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Bispecific (BsAb) and biparatopic (BpAb) antibodies emerged as promising formats for
therapeutic biologics exhibiting tailor-made functional properties. Over recent years,
chicken-derived antibodies have gained traction for diagnostic and therapeutic
applications due to their broad epitope coverage and convenience of library generation.
Here we report the first generation of a biparatopic common light chain (cLC) chicken-
derived antibody by an epitope binning-based screening approach using yeast surface
display. The resulting monospecific antibodies target conformational epitopes on domain
II or III of the epidermal growth factor receptor (EGFR) with lower double- or single-digit
nanomolar affinities, respectively. Furthermore, the domain III targeting variant was shown
to interfere with epidermal growth factor (EGF) binding. Utilizing the Knob-into-Hole
technology (KiH), a biparatopic antibody with subnanomolar affinity was generated that
facilitates clustering of soluble and cell-bound EGFR and displayed enhanced antibody-
dependent cell-mediated cytotoxicity (ADCC) compared to the parental antibodies. This
strategy for generating cLC-based biparatopic antibodies from immunized chickens may
pave the way for their further development in therapeutic settings.

Keywords: biparatopic antibody, antibody discovery, common light chain, yeast display, chicken-derived
INTRODUCTION

In recent years, antibody engineering aimed at generating next-generation antibody formats such as
bispecific antibodies (bsAbs) gained massive interest since they can be programmed to possess
multiple novel functionalities that cannot be mediated by conventional monoclonal antibodies
(mAbs). BsAbs can simultaneously target two distinct antigens on different cells,
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thereby facilitating approximation of target and effector cells,
leading to immunological effects that are unachievable with
combinations of monospecific antibodies (1–5). Furthermore,
simultaneous targeting of cancer-specific antigens and
checkpoint inhibitors on the surface of the same malignant cell
can elevate tumor-specific effects and contribute to the safety
profile of a bispecific therapeutic antibody (6, 7). A particular
subclass of BsAbs are biparatopic antibodies (BpAbs), which
target two different epitopes on the same antigen.

The use of biparatopic antibodies in the frame of cancer cell
targeting was exemplified by Li and co-workers, who generated a
biparatopic anti-HER2 antibody-drug conjugate (ADC). The
molecule facilitated enhanced receptor clustering, internalization,
and lysosome trafficking compared to the classical monospecific
format, resulting in degradation of the tumor (8). Recently, the
Wang group published an anti-CD3 fragment antigen-binding
(Fab) that was C-terminally fused to two camelid single-domain
antibodies (VHHs) targeting non-overlapping epitopes on the
cancer target HER2. This resulted in a trivalent, biparatopic
construct showing potent T cell-mediated cytotoxicity via
simultaneous CD3 and HER2 binding, even in low HER2-
expressing cells (9). Even though such antibody fragments can
mediate impressive cytotoxic effects, their usage in vivo is limited by
their short half-life.

Recently, Akiba and co-workers described the formation of
biparatopic antibody fragments based on a non-overlapping
single-chain fragment variable (scFv) linked to either a SpyTag
or a SpyCatcher. The subsequent formation of a covalent bond
between the SpyCatcher and SpyTag creates a biparatopic
molecule targeting two distinct epitopes on the cancer-related
antigen roundabout homolog 1 (Robo1) (10). Although this
technology is of major interest as a screening platform or for
the generation of biosensors for diagnostic applications, the short
half-life of these molecules and the lack of Fc-mediated effector
functions lower their therapeutic potential.

Over the last years, many different IgG-like bispecific formats
have been investigated (11). Bispecific antibodies require two
different binding arms. In the classical setting, antibodies
containing two separate heavy chains are generated, that differ in
the target binding ability of the corresponding VH domains. For the
correct heterodimerization of the heavy chains, multiple platform
technologies are available, such as Knob-into-hole (12), SEED-
bodies (13), or the electrostatic steering approach (14), that all
rely on preferred heterodimer formation of the two different Fc
fragments. Nevertheless, even with perfect heavy chain pairing, the
aforementioned technologies can only mediate the correct assembly
of 25% of the produced antibody, since upon co-expression of two
light chains, scrambled species may arise as a result of incorrect light
chain paring (Figure 1A). While technologies like Cross-mab (15)
or orthogonal Fab interfaces (16) are able to circumvent this
problem, the utilization of a common light chain remains the
most straightforward approach (17). In those BsAbs, a single light
chain is used for pairing with both different heavy chains (Figure
1B). Notably, antigen binding is mainly mediated by the VH
domains, while the common light chain provides stability rather
than contributing to antigen binding (18). Obviously, this
Frontiers in Immunology | www.frontiersin.org 2
technology requires a straightforward strategy to isolate heavy-
chain-only binders that do not rely on the contribution of the
predefined light chain for target binding.

To date, common light chain antibodies have been generated
for various bispecific applications (18–24). Nonetheless, they are
mostly based on other formats, such as scFvs or camelid single-
domain antibodies (VHH) (8–10, 25–29). Even though the
generation of such molecules is straightforward, they do not
exhibit an IgG-like architecture.

