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Abstract

Streptomycetes have been studied mostly as producers of secondary metabolites, while the transition from dormant spores
to an exponentially growing culture has largely been ignored. Here, we focus on a comparative analysis of fluorescently and
radioactively labeled proteome and microarray acquired transcriptome expressed during the germination of Streptomyces
coelicolor. The time-dynamics is considered, starting from dormant spores through 5.5 hours of growth with 13 time points.
Time series of the gene expressions were analyzed using correlation, principal components analysis and an analysis of
coding genes utilization. Principal component analysis was used to identify principal kinetic trends in gene expression and
the corresponding genes driving S. coelicolor germination. In contrast with the correlation analysis, global trends in the
gene/protein expression reflected by the first principal components showed that the prominent patterns in both the
protein and the mRNA domains are surprisingly well correlated. Analysis of the number of expressed genes identified
functional groups activated during different time intervals of the germination.
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Introduction

Bacterial cell dormancy is a calmness stage of living cells that is

characterized by minimal metabolic activity. In several bacteria,

the beginning of the dormancy is accompanied by a transition into

a morphologically and physiologically distinct form, which is

known as a dormant spore. The spore formation ensures that the

cell will survive under unfavorable conditions. The transition

process is called sporulation and has been well studied, not only in

the species of Bacillus and Clostridium but also in Streptomyces.

Streptomyces are Gram-positive bacteria that undergo a complex cell

cycle that involves morphologically distinguishable developmental

stages. The stages include unicellular spores that develop to

branching substrate mycelium, which gives rise to the apically

growing sporangium known as aerial mycelium, from which the

spores are formed. Although spore germination is usually accepted

as the first stage of the cell cycle, from the one-cell point of view, it

represents the middle part of the life of a single cell, which starts

during aerial mycelium formation and finishes in the developed

substrate mycelium. The reverse process, awakening the cell back

into a metabolically active form, is called germination and, as

opposed to the sporulation, is much less understood in Streptomyces.

In this multicellular bacterium, the dormant spores are the only

haploid unicellular state. The spores are surrounded by a coat that

protects the cellular content from an environmental challenge and

enables survival. The spores also possess intracellular nutrient and

energy sources, such as trehalose [1] or most likely polyphosphates

(volutin) [2]. From the sporulation phase, dormant spores are also

accommodated with a protein apparatus, such as chaperones and

cell wall hydrolases, which are effective during metabolism

renewal [3]. It has previously been suggested that dormant spores

are devoid of stable functional mRNA [4]. However, further

experiments, using rifampicin as a transcription initiation inhib-

itor, have revealed that dormant spores possess a pool of mRNAs,

which provide templates for early protein synthesis [5]. All of these

sources that arise from sporulation are thought to ease cell survival

by triggering energy metabolism, which starts when the dormancy

is broken and lasts until the cells are adapted to exploit external

nutrient supplies.

In a favorable milieu, spores lose hydrophobicity, which allows

water influx, which, in turn, initiates germination. Cells re-activate

their metabolism and develop into vegetative forms, building

branching hyphae. Although several chemical or physical factors

have been described for inducing germination, the molecular

machinery that triggers the process remains unknown. Germina-

tion implies massive proteome reconstitution. This step is achieved

by the utilization of spore compounds that are degraded during

catabolic processes. Aggregated spore proteins that are preserved

from dormancy are hydrated and re-activated during germination

[6]. Cell wall hydrolases, such as RpfA and SwlA, provide the lysis

of spore peptidoglycan to allow the entrance of external nutrients

[7]. The re-activated chaperones GroEL, Trigger factor and

DnaK were detected as assisting the reactivation of the

proteosynthetic apparatus, which is fully accelerated during the

first initial steps [8]. A systematic proteomic study that was

recently conducted on streptomycete spore germination [3]

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e72842



revealed that the first newly expressed proteins are members of

proteosynthetic machinery, proteins that are involved in differen-

tiation, protein modifiers and other chaperones. Further protein

expression evokes cellular responses to stress conditions and lasts

approximately 1 hour. After this period, several protein regulators

appear to take control over energy metabolism and further

development. At this stage, the cell can respond to environmental

conditions by direct gene expression.

Subsequent development to vegetative forms is a sequential

process that is associated with the first DNA replication and an

enhancement in the rate of RNA and protein synthesis [9].

Microscopically distinguishable germination tubes rise from the

inner wall of spores and progress through the outer wall. The not-

yet-fully defined end of the germination process is represented by

the further protraction of the tubes, with the emergence of proteins

that assist with cytoskeleton formation, such as DivIVA, FilP and

FtsZ [3].

The correlation of the protein and mRNA expression levels has

been most comprehensively reviewed by Abreu et al. [10], who

summarize the knowledge of large-scale measurements on the level

of whole transcriptomes and proteomes. Using 22 datasets that

range from E. coli to Human, the authors document the correlation

between protein and mRNA abundances, showing that a

correlation coefficient (Pearson) ranges from 0.36 for D. melanogaster

to 0.74 for S. cerevisiae. The authors also mention the importance of

the quality of the measured data, which differs substantially

between the protein and the mRNA measurements and is much

lower for the proteomic data, especially in terms of the number of

identified proteins in comparison with the mRNAs. For an exact

comparison of the transcriptome and proteome expression,

improvements in the proteome quantification are essential. A

comparison of the time series of the gene expression of both types

of data has much less representation in the literature than

comparisons of one-point measurements. In streptomycetes, only

two papers have addressed this issue, with the first comparing

transcriptomic and proteomic time series measured during

exponential growth of S. coelicolor [11] and the second using the

same species but focusing on the late exponential and stationary

phases [12]. Both of these papers used a similar information-

extraction method, which was singular value decomposition (SVD)

[11] or principal components analysis (PCA) [12]. Several other

papers on this topic, mostly concerning yeast, were published over

the past decade [13,14,15,16,17]. Although an absolute correla-

tion between the protein and the mRNA was on the same scale as

reported for other species (r = 0.63) [12], a striking similarity was

found between the first PC loadings (eigenvectors), which were

well correlated for the highest loadings, thus indicating a similarity

in the expression between the protein and the mRNA of the

backbone processes [13].

