
make complementary errors that disperse throughout the vast
solution space, while correct diagnoses accumulate and converge
when integrating human and LLM diagnoses.

Previous work has shown the potential of Al and CI indi-
vidually, and their hybrid combination for problems with well-
defined, small solution spaces (e.g., categorization, probabilistic
forecasting, numerical estimation) (51-54). Here, we showed
that these results can be generalized to open-ended problems
covering a vast solution space (there are more than 360,000
unique medical concepts of which more than 83,000 are tagged as
disorders in the March 2023 international edition of SNOMED
CT that we used), by using a general-purpose method to
automatically harmonize and aggregate the solutions generated
by humans and LLMs. While we demonstrated this method in
the domain of medical diagnostics, we believe that our approach
can be generalized to different applications for which structured
domain knowledge is available, allowing the harmonization and
principled aggregation of human expert judgements and LLM
responses [e.g., climate change adaptation management (35)].

7. Limitations and Future Research

While our study demonstrates the potential of hybrid human-Al
systems in medical diagnostics, further research is necessary to
ensure the safety, reliability, efficacy, and ethical deployment of
this technology in real-world clinical settings.

For instance, although vignette-based studies represent a
validated and accepted paradigm for the study of diagnostic
decision-making processes in medicine (55), it remains an open
question as to how well our method translates to actual clinical
practice. This concern has recently been echoed in critiques of
current LLM evaluation practices, which argue that benchmark
datasets derived from medical licensing exams fail to capture
the complexity and ambiguity of real-world clinical tasks (56).
Moreover, our case vignettes were selected by an expert panel
at Human Dx, and users may flag suspicious cases for removal
from the Human Dx platform. While all vignettes are designed
to simulate real-world scenarios, the editorial team may prioritize
cases based on their educational value and perceived interest
to the user base. Consequently, this selection process may have
excluded very difficult or rare cases, while also underrepresenting
very common and straightforward cases typically encountered
in clinical practice. This could help explain the relatively low
top-1 diagnostic accuracy among physicians, compared to the
error rates generally reported in outpatient care and emergency
medicine (57-59). As a consequence, the improvement in
accuracy observed across different ensembles likely represents
an upper bound estimate of the potential benefit that could be
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expected in clinical practice. Future work could consider more
ecologically valid or representative ways of selecting cases.

Furthermore, our analyses do not consider the consequences
of the treatments implied by the diagnoses. Future work could
study whether our proposed approach alters the likelihood of
arriving at a potentially beneficial (or harmful) treatment. Such
research must consider the decision context, as the recommended
or accessible treatments may vary depending on the cultural,
regional, and institutional circumstances, as well as the patients’
health insurance plan (e.g., ref. 60).

Finally, our study was not designed to address risks related to
fairness and equity (see, e.g., refs. 61-66). For example, LLMs
have been shown to perpetuate race-based medicine in their
responses (18). This finding suggests that the clinical medical
knowledge encoded in LLMs (12) is tainted by racism, which can
leak into medical diagnoses, resulting in worse health outcomes
for disadvantaged groups. Future work should directly study the
extent to which the integration of humans and LLMs mitigates
bias or amplifies biases shared among humans and LLMs in
medical diagnostics (see also refs. 67 and 68).

More generally, taking a human-centered approach when
designing hybrid systems is essential to compensate for the lack
of transparency of Al models and for building trust among
all affected stakeholders (69-72). Such an approach may help
identify and mitigate some of the problems of LLMs or hybrid
systems already during the design stage.