For decades, the most popular species for antibody generation
upon immunization have been mice, rats, and rabbits. However,
in many cases where the (human) target protein used for
immunization has a high similarity with an ortholog present in
the immunization host, a poor immune response is observed.
The resulting antibodies might be limited in their epitope
coverage due to the failure of the immune system of the host
to recognize these epitopes as foreign (30). Based on their
phylogenetic distance from humans, chicken immunization
can result in antibodies against epitopes that are broadly
conserved in mammal species and, therefore, not accessible by
immunization of mammals (30–32). Furthermore, the avian
gene diversification mechanism based on gene conversion (33–
35), accounts for a fast and easy antibody library generation. No
sequence variation occurs at the regions coding for the amino-
and the carboxyterminal section of the VH and VL domains,
thus allowing for the usage of non-degenerated primer pairs for
gene amplification by PCR (36). Recently, our group established
a fluorescence-activated cell sorting (FACS)-based yeast surface
display (YSD) technology for the isolation of high affine chicken-
derived antibodies (36–39). Additionally, we demonstrated the
potential of incorporating a common light chain (cLC) within
the screening procedure while maintaining affinity and a broad
epitope coverage (40). In this study, we describe the isolation and
characterization of the first biparatopic common light chain
antibody targeting the extracellular domain of epidermal
growth factor receptor (EGFR-ECD) (Figures 1C, D) that is
derived from immunized chickens by combining a novel epitope
binning-based screening strategy with the knob-into-hole
technology for the generation of bispecific heavy chain pairs.
MATERIAL AND METHODS

Plasmids
For yeast surface display, pYD1-derived vectors (Yeast Display
Vector Kit, version D, #V835-01, Thermo Fisher) were utilized,
encoding either a tryptophan auxotrophic marker, an ampicillin
resistance, and the aga2 signal peptide followed by the respective
VH-CH1 encoding sequence, and the aga2 gene or a leucine
auxotrophic marker, a kanamycin resistance gene and an
aMFpp8 signal sequence followed by the VL-CL encoding
sequence. Gene expression was controlled by the galactose-
inducible promotor (GAL1). For the soluble expression of full-
length chimeric antibodies, pTT5-derived vectors (40) were
utilized, encoding either the heavy or the light chain
constant domains. Biparatopic variants were expressed using
December 2020 | Volume 11 | Article 606878

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bogen et al. Biparatopic Common Light Chain Antibody
A

B

E

D

C

FIGURE 1 | Common light chain biparatopic antibodies and schematic representation of the screening procedure. (A) The heterodimerization of the heavy chains is
achieved by the Knob-into-Hole technology. Due to the need for correct pairing of heavy and light chains, only 25% of produced antibodies are correctly assembled.
(B) The utilization of a common light chain pairing with both heavy chains enabled the circumvention of the light chain pairing problem. (C) Monoclonal antibodies
recognize a single epitope of the target antigen and can therefore bind to two individual receptors. (D) Biparatopic antibodies bind to two distinct epitopes of the same
antigen. By binding to two receptor molecules, additional epitopes on the target remain exposed allowing for the binding of an additional antibody, leading to crosslinking
of the target receptor and receptor clustering. (E) Epitope binning-based FACS screening resulted in two VH domains, addressing orthogonal epitopes while comprising
one common light chain. Subsequent reformatting into the Knob-into-Hole format enabled the production of a biparatopic antibody. Created with BioRender.com.
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pTT5-derived vectors encoding the full-length chimeric antibody
with either a knob or hole mutation (12) within the CH3
sequence, and a C-terminal His- or Twin-StrepII-Tag,
respectively. For one-armed antibodies, a pTT5-derived vector
encoding the Hinge-CH2-CH3 with knob or hole mutations and
C-terminal His- or Twin-StrepII-Tag were utilized.

Yeast Strains, Libraries, and Sorting
Procedure
The used yeast strains and their handling, as well as the utilized
libraries, were described previously (40). Screening rounds were
performed utilizing either a BD Influx FACS Cell sorter or a Sony
SH800S. For the detection of surface presentation on chimeric Fabs,
an anti-Kappa AF647 F(ab′)2 antibody (SouthernBiotech) was used.
As antigen EGFR-ECD-Fc chimera (R&D) was utilized, and binding
was detected via a goat anti-human IgG Fc PE-conjugated antibody
(Thermo Fisher). For epitope binning-based sorting procedures, a
monomeric EGFR-ECD molecule (produced in-house), as well as a
chimeric full-length anti-EGFR mAb (FEB4), were utilized.