In this paper, we focus on the simultaneous analysis of gene and

protein expression in S. coelicolor during the first 5.5 hours of

germination, starting from dormant spores and sampled in

30 minute intervals. The obtained time series were compared

using PCA and a correlation of the PC loadings with a time series

of genes of the metabolic and regulatory functional groups.

The utilization of coding genes, i.e., how many genes and in

what amounts they are expressed at individual time points, was

performed on a symbolic level using generalized canonical law

[18,19]. Here, we focus on identifying the absolute numbers of

expressed genes as a function of growth, an approach that allowed

us to trace how different functional groups of genes are expressed

in the course of germination.

Materials and Methods

1.1. Spore cultivation
S. coelicolor A3 (2) M145 spores were pre-germinated in 2X YT

media for 24 h (160 rpm, 30uC) [20]. Three milliliters of inoculum

was transferred to solid agar plates (0.4% yeast extract, 1% malt

extract, 0.4% glucose, 2.5% bacterial agar, pH 7.2) overlaid with

cellophane discs and was cultivated for 14 days at 28uC. The

harvested spores were used for germination in liquid AM medium.

To boost the synchrony within the population, the spores were

subjected to a 10 minutes heat shock treatment at 50uC. The

protein and mRNA samples were collected at 30 min intervals

starting from dormant spores until 5.5 hours of growth, obtaining

samples at 13 time points. The phenotypic change occurring

during germination is illustrated in the electron microscopy images

of S. coelicolor spores (Figure S1. A, B) for the dormant spores (T

Dorm, Figure S1. A) and for the germinating spores, 5,5 hours

after germination initiation with grown germ tubes (Figure S1. B).

1.2. Proteomics
Details concerning the sample preparation, 2D electrophoresis,

radio labeling, fluorescent staining and MS identification of

protein spots can be found in our previous publication [3]. Here,

we mention only the steps that are essential for this paper.

Germinating spores were radiolabeled with 35S Cysteine-

methionine in 30 min radioactive pulses, except for the first time

point (T0), which was labeled for 10 min during heat shock.

Isolated protein samples were resolved by 2D gel electrophoresis

using 24 cm strips with a pH range of 4–7. The second dimension

was run on 12.5% polyacrylamide gels that were 25.5620.5 cm in

size, covering a Mw range of approximately 15–110 kDa. The gels

were stained overnight with Sypro Ruby fluorescent dye and

scanned on BioRad Phosphoimager FX for fluorescence intensity.

Dried gels were exposed for 4 vdays to BAS cassettes (Fujifilm) and

the protein radioactivity was determined using BioRad Phosphoi-

mager FX. The stained and radioactive gel images were processed

and compared using the software PDQuest 8.0.1 (Bio-Rad) to

detect changes in the intensities for specific gel spots (proteins) over

time and across replicates. Altogether, 54 2DE gels for Sypro

Ruby staining and 50 radiolabeled 2DE gels were analyzed. Sypro

Ruby-stained gels and radiolabeled gels were arranged into

individual matchsets. The Sypro Ruby matchset reference gel

contained 671 individual protein spots, and the radiolabeled

matchset reference gel contained 404 spots. All of the gels were

assembled into a single high-level matchset whose reference gel

contained a total of 782 protein spots. All of the visible spots were

picked from a preparative gel and were analyzed by mass

spectrometry. Details about MS identification and a complete list

of characteristics of MS spectra are given in the supplementary

materials of our preceding paper [3]. The experiment was

designed to cover both the experimental and biological variance,

combining the measurements from different technical and

biological replicates at one time point. The numbers of 2DE gels

that were used for the replicates in different time points are given

in Table 1.

1.2.1. Proteomic data normalization. The 2D electropho-

retic spot intensities in individual gels were standardized by

dividing the spot intensities by the total protein concentration

loaded on a gel. The multiplicative factor was calculated from the

accumulative gels (Sypro Ruby staining). We assumed that the

logarithm of the intensities on the accumulative gels was normally

distributed, with the means distributed around a common mean.

Therefore, the means of all of the spot distributions for all of the

stained gels were averaged, and a multiplicative factor that

Gene Expression in S. coelicolor Germination
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adjusted all of the distributions to the same mean was computed

for each gel. Because a single gel contained both the fluorescent

and radioactive labeling, the multiplicative factors derived for the

Sypro Ruby-stained gels were also used to normalize the

radioactive-based images (for details see our previous work [3]).

This method also enables correct normalization for the radiola-

beled gels, for which only a few electrophoretic spots could be

identified in the first time points. Using a cumulative radioactive

signal for their normalization would lead to an inadequate

amplification of the first time points in the electrophoretograms.

To assess the degree of variance in the quantification of the

relative protein abundance levels, we calculated the coefficient of

variation (CV) for replicates within the individual time points for

both types of labeling. The values were computed from the

normalized data. The mean CV for Sypro Ruby stained gels was

0.39, and it was 0.54 for radiolabeled gels. These values were

distorted by a time dependence; the highest CV was observed for

the earliest gels and decreased over time (CVmax = 0.45,

CVmin = 0.27 for the stained gels; CVmax = 0.62, CVmin = 0.4 for

the radiolabeled gels). These values were comparable with those

previously reported in the literature for 2D gel electrophoresis

experiments (20–40%) [21] and were higher for the radiolabeled

gels. The higher CV for the radiolabeled gels was caused mainly

by the gels of the first time points, i.e., when proteosynthesis starts.

The degree of variation is high both for technical reasons, when

only a small number of spots appeared on a gel, and for the

inherent variation among biological replicates, which is known to

be high in Streptomyces in general. We attempted to overcome this

problem by increasing the number of gels and sample replicates,

which is almost two-fold higher than in a usual proteomic

experiment of this scale (Table 1).