Future research could build on our approach in several
ways. First, although we used a systematic prompt engineering
approach, more sophisticated techniques have been developed
that could further boost accuracy [e.g., tree of thought (73,
74), or self-consistency with temperature/top-p sampling (75)].
Applying sophisticated multilevel prompt-engineering tech-
niques to generalist foundation models can improve performance
and even outperform fine-tuned models for the medical domain
(76). Second, vignettes could be classified into categories (e.g.,
medical specialties, number and type of case findings), and
using tailored few-shot examples within these categories when
prompting LLMs or adjusting weights for LLMs based on
these categories may further boost accuracy. Additionally, more
sophisticated weighting techniques could be tested that adjust
weights based on fairness, or LLM biases (66). Third, we
only considered text-based cases; future work could test the
diagnostic performance of large multimodal models (and hybrid
human—AI ensembles) on, for example, images (e.g., X-rays or
histopathological images) or sounds (e.g., auscultation) alongside
the textual information (10, 11). Forth, future work could further
explore the potential of hybrid CI with nonexperts. SI Appendix,
Fig. S15 demonstrates that hybrid ensembles of LLMs and
medical students were able to outperform individual physicians
and even groups of physicians. Boosting the performance of less
qualified individuals by leveraging LLMs might have particular
potential for underserved regions where access to experts is
limited. Finally, while our study provides a proof-of-principle
demonstrating the potential of hybrid collective intelligence for
medical diagnostics, further research is needed to explore how our
findings can be translated into clinical practice, for example in the
form of a clinical decision support system. Future experiments
could test whether using the aggregated responses from human-
LLM ensembles as recommendations to the physician responsible
for the final diagnosis influences the final diagnosis and increases
accuracy. There are numerous studies demonstrating the effec-
tiveness of clinical decision support (68, 77-80), and known
factors influencing advice uptake are the timing of advice (81, 82)
as well as automation bias (83, 84) and algorithmic aversion (85).
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However, more research is needed to understand the best setup
for efficient hybrid collective intelligence decision support. One
possibility for efficient use of human expert advice are fast and
frugal approaches (86) through hybrid confirmation trees (87),
where additional human expert advice is requested only when the
initial human diagnosis and the diagnosis by an LLM ensemble
disagree or when the diagnostician’s confidence is low.

8. Conclusion

Our study demonstrates the power of hybrid human—AlI collec-
tives in diagnosing text-based clinical vignettes, highlighting their
potential relevance to general clinical practice. Hybrid collectives
outperform both individual human experts and LLMs (as well as
human-only and LLM-only collectives) in generating accurate
differential diagnoses. This superior hybrid performance is a
direct consequence of physicians and LLMs making different
kinds of errors: When LLMs missed the correct diagnosis,
individual physicians often contributed the correct diagnosis,
rescuing the hybrid performance.

Recent years have seen a surge of research and publications on
the potential of LLMs [e.g., in medical diagnostics; (12)]. How-
ever, in both science and public discourse, there is increasing con-
cern about the lack of safeguards to ensure the safety, quality, and
equity of LLM-based systems (21). LLMs, despite their impres-
sive capabilities, hallucinate (14-17), lack common sense (20),
and are biased (18, 19)—shortcomings that may reflect LLMs’
inherent limitations (22) and may thus not be remedied by more
sophisticated architectures, more data, or more human feedback.

We posit that the time has come for a second wave of research
on LLMs (and Al in general) that is no longer content to
showcase what LLMs can do, propose technical approaches to
fix their flaws (e.g., ref. 17), and speculate about how human
oversight could be implemented. Rather, it is crucial to study
how to leverage the complementary strengths of humans and
Al by combining the experience and common sense of experts
with the vast information processed by LLMs. In addition to
technological solutions aimed at addressing problems inherent in
an Al system [e.g., using retrieval-augmented generative Al to try
addressing hallucinations; (17)], incorporating complementary
human intelligence can help mitigate the risks of LLMs in ways
that purely technological solutions may not ever be able to.