Reformatting, Expression, and Purification
of Chimeric Full-Length, One-Armed, or
Biparatopic Antibodies
Plasmids were isolated from yeast cells using the Zymoprep Yeast
Plasmid Miniprep kit (Zymoresearch) and were transformed into
E. coli XL1-Blue, following the manufacturer’s instructions. Plasmids
were isolated utilizing the Wizard® Plus SV Miniprep Kit (Promega)
and sequenced at Microsynth Seqlab (Göttingen). Resulting VH
genes were amplified using Q5 polymerase (NEB), according to the
manufacturer’s protocol, incorporating SapI sites and were
subsequently subcloned into pTT5-derived vectors by Golden Gate
cloning, as described previously (40). For soluble expression,
Expi293F™ (Thermo Fisher, A14527) cells were transfected,
harvested and secreted proteins purified by Protein A as described
elsewhere (23). One-armed and biparatopic molecules were captured
by IMAC (HisTrap HP, GE Healthcare), as described in (23),
followed by Strep-Tactin XT affinity chromatography according to
the manufacturer’s protocol. Buffer exchange against PBS was
performed utilizing HiTrap® Desalting columns (GE Healthcare).

Epitope Binning and Mapping via Yeast
Surface Display
YSD-based epitope binning was performed as described before (40).
In brief, induced yeast cells, displaying either FEB4 or SEB7, were
stained with 100 nM EGFR-ECD followed by incubation with either
matuzumab, cetuximab, or PBS-B (PBS + 0.1% (w/v) BSA) as
control. Antibody binding was verified by an anti-human Fc PE-
conjugated antibody. YSD-based epitope mapping was performed
as described before (41). In short, the ECD of EGFR was subdivided
into segments consisting of residues 1-124, 1-176, 1-294, 273-621,
294-543, or 475-621, and displayed on yeast cells utilizing the pCT
vector (42). The surface presentation was verified by a biotinylated
anti-c-myc antibody (Miltenyi Biotech) and Streptavidin APC
(Thermo Fisher). Subsequently, staining was performed using 200
nM of FEB4 or SEB7, followed by incubation with an anti-human
Fc PE-conjugated antibody.
Frontiers in Immunology | www.frontiersin.org 4
Affinity Determination, Epitope Binning,
Mixed-Site-Binding Assay and Epidermal
Growth Factor Competition via Biolayer
Interferometry
For affinity determination of chimeric antibodies, anti-human
IgG Fc Capture (AHC) biosensors were soaked in PBS pH 7.4 for
at least 10 min, and subsequently loaded with 10 µg/ml of the
antibody of interest until a layer thickness of 0.7 to 1 nm was
reached. Quenching and all subsequent steps were performed
utilizing the kinetics buffer (FortéBio). Association was measured
by using different concentrations of EGFR-ECD (produced in-
house), ranging from 7.8 nM to 500 nM. As a negative control,
kinetics buffer was used instead of antigen solution. Binding
kinetics were determined based on Savitzky-Golay filtering and a
1:1 Langmuir binding model using the respective negative control.

Epitope binning was performed in a tandem setup with
EGFR-ECD (10 µg/ml) immobilized on Ni-NTA tips with a
threshold of 0.7 nm. Subsequently, 400 nM of the first antibody
was applied for 900 s, followed by either the same or the second
antibody at the same concentration and time. Increment of layer
thickness in the last step is an indicator of non-overlapping epitopes.

For the determination of a clean- or mixed-site binding, the
biparatopic molecule was biotinylated utilizing EZ-Link™

Sulfo-NHS-LC-Biotin (Thermo Fisher) according to the
manufacturer’s protocol. 10 µg/ml was immobilized on SAX-
biosensor tips until saturation was reached. Subsequently, either
250 nM EGFR-ECD or buffer was applied for 600 s, followed by
an association step of the non-modified biparatopic antibody. An
increment of layer thickness compared between the EGFR-ECD
and the buffer sample verifies a mixed-site binding.

For the EGF competition assay, the antibodies were loaded
onto AHC tips with 10 µg/ml until a layer thickness of 0.7 nm
was reached. Subsequently, 100 nM EGFR-ECD preincubated
with either 0 nM, 100 nM or 1000 nM EGF was applied for 600 s.

The Octet RED96 system (FortéBio, Molecular Devices) was
utilized for all measurements at 30°C and 1000 rpm.

Nano DSF and Size Exclusion
Chromatography
Thermal stability measurements and SEC profiles were
determined as previously described (40).

Cultivation of A431 Cells
A431 human epidermoid carcinoma cells (ATCC® CRL-1555™)
were cultured in Dulbecco’s Modified Eagle Medium (DMEM,
Thermo Fisher), supplemented with 10% fetal bovine serum
(FBS) superior (Merck Millipore), and 1% Penicillin-
Streptomycin (Sigma Aldrich P0781). The cells were cultivated
in T75 cell culture flasks at 37°C in a humidified atmosphere with
5% CO2 and passaged every 3 to 4 days after reaching
approximately 80% confluency.