1.3. Transcriptomics
1.3.1. RNA isolation from spores. To break the cells, we

used a FastPrep-24 machine (Biomedicals) in which the spores

were mechanically disrupted in tubes containing zirconium sand,

two 4 mm glass beads, and 500 ml of lysis buffer [22] (50 mM

Tris-HCl pH 8, 500 mM LiCl, 50 mM EDTA pH 8, 5% SDS)

and 8 ml of RNAse inhibitors (Biorad). The disruption was made in

6 rounds for 35 s, while the tubes were re-chilled between each

round. The samples were centrifugated at 14000 g for 15 min at

4uC, and the supernatant was used to phenol-chloroform RNA

extraction, which was repeated twice. The RNA precipitated

overnight in ethanol and 3 M Sodium Acetate at 220uC. Finally,

the RNA was re-suspended in 50 ml RNAse-free water and 0.5 ml

RNAse inhibitors and was cleaned from possible DNA remains

using the DNAse-Free kit (Ambion). The RNA was stored in water

at 220uC.

1.3.2. DNA microarrays and data processing. The

number of analyzed microarrays that represent 3 (or 2) biological

and/or technical replicates for each experimental time point are

given in Table 1. RNA quality control and gene expression levels

were determined by Oxford Gene Technology (Oxford, UK) on

Agilent DNA microarrays, covering the entire S. coelicolor genome,

using OGT’s standard Bacterial RNA amplification Protocol for

the two-channel essay.

The acquired data were linear LOWESS normalized and

filtered for background and flag information (from Agilent

documentation) in the GeneSpring software to obtain genes that

were significantly expressed above the background and to avoid

the side effects of possible cross-hybridizations. This step reduced

the number of entities on a single array from 43888 to 25312,

which represented the outcome for 7115 genes of the original

7825. The data discussed have been deposited in NCBI’s Gene

Expression Omnibus [23] and are accessible through GEO Series

accession number GSE44415 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc = GSE44415).

1.3.3. Array normalization. The experiment included 37

arrays from 13 distinct time points of S. coelicolor germination. The

arrays shared a common reference in the red channel (Cy5, beta

channel), which was a mixture of RNA samples from all of the

examined time points; the sample signal was recorded in the Cy3-

labeled channel (alpha channel). The distributions of the Log2-

Ratio values (Log2Ratio = log2 (Sample (Cy3)/Reference (Cy5)))

from each array were centered to ensure that the medians and the

median absolute deviations of all array distributions were equal.

The centering was performed by subtracting the Log2Ratio

median value of the array from each Log2Ratio converted

measurement on the array and dividing it by the median absolute

deviation. To eliminate array outliers, we filtered out the 0.02

Table 1. The number of 2DE gel images and microarrays that correspond to biological replicates analyzed for individual time
points of the experiment.

Time [hours] Number of Sypro Ruby-stained images Number of radiolabeled images Number of microarrays

Dormant 4 0 3

0 4 4 3

0.5 4 4 3

1 4 4 2

1.5 3 3 3

2 4 4 3

2.5 3 3 2

3 5 5 3

3.5 5 5 3

4 5 5 3

4.5 5 5 3

5 4 4 3

5.5 4 4 3

doi:10.1371/journal.pone.0072842.t001
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quantile of the least and most intensive Log2Ratio values. The

normalized Log2Ratios were returned to the original scale by

exponentiation (creating normalized Ratios).

The time series of the relative mRNA concentration was

obtained by averaging the normalized Ratios across biological and

technical replicates at specific time points and across all of the gene

replicate spots that were presented on the array. Before averaging,

the outliers among the gene replicates at one time point were

filtered using the Q-test (for 3–9 inputs) and the Pierce test (for

.10 inputs).

The filtering caused the result that, in a few of the profiles, there

was no value for certain time points. Such zero values were

examined to determine whether they were placed between two

non-zero time points. If the neighboring time points were non-

zero, the missing value was linearly interpolated (which was

performed for approximately 100 profiles of the total 7115). After

filtering, the log2Ratio values were exponentiated to obtain the

signal in its original scale. These measurements were arranged for

individual genes into time series that form a ‘‘gene expression

profile’’, a term that will be used throughout this paper.

We further filtered out genes whose overall expression during

germination was too low to be considered. The idea was to filter

out genes whose microarray signal could be a result of array errors

that were above the simple technical criteria. Therefore, a median

expression level of the expression profile for all time points and

biological and microarray replicates were computed. The expres-

sion level was defined as a raw signal from an individual chip spot,

from the channel that recorded the fluorescently labeled mRNA

sample (alpha channel). The median represents an overall

expression level of individual genes. A logarithm base 2 of the

expression profile medians was computed. The distribution

followed a roughly lognormal shape, which indicated that there

was a gap approximately at the position of the first quartile (data

not shown). Therefore, we filtered out all of the genes whose

log2median expression level was below the first quartile value. The

genes that exhibit a single peak in the profile that would be

otherwise filtered out were identified individually and were added

to the final set. The final set contained 5385 genes. Among the

removed genes, those that prevailed were the genes that have an

unknown function and are unclassified and those that are

associated with a secondary metabolism and are not expected to

be expressed during germination.

Table 2. Functional classification of the genes of the S. coelicolor genome according to The Sanger Institute (ftp://ftp.sanger.ac.
uk/pub/S_coelicolor/classwise.txt).