9. Materials and Methods

9.1. Human Dx: Medical Diagnostics Cases and Data from Human
Solvers. For our analyses, we used a dataset of 2,133 medical cases with a total
of 40,762 diagnoses provided by medical experts through the user interface of
the Human Dx app (Fig. 14). Beforehand, we excluded from our analyses all
diagnoses that were incomplete due to submission errors or connectivity issues.
We also excluded the diagnoses of users who bypassed the onboarding process
and of "shadow banned" users, who were permitted access to the platform but
excluded from analyses due to unhelpful behavior (e.g., submitting diagnoses
consisting of random characters or using profanities). Test accounts belonging
to two Human Dx staff members were also excluded. Finally, we excluded cases
containing images (as not all of the LLMs were able to process these). The
medical experts consisted of 1,370 attending physicians (37.3%), 139 fellows
(3.8%), and 2,160 resident physicians (58.9%), representing senior doctors,
doctors undergoing specialized training, and doctors in training, respectively.
Note that this tenure information is based on self-reports by the users.
As SI Appendix, Fig. S19A shows, the performance distributions of these
three tenure levels were similar; we therefore combined them into a
common category labeled “physicians.” An additional 11,772 diagnoses were
contributed by 1,037 medical students; on average, these were less accurate
(SI Appendix, Fig. S19 Aand B).
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For hybrid human-LLM ensembles (Fig. 3), only cases diagnosed by a
minimum of five physicians were analyzed (so that collectives of up to five
humans could be simulated), totaling 1,928 cases. The gold-standard solution
for each case, considered the correct diagnosis in this analysis, consists of one or
more diagnoses provided by case authors. These diagnosesare then vetted by the
Human Dx editorial board, a team of licensed medical professionals, to confirm
that the clinical information in each vignette is sufficient to support the correct
diagnosis and that each case provides a positive learning experience. Notably,
the gold-standard solution is established before any user attempts to diagnose
the case on the Human Dx platform. A current list of contributing editors who
author and review clinical cases is available at: www.humandx.org/editors. We
use this gold-standard solution as the basis for calculating accuracy metrics in
our analyses. The medical specialty of a case (used for the robustness analyses
reported in S/ Appendix, Figs. S5 and S14) was determined by prompting
Anthropic Claude 3 Opus to identify the three most probable specialties from
a list of 145 specialties used internally by Human Dx (see S/ Appendix for the
exact wording of the prompt). Only the most probable specialty was used in the
analyses shown in S/ Appendix, Figs. S5 and S14.

9.2. LLMs: Prompt Engineering and Postprocessing of Responses. Prompt
engineering can markedly affectthe qualityand format of LLM responses. Thereis
no established framework for prompt engineering, and which wording produces
the desired response typically depends on the LLM used. Some studies have
found that shorter prompts work better (88); others that complex prompts yield
better responses (89). In practice, prompts are generally engineered by trial and
error (89).

We took a systematic, semi-exhaustive approach, building up prompts in
a modular fashion by concatenating several text blocks (S/ Appendix, Fig. S1).
The most basic block feeds the case vignette to the LLM verbatim. The case
vignette describes the patient's symptoms, test results, and medical record.
The LLM is then asked to provide the five most probable diagnoses ordered
by their likelihood of being correct (i.e., a differential diagnosis). We included
several additional text blocks in the prompt and tested whether these additions
increased diagnostic accuracy. The prompt that performed best in a training fold
of cases was then used for the analysis in the remaining folds. Specifically, the
additional text blocks assign the LLM the role of a medical expert[impersonation
(90)], advise it to check that the proposed diagnoses are consistent with the case
description (self-consistency), advise the LLM to report diagnoses in SNOMED
CT terminology (answer format SCT) or in common shorthand (answer format
common), or offer five examples of case vignettes with their correct diagnoses
[a technique known as few-shot prompting; (91)]. In selecting the few-shot
examples, we sought to ensure variety in patients' age (5 mo to 89 y)and gender
(3 female and 2 male) and the medical specialty. The resulting LLM responses
constitute the basis of the results reported here. For details of the exact wording
of prompts and results of the validation process, see SI Appendix, Fig. S1.

Our general validation approach is as follows: We used 10-times repeated
five-fold cross-validation on the whole set of cases, using onefold of cases to
selectthe best promptand calculate the weights for humans and LLMs (Weighted
Aggregation of LLMs and/or Human Inputs). The other four folds were used for
assessing out-of-sample performance. We report results averaged across the fifty
cross-validation outcomes.

The raw LLM responses required some additional postprocessing (which was
not needed forthe human responses). Even when explicitly instructed to provide
answers in a specific format, some LLMs did not always comply and occasionally
returned verbose responses. However, these responses follow typical patterns
that are easy to recognize. Some LLMs, for example, start the response with an
introductory sentence before parsing the differential diagnosis in the requested
format. We therefore removed the response until the first line break if the
response started with “Sure,...," "Here is the...," "Here are...," "### Response:...,"
"The probable...," "The differential...," “The most probable...," or "Based on...".
Furthermore, we removed various forms of list numbering.