Antibody-Dependent Cell-Mediated
Cytotoxicity
ADCC assays were performed using the Promega ADCC
Reporter Bioassay Kit (G7010) following the manufacturer’s
December 2020 | Volume 11 | Article 606878
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instructions. A fourfold serial dilution of respective antibodies
(5 µg/ml to 305 pg/ml) was incubated with 12.500 A431 cells and
effector cells. After 6 h of incubation at 37°C and 5% CO2,
luciferase activity was measured and plotted against the antibody
concentration. For the fitting, a variable slope four-parameter fit
was utilized.
RESULTS

Identification of VH Domains Targeting
Orthogonal Epitopes
For the generation of a biparatopic antibody, two different
antigen binders are required that share the same common light
chain but recognize different epitopes on the target protein. As a
model antigen for the isolation of biparatopic chicken-derived
antibodies, the extracellular domains of the human epidermal
growth factor receptor (EGFR-ECD) were used. Various
monoclonal antibodies against this target exist, including the
therapeutic antibodies cetuximab and matuzumab (43, 44). To
obtain anti-EGFR common light chain antibodies, a chicken was
immunized with EGFR-ECD as described (37), and the VH
encoding genes were amplified and transferred into the yeast
expression vector pYD1 (40). Subsequently, this VH library was
paired with a single common light chain (termed H2) that was
derived from a chicken antibody directed against human
chorionic gonadotropin (hCG) (37, 40) by yeast mating. This
light chain was chosen since it displayed favorable
physicochemical features, such as high stability and low
aggregation when combined with various heavy chains (40).

5×108 clones of the resulting library were screened for three
rounds via FACS using decreasing antigen concentrations
starting from 250 nM down to 1 nM, to assure the enrichment
of high affine antibodies (Supplementary Figure 1A). The
resulting single clones were analyzed by flow cytometry, with
the clone FEB4 (First Epitope Binder 4) showing the strongest
binding to EGFR (Supplementary Figure 1B). Titration of target
antigen on yeast cells showed a strong binding even at low
molecular concentrations (Supplementary Figure 1C). The VH
sequence (Supplementary Figure 1D) was reformatted into a
chimeric IgG1 with a human Fc fragment format utilizing
Golden Gate subcloning (40). Subsequently, FEB4 was
transiently produced in Expi293F™ cells and purified using
Protein A affinity chromatography.

To generate a biparatopic antibody against EGFR-ECD,
another VH domain targeting an orthogonal epitope had to be
isolated. To achieve this, an epitope binning-based screening
approach was conducted (Figure 1E). This was based on
incubating the yeast library with the target protein, His-tagged
EGFR-ECD, followed by the addition of FEB4 being detected
with a fluorescently labeled anti-human Fc antibody. Only when
different epitopes are recognized, binding of FEB4 and cell
staining can be expected to occur (Supplementary Figure 2A).

At first, the library after the 2nd round was stained utilizing
100 nM of EGFR-Fc chimera, revealing that 15.1% of the
displayed Fab fragments within the library were able to bind
Frontiers in Immunology | www.frontiersin.org 5
EGFR (Supplementary Figure 2B). The yeast library after the
2nd round was stained for the epitope-binning-based screening
using either 100 nM or 10 nM monomeric His-tagged EGFR-
ECD (produced in-house) respectively, followed by incubation
with 200 nM of the chimeric FEB4-IgG1 antibody. FEB4 binding
was detected utilizing a goat anti-human IgG Fc secondary PE-
conjugated antibody. At 100 nM EGFR-His, a significant
reduction of the cell-binding population was observed,
indicating the presence of antibodies within the library
targeting overlapping epitopes with FEB4 (Supplementary
Figure 2B). Nevertheless, a significant proportion showed
target binding (7.95%). At 10 nM EGFR-His concentration,
only 2.45% of yeast cells displayed a Fab targeting an
orthogonal epitope to FEB4 (Supplementary Figure 2B). To
assure the selection of high-affinity binders, this cell population
was sorted. Ten resulting clones were randomly chosen and
analyzed by flow cytometry for target binding in an epitope-
binning-based manner (Supplementary Figure 2C). The variant
SEB7 (Second Epitope Binder 7) showed the strongest binding
signal when binding was verified utilizing FEB4, indicating an
affine antibody targeting an orthogonal epitope to FEB4. SEB7
(Supplementary Figure 2D) was subsequently reformatted
using the Golden Gate strategy into a chimeric IgG1 antibody
and transiently expressed using Expi293F™ cells, followed by
Protein A purification.

Light Chain Effects on Binding Properties
To investigate the influence of the cLC on the binding behavior,
the VL domains of H1 and H3, derived from previously reported
chicken-derived antibodies (37), were paired with the VH
domains of FEB4 and SEB7, respectively, using YSD. These VL
sequences differ in CDR-lengths and amino acid compositions
(Supplementary Figure 3A). Induced yeast clones expressing
respective antibodies were stained utilizing 100, 10, and 1 nM
EGFR-Fc chimera. While FEB4 showed similar binding behavior
independent of the used light chain in a dose-dependent manner,
SEB7 displayed significant antigen recognition only when paired
with the H2 light chain (Supplementary Figure 3B). These
results indicated that the VL domain only stabilizes the FEB4-
Fab but is not involved in antigen binding, while in SEB7, the H2
cLC is mandatory to facilitate EGFR binding.