Fluorescent labeling Radio labeling mRNA

Unknown function 46 26 1496

Chromosome replication 1 1 8

Chaperones 16 13 14

Protection responses 8 4 54

Transport/binding proteins 30 21 435

Adaptation 4 1 31

Cell division 2 2 14

Differentiation/sporulation 1 1 10

Macromolecule degradation 18 6 152

Macromolecule synthesis, modification 22 15 209

Amino acid biosynthesis 1 0 99

Biosynthesis of cofactors, carriers 6 6 88

Central intermediary metabolism 3 3 78

Degradation of small molecules 4 3 142

Energy metabolism, carbon 25 17 152

Fatty acid biosynthesis 1 0 45

Nucleotide biosynthesis 0 0 28

Secondary metabolism 0 0 163

Periplasmic/exported/lipoproteins 32 13 944

Ribosome constituents 5 4 60

Laterally acquired elements 0 0 76

Regulation/Two component system 3 3 121

Regulation/RNApolymerase core enzyme binding 4 4 68

Regulation/Defined families 3 2 325

Regulation/Protein kinases 0 0 35

Regulation/Others 5 4 175

Not classified (including putative assignments) 11 2 363

SUM 251 151 5385

doi:10.1371/journal.pone.0072842.t002
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1.4. Data treatment common to both proteomic and
transcriptomic experiments

1.4.1. Standardization. In the PCA analysis, we considered

the changes in the gene/protein expression patterns rather than in

the absolute values. Therefore, all of the profiles from all

experiments were normalized to have the same mean and

variance by subtracting the mean of the individual profile from

each member point of the profile and dividing it by the standard

deviation of the profile.
1.4.2. Correlation. The Pearson correlation coefficient

calculated below was tested under the assumption that each p-

value is the probability of obtaining a correlation that is as large as

the observed value by random chance, when the true correlation is

zero. The p-value was computed using a t-statistic. If the p-value

was #0.05, then the test was considered to be significant.

1.4.3. Chi-square test. Chi-square statistic was used to

compare the number of gene products in different functional

groups in any of the selected sets (any of the sets that were selected

by any of the analyses described below) in comparison with the

abundance of the functional groups in the whole set (either

proteomic or transcriptomic), as given in Table 2. If the p-value

was #0.05, the test was considered to be significant.

Results

2.1. Functional assignment of genes and proteins
The S. coelicolor functional genome database contains genomic

information about 7825 genes that are assigned into three

functional categories that have different levels of specificity. For

our purposes, the most appropriate level was the second level,

which classifies genes into 27 functional groups (Table 2). Table 2

lists the number of genes that are assigned to 27 functional classes

for the microarray experiment and for the proteins that are both

Sypro Ruby-stained and radiolabeled.

2.2. Principal components analysis (PCA) of proteomic
and transcriptomic experiments

The correlation between mRNA and the protein abundances

can be performed by comparing the values relative to a specific

fixed time point that has a biological significance [12], and the

following points are represented by the log base 2 ratio between

the reference point value and the given point value. Such a point,

in our case, represents dormant spores. In dormant spores, many

of the proteins and mRNAs are not yet synthesized, and the first

time point would thus often be represented by a zero value, which

would cause the logarithm to approach infinity. Therefore, we

could not make a direct comparison between the mRNA and

protein abundances. We could only compare the shapes of the

expression profiles that represent the kinetics of the expression of

individual genes or proteins. All of the individual gene profiles in

all of the three experiments were, therefore, normalized to have a

zero mean and are used in further analysis (see paragraph 1.4.1). A

correlation analysis between mRNA and protein kinetics showed

higher correlation (Pearson correlation coefficient $0.95) only for

27.9% of profiles (Table S1), while the overall correlation through

the dataset was rather low r = 0.05. Using the gene annotations

and assigning each gene to a diverse functional group (Table 2), a

functional analysis of the highly correlated profiles was performed.

The functional analysis indicated that there is no bias among the

highly correlated profiles toward a specific functional group.

Therefore, instead of focusing on the correlation of individual

kinetic profiles, it is more reliable to focus on extracting the

common features of the system that are inherent in the expression

time series. We chose principal components analysis, which allows

identifying representative patterns of kinetic profiles according to

their contributions to the overall variance of the dataset. The PCA

was performed individually for the microarray experiment and the

two proteomic experiments (the PCA or alternative SVD were also

used previously in streptomycete gene expression studies [11,12]).

The first principal axis loadings (eigenvectors, PCs) bore 30% of

the total variability for the microarray and Sypro Ruby-stained

proteomic data and 59% for the radiolabeled proteomic data. The

first three principal components represented 62%, 55% and 85%

of the data variability of the three experiments (Figure 1).

The first principal component loadings profile for the proteomic

fluorescently stained experiment is shown in Figure 2a. Surpris-

ingly, there was a striking similarity between the eigenvectors,

found, when the eigenvector order of the proteomic fluorescently

labeled experiment (PC (Sypro)) was shifted by one. Thus, a good

correlation was found between PC1 (mRNA) and PC2 (Sypro),

PC2 (mRNA) and PC3 (Sypro), and PC3 (mRNA) and PC4

(Sypro) (Figure 2). Examining the PC1 profile of the Sypro Ruby-

stained proteome, a decline in the first two hours followed by a

constant level is evident. We can, therefore, speculate that the PC1

(Sypro) is associated with the consumption of those proteins that

were stored in the spores. In this case, such a phenomenon cannot

be observed, neither on the mRNA nor on the radiolabeled

protein levels. We would observe similarity among the eigenvec-

tors only if the first PC (Sypro) is ignored; in other words, if the

order of the PCs (Sypro) were shifted by one, then the result is the

phenomenon that we indeed observe. Proteins with profiles that

are correlated with the 1st PC (Sypro) loading were distributed

among the functional groups in the same way as the proteins of the

whole set (data not shown). No bias toward a specific functional

group was observed. Therefore, in further PCA analysis, we

compared the transcriptomic and Sypro Ruby-stained proteome

using this ‘‘shifted’’ order for the Sypro Ruby-stained proteome.