9.3. Matching Raw Text to Unique Medical Concepts (SNOMED CT). One
of the main challenges when aggregating individual diagnoses in open-ended
medical diagnostics is discerning which diagnoses correspond to the same med-
ical concept. The differential diagnoses given by humans and LLMs consist of raw
text. Two strings pointing to the same disease might differ slightly-for example,

https://doi.org/10.1073/pnas.2426153122

dueto typos, use of synonyms, or differences in spelling. To facilitate comparison
ofthese open-ended diagnoses, we developed amethod and processing pipeline
that leveraged the comprehensive SNOMED CT healthcare terminology (March
2023 International Edition Release) and mapped the raw string responses to
unique IDs in SNOMED CT (extending a pipeline described in ref. 34).

The first step is string normalization, using routine natural language
processing tools to standardize all diagnoses-including the correct ones
provided by cases' authors. The normalization procedure involves removing stop
words, converting British English to US English, converting plural to singular,
and identifying acronyms; specifically, we used the Norm* pipeline, one of the
Lexical Tools maintained by the National Library of Medicine. The second step
is to map concepts to SNOMED CT IDs (Fig. 1C). This is done by comparing a
normalized diagnosis string to the normalized entries in SNOMED CT including
all of their stored synonyms sharing the same ID. ASNOMED CTID i assigned to
adiagnosis onlywhen there is an exact match between the sets of words—in other
words, the compared strings having a Jaccard similarity of 1. On the rare occasion
that more than one SNOMED CT ID is matched by this technique, SNOMED CT
allows for differentiation by semantic tags. We gave preference to SNOMED IDs
according to their semantic tags in the following order: "disorder,” "finding,”
"morphologicabnormality,” "body structure,” “person,” “organism," “specimen”
(see ref. 34 for the rationale behind this ordering), so that a diagnosis was only
matched to exactly one ID.

Applying this approach, as described in ref. 34, produced a match for 90%
of the correct case diagnoses, 78% of diagnoses given by LLMs (calculated
across all prompts), and 84% of diagnoses given by humans. For the diagnoses
that could not be matched, we employed a different approach. We created
768-dimensional vector embeddings of all unique (active) SNOMED CT concepts
and synonyms using a sentence-transformer model based on the pubmedbert
model (92)-a domain-specific transformer model trained on texts from the
National Library of Medicine and fine-tuned over the MS-MARCO dataset using
the sentence-transformer framework (93). We then created a vector embedding
of the diagnosis to be matched and assigned it the SNOMED CT ID for which the
cosine similarity between embedding vectors was highest. We were thus able
to match all remaining raw string diagnoses to exactly one SNOMED CT ID. For
example, the diagnosis"Chlamydiainfection”which could notbe matched before
was now correctly matched to the SNOMED CT concept “Chlamydial infection
(disorder).” Likewise, "HIV disease"” was correctly matched to the SNOMED CT
concept "HIV infection (disorder).” As a sanity check, we applied the sentence-
transformer matching technique to all diagnoses that were successfully matched
inthe firstapproach (i.e., using the pipeline described in ref. 34) and found that
both methods arrived at the same SNOMED CTID for 99.4% of diagnosis strings
(given by humans or LLMs).

Applying this mapping approach allowed us to systematically quantify the
number and diversity of diagnoses in the dataset. The 2,133 medical cases
contained a total of 2,008 unique diagnosis strings provided by case authors as
correct solutions, which were mapped to 1,610 unique SNOMED CT concepts
for standardization. Across all responses, humans and LLMs together generated
63,732 unique diagnosis strings, with 14,448 from humans and 53,454 from
LLMs (including responses from all tested prompts). These were mapped to
18,130 unique SNOMED CT concepts, of which 9,218 were provided by humans
and 14,257 by LLMs.