Epitope Binning and Epitope Mapping
Epitopes targeted by FEB4 and SEB7 were characterized by YSD-
based epitope binning using a sandwich setup (Supplementary
Figure 4). FEB4 competed with the binding of the anti-EGFR
antibody matuzumab to EGFR but did not interfere with
cetuximab binding. SEB7 did not interfere with the binding of
either matuzumab or cetuximab.

Additionally, biolayer interferometry (BLI)-assisted epitope
binning in the in-tandem setup was performed (Figure 2A). In
accordance with YSD-based measurements, BLI measurements
corroborate the notion that FEB4 shares an overlapping epitope
with matuzumab but not cetuximab. SEB7, on the other hand,
neither targets the cetuximab nor the matuzumab epitope.
Furthermore, it was shown that FEB4 and SEB7 target
orthogonal epitopes (Figure 2B), proving the successful
December 2020 | Volume 11 | Article 606878
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application of epitope binning in sandwich setup within the
antibody screening process.

While the epitope of FEB4 could be localized to the
matuzumab binding site, localization of the SEB7 epitope
remained unclear. To investigate which of the four domains of
EGFR-ECD is targeted by SEB7, flow cytometry analysis was
performed using yeast cells displaying truncated versions of the
EGFR extracellular domains (41) (Figure 3A). Display of EGFR
segments was verified by detection of the C-terminal c-myc tag
(data not shown). Incubation of induced yeast cells with 200 nM
of the respective antibody, followed by subsequent staining using
the goat anti-human Fc PE antibody, allowed for domain-level
epitope mapping (Figure 3B).
Frontiers in Immunology | www.frontiersin.org 6
Since FEB4 targets the EGFR fragments 273-621 and 294-543,
it was mapped to EGFR domain III, which is consistent with the
prior YSD- and BLI-based binning experiments. SEB7 showed
strong binding to fragment 1-297 and marginal, but specific,
binding toward segment 1-176, allowing mapping to EGFR
domain II.

To investigate whether FEB4 and SEB7 target linear or
conformational epitopes, yeast cells displaying the fragment 1-
297 or 294-543 were incubated either at 80°C or 4°C,
respectively, as described before (41). Subsequently, yeast cells
were stained with either FEB4 or SEB7. Heat-incubated yeast
cells were still positive for c-myc presentation, indicating that the
corresponding EGFR segment was still presented at full-length.
A B

FIGURE 2 | Epitope binning of FEB4 and SEB7. (A) Schematic representation of epitope binning in-tandem setup. His-tagged antigen is loaded onto Ni-NTA
biosensors (1), followed by binding of the first antibody until saturation is achieved (2). Subsequently, either the saturation antibody or the completion antibody is
applied (3), resulting only in an increment of layer thickness if orthogonal epitopes are addressed. (B) BLI-based binning in-tandem setup investigating epitope
recognition of FEB4 and SEB7. Ni-NTA tips were loaded with EGFR-ECD, followed by binding to the first antibody of interest until saturation was achieved.
Subsequently, either the second antibody was applied, or a new incubation of the first antibody was performed, which served as control. Created with
BioRender.com.
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Nevertheless, the binding of FEB4 and SEB7 to their respective
fragments was abolished entirely due to heat-mediated protein
denaturation, indicating that both antibodies target conformation-
specific epitopes (Figure 3C). A previous report by Cochran and
co-workers demonstrated that these EGFR fragments do not
undergo refolding when displayed on yeast cells (41).

Construction of a Biparatopic Antibody
To ensure the heterodimerization of heavy chains, the Knob-
into-Hole technology was utilized (12). The VH domain of FEB4
was subcloned into the coding sequence of a CH1-Knob-Fc,
Frontiers in Immunology | www.frontiersin.org 7
C-terminally fused to a Twin-StrepII-tag, while SEB7 was
subcloned into a CH1-Hole-Fc comprising a C-terminal His-
tag. C-terminal tags allowed for the specific purification of
correctly heterodimerized KiH antibodies and the difference in
size enabled a straightforward analysis via SDS-PAGE. Both
variants were transiently produced as one-armed (oa) variants
comprising their respective KiH counterparts with a lacking Fab
region or as a full-length biparatopic antibody in Expi293F™ cells.

Besides the often observed hole-hole dimers, expression of
KiH antibodies also results in knob-knob homodimers, albeit to a
lower extent (45, 46). To purify only correctly assembled bpAbs,
A

B C

FIGURE 3 | Epitope analysis of FEB4 and SEB7. (A) Schematic representation of EGFR domains and the fragments investigated in this study. (B) YSD-based
epitope mapping. Binding of FEB4 and SEB7 to yeast cells expressing different EGFR-derived domains were detected utilizing the goat anti-human Fc PE antibody.
(C) Conformational epitope recognition on various truncated versions of EGFR-ECD. Yeast cells expressing the targeted EGFR-derived fragments were either
incubated at 4°C or 80°C, respectively, for 30 min. Surface presentation was verified by the anti-c-myc biotin antibody and Streptavidin APC, binding of FEB4 and
SEB7 was measured utilizing the anti-human Fc PE antibody.
December 2020 | Volume 11 | Article 606878
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the first purification was performed via immobilized metal
affinity chromatography (IMAC) to deplete knob-knob dimers
and any additional proteins from the cell culture supernatant. To
purify only correctly heterodimerized antibodies, a subsequent
Strep-Tactin XT chromatography was performed.