A comparison of the first principal component loadings for the

three experiments is shown in Figure 2. Figure 2 shows good

agreement between the profiles of the eigenvectors of fluorescently

labeled proteomic and microarray experiments, documenting

common trends in the gene/protein expression kinetics. The

radiolabeled proteomic experiment followed the common trend

only on the first eigenvector, and higher eigenvectors differed

substantially. This difference can be explained by the different

nature of the observed data, as the microarrays and Sypro Ruby-

stained proteins represent protein or mRNA accumulation, while

the pulse radiolabeled proteins represent the rate of protein

synthesis. Because the accumulated protein expression level is the

result of protein synthesis and degradation, while radiolabeling

quantifies only the synthesis, their kinetics should, in principle,

differ. The eigenvector profiles confirm that the accumulation

kinetics (the result of balance between the synthesis and

degradation), which is represented by the first eigenvectors, had

a common trend, while the proteosynthesis rate followed different

kinetics.

2.3. Gene expression profiles correlated with principal
component loadings

Loadings or eigenvectors computed using singular value

decomposition, a procedure similar to principal component

analysis, that were computed from gene expression profiles, were

shown to bear principal information about the kinetics of the

processes associated with their shape [11,13,14,15,16]. They allow

for the extraction of specific factors from the principal patterns of

gene expression within a data matrix through comparisons with

independent biological data and are the functional assignments of

genes and their products. An analysis of the metabolic networks

Gene Expression in S. coelicolor Germination
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suggests the existence of different levels of cell control [24] (e.g.,

most of the metabolic flux in E. coli is controlled by only a small

number of processes [24]). Such processes form the biochemical

backbone for the physiological development; these are the

processes that are associated with the programmed development

of the cell. On this basic level, other regulatory processes

controlling specific metabolic and regulatory activities at specific

moments are superimposed. The whole scheme can be depicted as

a hierarchy of processes at different levels of specificity. The final

kinetics of gene expression is thus determined by the weighted

superposition of all of these contributions. If these processes are

uncorrelated, then the PCA can deconvolute the information in

the profiles of the whole transcriptome or proteome and identify

the principal kinetic shapes. Correlation of these shapes, i.e. PC

loadings, with individual gene expression profiles and functional

annotations of the genes of correlated profiles can reveal the

hierarchy of the processes that control the developmental phase

under analysis, with the first principal components bearing the

most important physiological processes. Deconvolution technically

means sorting the PC loadings and their profiles according to their

information content level, which is given by their eigenvalues. The

first few loadings (usually 3), thus bear most of the information

about the kinetics of the underlying processes. The expression

profiles of the genes that are correlated with the first principal

component loadings thus represent the processes that have the

highest importance for the developmental program that they

record. Identifying the genes and their functional assignments,

whose profiles are correlated with the first few PC loadings, can

identify the metabolic and regulatory pathways that are funda-

mental for the studied developmental processes. In the following

section, we focus on the correlation analysis of gene expression

profiles with the first three principal components, i.e., PC1-PC3.

Because the numbers of proteins in the individual functional

groups were rather low, in the analysis of the correlation of

expression profiles with PC loadings (given in the next para-

graphs), we analyzed only the transcriptomic time series.

2.3.1. PC1. The first principal component shows after drop

down in the first time point a continuous increase in the gene

product accumulation for all three types of data (Figure 2b). PC1

for mRNA (PC2 for sypro Ruby-stained proteins) increased its

accumulation throughout the whole germination period. PC1 for

radiolabeled proteins kept increasing almost exponentially.

Because all of the expression profiles were normalized to have

the same mean, we cannot obtain an absolute value for the

expression of individual genes that is correlated with this profile.

However, we can presume that the gene products that had the

PC1 shape were either already accumulated in the dormant spores

or were synthesized immediately after the initiation of germina-

tion, and their accumulation kept growing during the 5.5 hours of

germination.

Figure 1. Percentage of variation (eigenvalues) accounted for by each of the 13 principal components. a – transcriptome, b – Sypro
Ruby-stained proteome, c – radiolabeled proteome.
doi:10.1371/journal.pone.0072842.g001

Figure 2. Profiles of the first PC loadings for the transcriptomic experiment and the two proteomic experiments. a) PC1 of the Sypro
Ruby-stained proteomic experiment. b) blue – PC1 mRNA, green – PC2 Sypro, red – PC1 radiolabeling. c) blue – PC2 mRNA, green – PC3 Sypro, red –
PC2 radiolabeling. d) blue – PC3 mRNA, green – PC4 Sypro, red – PC3 radiolabeling. The first time point in the radiolabeled profile is missing because
this point represented dormant spores that could not be radiolabeled.
doi:10.1371/journal.pone.0072842.g002
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The Pearson correlation between the PC1 and the gene

expression profiles identified 1403 genes (26% of the total) that

were significantly correlated (p,0.05). A statistical test that

compared the abundance of the gene functional groups in the

correlated set and the whole set of potentially expressed genes

showed that the PC1-correlated set contained over-represented

Figure 3. A visualization of genes significantly correlated with PC1, which are involved in primary energy metabolism. The basis of
the illustration was made in KEGG mapping tool.
doi:10.1371/journal.pone.0072842.g003
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genes for the functional groups ‘‘Cell division’’ (the relative

abundance in this set was 2.46 higher than in the full set),

‘‘Macromolecule synthesis, modification’’ (1.66), ‘‘Metabolism of

small molecules’’ (1.736), ‘‘Energy metabolism, carbon’’ (1.56),

‘‘Ribosome constituents’’ (2.26), and ‘‘Protein kinases’’ (2.076).

The enrichment in the functional groups ‘‘Cell division’’,

‘‘Macromolecule synthesis, modification’’ and ‘‘Ribosome constit-

uents’’ suggests that the processes represented by PC1 are

characterized by the initiation of the spore basal metabolism after

breaking the dormancy (as is the translation machinery) and

launching the active management with available energy sources

(the over-represented ‘‘Energy metabolism’’ group). The list of

PC1-correlated genes is given in Table S2.