9.4. Weighted Aggregation of LLMs and/or Human Inputs. To aggregate
individual diagnoses into a collective diagnosis, we implemented a scoring
rule. After normalizing all differential diagnoses and matching them to unique
SNOMED CT IDs, we built a set of all nominated IDs (see Fig. 1 B-D and previous
subsection). Then, for each diagnostician (physician or LLM) and each diagnosis,
a partial score was assigned that was discounted depending on the rank r in the
differential diagnosis (i.e., the list of diagnoses ordered in descending order of
judged probability of being the correct diagnosis). Following refs. 33 and 34,
we employed a 1/r rule for the rank-discounted partial score (i.e., the inverse
rank of a diagnosis). Additionally, this partial score was multiplied by a weight at
the level of the diagnostician (see next paragraph). Finally, for each nominated
diagnosis, these partial scores were summed up over all diagnosticians, and

*https://Ihncbe.nlm.nih.gov/LSG/Projects/lvg/current/docs/userDoc/tools/norm.html.

pnas.org


https://www.humandx.org/editors
https://www.pnas.org/lookup/doi/10.1073/pnas.2426153122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2426153122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2426153122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2426153122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2426153122#supplementary-materials
https://lhncbc.nlm.nih.gov/LSG/Projects/lvg/current/docs/userDoc/tools/norm.html

the ranking of the collective differential diagnosis was defined as a list sorted in
decreasing order of the overall score a diagnosis received.

Prior research on Cl in medical diagnostics has shown that giving equal
weightto membersina collective when aggregating individual judgements into
a collective diagnosis (i.e., using a simple equal-weighting combination rule)
performs well as long as there is not much difference in individual performance
(29). However, if there are substantial differences in individual accuracy,
giving the more competent individuals higher weights in the aggregation step
may improve performance. We therefore used the Weighted Majority Voting
Ensemble (WMVE) approach described in ref. 94 to determine weights for LLMs
and humans. Weights were determined on one-fifth of the cases and calculated
for each configuration (i.e., combinations for the accuracy metric used and
which LLMs and/or the number of human experts). The performance of the
WMVE was then calculated on the remaining four-fifths of the cases. Results
are reported as the means of a 10-times repeated five-fold cross-validation
(LLMs: Prompt Engineering and Post-Processing of Responses). At the start of the
weight-learning process, each diagnostician jin an ensemble of n diagnosticians
(physicians or LLMs) is assigned a weight of w;q = 1. For each case i in the
training set, the weights are updated according to w;; = wj;_1 + a;, where
@ =sjj-(n— Z}’:1 sji)/nands; ;is the score of diagnostician jachieved on
case i, which depends on the performance metric used (for top-k, it is either 1 or
0; for reciprocal rank, itis 1/r); that is, we estimated weights separately for each
metric we evaluated. This means that the weight increases if a diagnostician
correctly diagnoses a case in the training set, with a larger increase if the
diagnoses of other diagnosticians in the ensemble are incorrect. It was not
possible to calculate a weight for each individual physician because many only
rated a few (or none) of the cases in the training set. We therefore calculated a
shared, average weightforall physicians. To this end, for each case in the training
set and for each hybrid configuration with n humans, we built all possible
groups of n physicians (i.e., using the physicians who provided a differential
diagnosis for that case) and averaged over them. If the number of possible
groups exceeded 100, we randomly sampled 100 unique groups. In most cases,
applying such a weighted combination rule outperformed a simple equal-
weighting combination rule. However, even with equal weights applied, LLM
and hybrid ensembles generally outperformed individual LLMs and physicians
(S1 Appendix, Fig. S20). In real-world clinical applications, the feasibility of our
proposed weighting method will depend on whether reliable knowledge about
past performance-or at least past decision similarity (95)-is available.

10. Ethics Declarations

We did not collect data specifically for this study; instead, we
analyzed existing data provided by Human Dx. When users sign
up on the Human Dx platform, they give consent for their data
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data protection.

Data, Materials, and Software Availability. Human Dx commitsto providing
access to the entire dataset needed to reproduce the analyses presented upon
request by anyresearcheremployed atan accredited academicinstitution, forthe
sole purpose of independently verifying and reproducing the results presented
in this manuscript. This controlled data access protocol is in place due to privacy
considerations associated with vignettes representing patients seen in clinical
practice and performance data of physicians providing diagnoses for those
vignettes and to safeguard against benchmark contamination for evaluating Al
and human-Al collaborative systems (refs. 96 and 97). Thus, researchers must
agreeto use the dataset solely forvalidation purposes (excluding model training,
commercial use, or inputting data into commercial language models that use
inputfortraining purposes). Requests for the entire dataset can be issued via the
following link: www.humandx.org/data. We also include one Human Dx case
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ourapproach, accessible at: https://github.com/nikozoe/human_ai_collectives.
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