SDS-PAGE analysis revealed Twin-StrepII-tagged Fcs
showing a significantly higher molecular weight than His-
tagged Hole-Fcs, allowing the distinguishment between both
chains (Supplementary Figure 5). All chains exhibited
comparable staining intensities, indicating the purification of
correctly heterodimerized antibodies.

Biophysical Characterization
Parental antibodies FEB4 and SEB7 were analyzed utilizing BLI,
resulting in notable affinities of 29.3 nM and 1.14 nM,
respectively (Supplementary Figure 6; Table 1). One-armed
variants of both antibodies exhibited comparable affinities and
association and dissociation rates. In comparison, FEB4
exhibited a higher association rate but also a higher off-rate,
while SEB7 exhibited a lower on- but also lower off-rate. The
BpAb combined the high on-rate with a lower off-rate resulting
in an improved affinity of 637 pM upon EGFR-ECD binding
compared to the parental antibodies.

The thermostabilities of all generated antibodies were
measured utilizing the NanoDSF technology, resulting in TM
values between 65.2°C and 67.8°C, indicating high thermal
stability of all variants (Supplementary Figure 7A). In full-
length antibodies, two to three TM values are expected, referring
to unfolding of the Fab fragment and the CH2/CH3 domains
(47). However, as an antibody is only functional if all domains
are folded correctly, the lowest TM value was utilized to compare
the stability of all generated antibodies. Additionally, size-
exclusion chromatography (SEC) profiles demonstrated that
the parental antibodies exhibit favorable properties with nearly
no measurable aggregation (Supplementary Figure 7B). Knob-
into-Hole variants showed 6.60% aggregates and revealed
expected retention times (Supplementary Figure 7B, Table 1).

Epidermal Growth Factor Competition
Binding of epidermal growth factor triggers conformational
changes of the EGF receptor and facilitates receptor
dimerization, leading to downstream signaling (48). To verify
whether FEB4/SEB7 and its parental antibodies interfere with the
EGF binding ability of EGFR, EGF competition assays were
conducted. As described above, our data indicate that FEB4
targets EGFR domain III and has an overlapping epitope with
matuzumab, hinting that it might target an epitope proximate or
overlapping to the EGF ligand binding site. BLI analysis was
Frontiers in Immunology | www.frontiersin.org 8
performed with antibodies loaded onto AHC biosensor tips and
binding to EGFR preincubated with EGF at different
concentrations was measured. These experiments revealed EGF
inhibited both cetuximab and FEB4 from binding to EGFR in a
dose-dependent manner, while SEB7 bound to the receptor
complex independently of the applied EGF concentration
(Figure 4A). Compared to FEB4, the BpAb showed a stronger
binding towards EGFR at higher EGF concentrations, comparable
with observed association curves of SEB7. Nevertheless, the BpAb
did not reach the layer thickness of the EGF-negative control
similar to FEB4 and cetuximab, indicating that FEB4/SEB7
combines EGF-dependent and independent binding.

These results were verified by flow cytometric analysis of
cellular-binding to EGFR-overexpressing A431 cells, in the
presence of a high concentration of EGF (Figure 4B). While
all antibodies showed strong cell binding, cetuximab and FEB4
showed significantly impaired cell binding in the presence of
EGF. SEB7 bound A431 cells independently of the EGF
concentration, underlining its EGF-independent binding
behavior. The BpAb showed intermediate EGF-dependence,
caused by its ability to bind in an EGF-dependent and
-independent manner.

Clustering Assay
Biparatopic antibodies can bind to two different epitopes on the
target antigen. Those interaction events can occur either in a 1:1
(clean site binding) or a 2:1 (mixed site binding) antibody-antigen
ratio (Figure 5A). In the latter case, the antigen can cluster on the
surface of the targeted cell, resulting in different biological outcomes.
We decided to investigate whether the biparatopic FEB4/SEB7
antibody facilitates the clustering of EGFR molecules. To this end,
binning of the BpAb against itself was performed in a BLI-based
assay. Biotinylated FEB4/SEB7 was loaded onto SAX tips, followed
by association of EGFR. Incubation with unmodified FEB4/SEB7
resulted in an increased layer thickness, absent in the sample control
lacking EGFR. This indicated that one EGFR molecule could be
bound simultaneously by two different BpAbs in a mixed site
binding manner (Figure 5B).

Additionally, an ELISA-based clustering assay was conducted
where the BpAb was coated, followed by incubation with EGFR-
ECD and subsequently with biotinylated biparatopic antibody
(Figure 5C). Detection via streptavidin conjugated to
horseradish peroxidase (HRP) (Thermo Fisher) led to a
biphasic dose-dependent binding curve, indicating biparatopic
and mixed-site binding (Figure 5D).