2.3.2. PC2. The second principal component loading profile

was characterized by a peak at approximately time point 4 (1 h)

(Figure 2c). Altogether, 791 gene expression profiles were

correlated with PC2. Over-represented in this group were the

genes that were assigned to groups that are associated with the

synthesis of macromolecules, which are either associated with their

modification (‘‘Macromolecule synthesis, modification’’, which

was 1.7 times more present in the PC2-correlated set than in the

full set of genes) or with providing building material for protein

biosynthesis (the functional group ’’Amino acid biosynthesis’’

(26)). Other regulatory proteins that were not associated with the

main regulatory groups (i.e., two component systems and

transcription), which are mostly annotated as DNA binding

proteins (functional group ‘‘Regulation/Other’’), were 1.86 over-

represented. Additionally, genes of the group ‘‘Transport/bind-

ing’’ were significantly over-represented, as were genes of the

group ‘‘Regulation/Defined families’’. Genes that belonged to the

‘‘Regulation’’ group were mostly transcriptional regulators of the

R families (such as LysR, TetR, MerR or MarR). Not surprisingly,

the genes of the groups ‘‘Differentiation/sporulation’’, ‘‘Cell

division’’, and ‘‘Laterally acquired elements’’ that are associated

with the processes different than germination, were totally absent.

Unlike the genes that correlated with PC1 (which represent

basal metabolism), the over-represented groups associated with

PC2 (a peak at 1 h) are those that reflect the actual developmental

state of the cell and direct the further growth of the cell. In this

group, we found an over-represented diverse spectrum of genes

that have regulatory functions from the groups ‘‘Regulation/

Defined families’’, ‘‘Regulation/Others’’ and ‘‘Transport/bind-

ing’’. This result indicates that, by means of the regulation factors

whose expression peaks are at 1 h, the cells can detect signals from

and respond to the environmental conditions. This finding is in

agreement with our previous proteomic analysis [3], in which, at

the time point preceding the peak at 1 h, we detected the synthesis

of most of the regulatory and transport/binding proteins in the

germinating spores. The subsequent decrease after the peak at 1 h

in the PC2 profile is most likely a result of the synthesizing,

transport and regulatory functions of the protein members of the

PC2 groups that lead to the controlled expression of the other

components that build the growing cell. The list of PC2-correlated

genes is given in Table S3.

2.3.3. PC3. The third principal component loading profile

was characterized by an initial maximum at the beginning of the

germination and an increase at the end of the measured period

(5.5 hours, Figure 2d). A total of 342 genes were found to follow

this profile. An analysis of the over-represented functional groups

showed more abundant genes in only two groups: ‘‘Amino acid

biosynthesis’’ (2.546) and ‘‘Regulation/Protein kinases’’ (46). All

of the other groups had the same relative presence of the genes as

Figure 4. Distribution of the medians of the gene expression profiles, given in absolute units, as measured in the microarray alpha
channel. The distribution is divided into 4 quartiles (roman numbers) and the last 5% of the most highly expressed genes. Vertical bars represent the
number of proteins of Sypro Ruby-stained (red bars) or radiolabeled (black bars), in the proteome that corresponds to the genes in the given quartile.
doi:10.1371/journal.pone.0072842.g004
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Figure 5. The number of expressed genes of different functional groups over the course of germination. Blue curve (left vertical axis) –
absolute numbers of expressed genes at a given time point, red curve (right vertical axis) – number of expressed genes relative to all of the expressed
genes, in terms of the percent. Horizontal axis – time [hours]. Individual functional groups are ordered in columns according to the similarity of the
profiles.
doi:10.1371/journal.pone.0072842.g005
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the relative presence that was found in the whole set. The list of

PC3-correlated genes is given in Table S4. The ‘‘Amino acid

biosynthesis’’ group was also enriched among the genes that

correlated with PC2, and the ‘‘Regulation/Protein kinases’’ group

was over-represented in the genes that correlated with PC1. In

contrast to PC1 (increasing), the character of the PC3 kinetic trend

(an abrupt decrease in the first hour) suggests that a rapid switch

occurred within the first hour and was mainly in the expression of

the genes from the two over-represented groups. The switch in the

usage of the amino acid biosynthesis group in the first hour can be

explained as a reaction of the metabolism to a sudden supply of

amino acids from the AM medium that was used for cultivation,

when the cell was adjusting its metabolism to the current

environmental conditions. Metabolic changes might also be

associated with the requirement of a different specific set of

protein kinases compared with the set that is needed just after the

germination activation.

Principal component analysis of the gene expression data

showed that the most important aspects are the processes that are

associated with the first three principal components. Unlike in our

previous work [11], where we found a strong association between

the fifth PC and antibiotic production, the higher principal

components could not be associated with any developmental

process (data not shown). The number of genes that were

associated with the principal components decreased rapidly with

the decreasing eigenvalues of the corresponding principal compo-

nents. A total of 1403 gene expression profiles were correlated with

PC1, 791 were correlated with PC2 and 342 were correlated with

PC3. The experiment was also designed to cover the biological

variability that occurred when each repeat from each time point

measurement was collected from different biological replicates (see

the Methods section). Although it was not statistically proven, the

biological variability was the main source of the experimental

error, and the lowest PCs were apparently associated with the

experimental noise. Our analysis proposed that the PC1-associated

processes are connected with launching the basal metabolism (a

more detailed analysis of the basic metabolic processes supporting

this statement is given in the following paragraph). Comparison of

PC1 profile with the course of DNA synthesis (Figure S2), where

approximately at 2.5 hours of growths DNA replication starts,

shows moderate correlation with PC1 for microarray and

proteomic Sypro experiments, indicating association between

PC1 correlated genes/proteins and first DNA replication. Making

a definite statement about the correlation between PC1 associated

genes and DNA synthesis is complicated by rather high variance of

both proteomic and transcriptomic experiments reflected in the

PC1 profile. Although it cannot be undoubtedly confirmed such

observation has to be mentioned.

The PC2-correlated processes represent the response of the cell

to the actual environmental and/or inner conditions through

corresponding regulatory pathways. PC3 reflected processes that

are suppressed after germination initiation as a reaction to the

medium composition detected by the cell. Genes that are

associated with these processes were identified and are available

in the supplementary materials.

2.4. PCA and major functional groups
In the preceding paragraphs, genes in the major functional

groups were examined for their correlations with the first principal

eigenvectors (PC1). In the next section, we focus on genes that are

essential for re-activating metabolism after breaking dormancy,

i.e., the genes of energy metabolism, nucleic acids and protein

synthesis, and their association with the principal kinetic shapes

represented by first principal eigenvectors. In addition, the genes

of the stress response were examined because germination can be

considered a reaction to the stress that is associated with the

rehydration of the originally dry spores.

2.4.1. Energy metabolism. We use the specific gene

annotation and a pathway mapping tool given in the KEGG

database (Kyoto Encyclopedia of Genes and Genomes, http://

www.genome.jp/kegg-bin/

show_organism?menu_type = pathway_maps&org = sco) to inves-

tigated mRNA expression profiles involved in the primary energy

metabolism. The most of the energy pathways-associated genes are

significantly correlated with PC1 (Figure 3), including genes

comprehended in TCA cycle, pentose phosphate pathway and

glycolysis. Figure 3 shows mapping of PC1 correlatad gene

expression profiles on to the KEGG pathway map.

For the genes annotated in KEGG, the significant correlation

with PC1 was found for 38% of TCA cycle genes, including the

subunits of succinyl CoA synthase (SCO4809,6586), citrate

synthase (SCO2736), malate dehydrogenase (SCO4824) and

acetyl transferase (SCO7123), for 22% of glycolysis genes and

25% of genes from pentose phosphate pathway.

A significant correlation with PC1 was also found for mRNAs

that encode for the pathway that leads from the glyceraldehydes 3-

phosphate to pyruvate (gap (SCO1947), pgk (SCO1946), and eno

(SCO3096)) and for the oxidative phosphorylation genes cox1

(SCO2155,2156) and qcrB (SCO2148) and ATP synthase

(SCO5374). For none of the genes from TCA cycle, pentose

phosphate pathway and glycolysis a correlation with PC2 was

found.

2.4.2. Stress response. The systematic annotation of stress

response genes is not available; thus, we extracted the names of the

stress response genes from the two most relevant resources, i.e.,

GenBank and StreptoDB (http://strepdb.streptomyces.org.uk).

Altogether, 46 genes that represent heat, cold and starvation

shock were analyzed. Approximately half of them were correlated

with PC1. Heat shock proteins did not show any correlation with

PC1. In contrast, 6 of the 8 cold shock proteins that were found

were positively significantly correlated with PC1 (SCO4684, 527,

4505, 5921, 3748, and 3731). The general stress protein 50S

ribosomal protein L25 ctc (SCO3124) had the highest correlation

with PC1 (r = 0.89) among all of the stress proteins. Catalase catA/

C (SCO0379,0560) showed a negative correlation with PC1.

Starvation genes (pstB (SCO4139), pstS (SCO4142), regX3

(SCO4230), a phosphate transporter (SCO4228), alkaline phos-

phatase (SCO2286, 1906, 3790, 5140) were mostly negatively

correlated or not correlated with PC1. Only regX3 (SCO4230) and

dehydrogenase (SCO2490), a general stress protein, were found to

be significantly correlated with PC2. Other stress proteins did not

show any significant correlation with PC2.

2.4.3. Nucleic acids and protein

synthesis. Proteosynthetic genes were highly correlated with

PC1. Of 53 proteosynthetic genes (groups ‘‘Amino acyl tRNA

synthase tRNA modification’’ and ‘‘Proteins – translation and

modification’’), 80% were significantly correlated; the correlated

genes primarily comprised tRNA synthase genes and the

elongation factors Ts (SCO5625), Tu (SCO4662), P (SCO1491)

and G (SCO4661) and the translation initiation factors IF-1/2

(SCO 4725, 5706). In contrast, RNA synthesis and DNA

replication genes were correlated only moderately (30% of 113

were significantly positively correlated). Among the positively

correlated genes, the subunits of DNA polymerase III (SCO1827,

2003, 6084, 3541) or helicase (SCO 2952, 1167) were found.

The correlation with PC2 was always lower than that of the

PC1 genes and was highest for the genes that were involved in the

‘‘DNA replication repair’’ group (26% of 80).
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The analysis of the association of specific functional and

metabolic groups with the first two eigenvectors showed that PC2

did not correlate with almost any of the selected groups and genes,

while PC1 was correlated with specific functional groups. As PC1

represents principal kinetic shape controlling germination, genes

correlated with PC1 represent principal pathways controlling

germination. The principal expression profile (Figure 2b) shows

that the genes having this profile are relatively highly expressed in

dormant spores, their expression drops just after germination

initiation and after that, their relative expression continuously

increases until the end of measured period. Expression profiles

having this shape belonged mostly to the genes of energy

metabolism that are involved in basic metabolic processes, such

as the TCA cycle and its associated pathways Genes that were

highly correlated with PC1 were involved in nucleic acids and

protein synthesis, including the main translation factors. In

agreement with the results of the global analysis of the association

of general functional groups with eigenvectors (paragraph 2.3), the

basic processes of germination, with the kinetics represented by

PC1, involve biochemical and regulatory pathways that are

indispensable in accelerating the primary energy metabolism to

an increased level and are required for the cell to become

competent to develop into vegetative forms. These data also

indicate that, as a response to the increased demand of the new

proteome constitution and, therefore, the capacity of a proteosyn-

thetic apparatus, the sole re-activation of aggregated proteosyn-

thetic components is insufficient and must be accompanied by the

de novo synthesis of its members.

From the group of stress responses, the genes associated with

cold shock were highly correlated with PC1. This result confirms

the hypothesis suggested by Strakova et al. [3], i.e., that

germination involves gene expression processes that resemble cell

responses to stress conditions.