Furthermore, EGFR clustering was verified by SEC, where FEB4/
SEB7 and its respective parental antibodies were preincubated with
a 1.2-fold molar excess of EGFR (Supplementary Figure 8). While
December 2020 | Volume 11 | Article 60687
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TABLE 1 | Biophysical properties of FEB4 and SEB7 variants including affinity, kinetic binding rates, melting temperature, and aggregation.

Antibody KD [nM] kon [M−1 s−1] kdis [s
−1] TM [°C] Aggregation [%

FEB4 29.3 ± 0.579 5.19 × 105 ± 9.36×103 1.52×10−2 ± 1.24×10−4 65.2 1.65
oaFEB4 31.2 ± 1.53 5.05 × 105 ± 2.35×104 1.58×10−2 ± 2.40×10−4 67.8 10.45
SEB7 1.14 ± 0.149 4.28 × 105 ± 5.21×103 4.87×10−4 ± 6.33×10−5 67.6 0.00
oaSEB7 1.84 ± 0.624 2.51 × 105 ± 1.56×104 4.62×10−4 ± 1.54×10−4 67.8 10.25
FEB4/SEB7 0.637 ± 0.00637 4.54 × 105 ± 2.45×103 2.89×10−4 ± 2.74×10−6 66.8 6.60
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FEB4 and SEB7 bound EGFR as observed by lower retention times,
the parental species remained detectable at higher retention times.
FEB4/SEB7 showed a mass shift to a significantly shorter retention
time, indicating a higher degree in clustering caused by the
biparatopic binding behavior. Additionally, the peak of the
solitary BpAb nearly completely vanished, demonstrating nearly
quantitative binding.

Antibody-Dependent Cell-Mediated
Cytotoxicity
Biparatopic antibodies are able to cluster their respective
receptors, which in return can lead to a high local presentation
of Fc parts on the surface of the target cell. NK cells expressing
CD16 can bind those clustered Fc parts, leading to an enhanced
antibody-dependent cell-mediated cytotoxicity (ADCC). To
evaluate whether the biparatopic FEB4/SEB7 construct could
facilitate such a mode of action, an ADCC assay was performed
that relies on NFAT activation upon CD16 clustering, leading to
the expression of luciferase. The biparatopic antibody-mediated
a significantly stronger fold induction compared to the parental
variants (Figure 6). FEB4 outperformed SEB7 regarding EC50

value and fold induction, indicating that ADCC and effector cell
Frontiers in Immunology | www.frontiersin.org 9
engagement are independent of affinity (Table 1). These results
indicate a favorable effector cell engagement and activation
mediated by the biparatopic construct.
DISCUSSION

In 2020, two biparatopic antibody candidates have been under
clinical investigation for the treatment of breast cancer:
Zanidatamab (ZW25) in phase II studies (NCT numbers:
NCT04224272, NCT04276493, NCT03929666) and the ZW25-
derived antibody-drug conjugate ZW49 in a phase I study (NCT
number: NCT03821233). These asymmetric antibodies comprise
a heterodimerized Fc, which either carries a scFv targeting HER2
domain IV or a Fab targeting HER2 domain II (49). Even though
a large number of asymmetric and symmetric biparatopic
antibodies exist in literature and preclinical research, most do
not exhibit an IgG-like architecture (8–10, 25–29).

In this study, we generated the first biparatopic cLC antibody
resulting in an IgG-like molecule. To this end, we isolated one
EGFR-specific antibody in a conventional FACS screening
approach using YSD. The resulting mAb termed FEB4 was
A B

FIGURE 4 | EGF competition assays. (A) BLI-based EGF competition. Using AHC biosensors, the depicted antibodies were loaded followed by association to
EGFR preincubated with varying EGF concentrations. (B) EGF-dependent binding to EGFR+++ A431 cells. 1×106 A431 cells were stained utilizing antibodies
preincubated with or without EGF. Binding to A431 cells was measured by FACS using the goat anti-human Fc PE antibody. Created with BioRender.com.
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utilized in a novel epitope binning-based screening approach to
isolate a second antibody termed SEB7. Both antibodies target
orthogonal epitopes and comprise the H2 common light chain.
The latter facilitates a favorable aggregation behavior and notable
thermostabilities, consistent with previously published results
(40). The presented epitope-binning based screening procedure
on cells allows for the rapid isolation of antibodies exhibiting
non-overlapping epitopes and bypasses the need for extensive
binning experiments.

By flow cytometric cell-binding assays and biolayer
interferometric measurements, it was shown that FEB4 is able
to bind EGFR in an EGF-dependent manner. FEB4 targets an
epitope on the domain III of EGFR, which together with domain
I, mediates the binding to EGF (50). Cetuximab is known to bind
domain III and inhibit EGF binding (51). Even though FEB4
exhibits an orthogonal epitope to cetuximab, it has an
overlapping binding site with matuzumab, which also binds to
domain III and inhibits the dimerization of EGFR molecules
upon conformational changes after EGF binding (52). It is
A

B

C

D

FIGURE 5 | Clustering assay of the biparatopic antibody. (A) Schematic representation of BLI-based two-site binding assay that can either result in a clean two-site
binding or a mixed site binding. (B) BLI-based two-site binding assay. Biotinylated BpAb was loaded onto SAX tips followed by incubation with EGFR-ECD or
kinetics buffer, respectively. Subsequently, binding of unmodified BpAb to the complex was analyzed. Each step was aligned separately (C) Schematic
representation of ELISA-based two-site binding assay. (D) ELISA of BpAb binned against itself. 50 µl of a 25-nM BpAb solution was coated on a 96-well MaxiSorp
MTP (ThermoFisher) overnight, followed by incubation with 200 nM EGFR-ECD and varying concentrations of biotinylated BpAb (1–128 nM). Binding was detected
utilizing Streptavidin-HRP and TMB-One solution (Promega). Each concentration was measured in triplicates and analyzed using GraphPad Prism 8. A two-site
specific binding fit was applied. Created with BioRender.com.
FIGURE 6 | ADCC Assay of parental and biparatopic antibodies on A431
cells. The Promega ADCC assay was performed utilizing the parental and the
biparatopic variants. 12,500 A431 cells were cultured overnight before
incubation with a fourfold serial dilution of antibodies (5 µg/ml to 305 pg/ml)
and ADCC effector cells for 6 h. Luciferase signal is plotted against the
logarithmic antibody concentration. EC50 values: FEB4, 45.8 pM; SEB7,
191.5 pM; FEB4/SEB7, 98.9 pM.
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therefore tempting to speculate that FEB4 might be able to
inhibit EGF binding and receptor dimerization. Since SEB7
binds to domain II, no EGF dependence was expected.

SEB7 exhibits a nearly 30-fold higher affinity towards EGFR
compared to FEB4, which originates from the high off rate of the
latter. The epitope binning-based screening might favor the
isolation of antibodies with higher affinities, since the detection
antibody’s affinity is limiting. The difference in affinity and
kinetic binding rates might be responsible for the observed
mixed site binding behavior. While SEB7 binds tightly to its
epitope, FEB4 can dissociate from the target molecule and bind
to a second receptor. Its continuous binding and release might
lead to stronger clustering than a BpAb that binds tightly with
both Fab arms.

Our data indicate that the BpAb facilitates receptor clustering
of soluble and cell-bound EGFR. Crosslinking of EGFR mediated
by the biparatopic antibody and the concomitant clustering of
the IgG1 Fc eventually mediated the activation of clustered CD16
expressed on effector cells, leading to a robust ADCC effect. Even
though the EC50 values of FEB4 and the biparatopic construct are
comparable, the higher fold induction of the bpAb indicates a
stronger effector cell activation.

This clustering is likely due to the mixed site binding behavior
of the biparatopic antibody, where the FEB4 arm binds to
domain III on one EGFR molecule, and the SEB7 arm binds
domain II on a second molecule. Due to this mixed site binding,
the antibody is most probably not able to “chelate” its antigen,
resulting in a relatively small increment of affinity (53).
Nevertheless, this binding mode results in an increased
clustering effect. On the other hand, a clean-site binding,
where a single BpAb binds both epitopes on the same antigen
molecule, leads to a more potent “chelating” effect resulting in a
notable increase of affinity (53, 54). However, the chelation of
one antigen by one BpAb would probably not result in elevated
receptor clustering.

Regardless of the intended mode of action, this type of BsAb is
a chimera that contains chicken-derived VL and VH domains,
transplanted onto a human IgG1 scaffold. For potential
therapeutic applications, humanization of the chicken-derived
part of the molecule is mandatory. The utilization of a human VL
domain as a cLC could ease the process of subsequent
humanization. In OmniChicken, transgene chickens exhibiting
human antibody germline sequences, the IGLV1-44 germline is
implemented (30). As this human germline-encoded cLC
shares approx. 44% homology to the avian H2 VL domain
(data not shown), a pairing with a chicken-derived VH would
most probably not result in a functional antibody. Our
group recently demonstrated a fast and straightforward
solution to humanize avian-derived antibodies via CDR loop
transplantation onto human scaffolds, randomization of key
residues that dictate loop orientation followed by functional
screening using yeast surface display (55). Experiments leading
to humanized bispecific and biparatopic chicken-derived
antibodies are currently in progress.
Frontiers in Immunology | www.frontiersin.org 11
Taken together, we present a straightforward method for the
isolation of biparatopic antibodies, generated by an epitope
binning-based YSD screening. The resulting antibodies target
orthogonal and conformational epitopes on domain II and III of
EGFR-ECD with notable affinities while exhibiting favorable
biophysical properties and aggregation behavior. The derived
biparatopic antibody is able to facilitate receptor clustering and
combines EGF-dependent and -independent binding
characteristics of its parental variants. To our knowledge, this
represents the first common light chain-based biparatopic
antibody. Furthermore, our work paves the way for clinical
applications of chicken-derived antibodies and new
engineering strategies for biparatopic antibodies in general.
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