2.5. Absolute gene/protein expression levels
It was shown above that the genes associated with PC1 bore

principal expression profiles associated with genes driving germi-

nation. The remaining question was, whether the PC1 associated

genes had different levels of expression in comparison with the

whole mRNA dataset.

The samples on the chips in a transcriptomic experiment were

labeled and organized such that the samples were in one channel

(the alpha channel, labeled with one fluorescent dye) and the

standard (a mixture of samples from all time points, see Methods)

were in the other channel (the beta channel, with a second

fluorescent dye). The time series in all of the above analyses used

the ratio between the alpha and beta channels. This arrangement

decreases the measurement variance but does not allow for a direct

comparison of the absolute expression levels among the different

genes because the standard hybridizes differently with different

mRNA probes that are immobilized on the chip. Because the

mRNA sample repeats were randomly distributed among the

different arrays and equal amounts of mRNA were always loaded

on the chip, we were able to use the alpha channel alone and

compare the absolute expression levels of the individual genes.

The absence of the standard increases the variance of the averaged

expression values of individual mRNA levels but should not

influence the overall trend; in other words, the expression profiles

obtained both from the alpha channel only and from the

normalized data should be correlated. An analysis of the

correlation coefficient distribution between the alpha channel

and normalized ratios showed that 75.6% of the genes were

significantly correlated (p, = 0.05), with a maximum at r = 0.87.

We also found that the lowest correlation was associated with

profiles that had an overall low expression level in the profile.

For the individual genes from the alpha channel (representing the

absolute gene expression level) the log-base2 distribution of the

medians of the expression time series is shown in Figure 4. This

distribution, even in the logarithmic scale, was heavily tailed toward

highly expressed genes. When compared with the number of

identified proteins (the thick bars in Figure 4) that correspond to the

genes in a given quartiles of the distribution, it is apparent that most

identified proteins were within the fourth quartile of the distribution,

especially in the most highly expressed 5% of the genes. The

relationship between the expression level of mRNA and the number

of corresponding proteins that are expressed is apparent.

When examining the functional characteristics of the genes in the

most highly expressed 5% percent, the genes were significantly

enriched in the groups ‘‘Regulation/RNApolymerase core enzymes

binding protein’’ (2.46), ‘‘Ribosomal constituents’’ (which corre-

spond to 80% of all of the ribosomal genes predicted in the S. coelicolor

genome), and ‘‘Chaperones’’ (60% of all of the genes predicted in the

genome). The possible role of chaperones in germination was

discussed in the work of Bobek et al. [8]. There were also significantly

more genes that were involved in the translational machinery (the

elongation factors, RNA polymerase subunits), the energy metab-

olism and, strikingly, the cold shock genes.

Comparing the analysis of the association of genes with the first

principal components (paragraph 2.3), a similarity between the

highly expressed group and the group of genes that are correlated

with the PC1can be observed. The similarity implies that the

principal regulatory groups, which are necessary for germination

control and progression, have not only the kinetic profile defined

by the PC1 shape but also belong to the overall highly expressed

group. The presence of cold shock genes in both groups is

interesting. As mentioned in [25] bacterial cold shock proteins

sequences are conserved among species, however their role can

differ in various organisms and furthermore not all of them are

induced by cold shock. As the genome annotation is frequently

made by homology search, the annotation of the genes as cold

shock genes may be caused by the way the genes were annotated.

We have checked all the cold shock genes mentioned above for

their appearance in the literature, but we didn’t find any particular

reference dealing with their function in Streptomyces. It is apparent

that these genes are essential for the progression of germination,

but their actual role remains a puzzle, and it will require further

work to determine their function in germination.

Detailed inspection focusing on individual genes shows that the

group of most expressed genes comprised important transcription

regulators: sigma factors, anti-sigma factors and anti-anti sigma

factors. Interestingly, we detected a very large expression of the

gene for the alternative principal sigma factor HrdD (SCO3202),

whose function has not yet been revealed in S. coelicolor. The group

also contained both genes for SigH anti-sigma factor Prs

(SCO5244) and the gene for its partner switch, an anti-sigma

factor antagonist BldG (SCO3549), which were recently shown to

interact directly and participate in switching-like activation/

deactivation of the sigma factor SigH [26]. Similarly, the

regulation based on a switch-like mechanism was proposed for

anti-anti-sigma factor ArsI (SCO3067), the SigI anti-sigma factor

antagonist [27]. In addition to the gene for an extracytoplasmic

function (ECF) sigma factor SigE (SCO3356), which regulates

genes that are involved in cell wall biosynthesis [28] among the

maximally expressed genes of regulators, sigD (SCO4769) and

genes predicted to encode sigma factors SCO0038 and SCO4908

(which products have still unspecified function) were found.

Finally, the detected members of this enhanced regulatory group

Gene Expression in S. coelicolor Germination

PLOS ONE | www.plosone.org 11 September 2013 | Volume 8 | Issue 9 | e72842



were the genes for co-expressed partners, sigma factor SigR

(SCO5216) and its anti-sigma factor RsrA (SCO5217), which

together create a control system that is sensitive to changes in the

intracellular redox balance [29]. Interestingly, in the enriched

functional group ‘‘Biosynthesis of cofactors and carriers’’ (26), we

found several genes that were previously reported as SigR target

genes [30,31], such as thioredoxin enzymes (SCO0885, SCO1084,

SCO3889), which assist in reducing disulfide bonds that are

unnatural for the intracellular environment. Additionally, genes

that were involved in the translation machinery were found in the

highest expressed gene group, including the genes for elongation

factors P, G, Tu, Ts (SCO1491, 4661, 4662,5625) and initiation

factors IF-1 and 2 (SCO4725, 5706). As mentioned above, among

the highly expressed genes, the cold shock genes (SCO527, 3731,

4295, 4505, 4684, 5921) were found.

2.6. Analysis of coding gene utilizations
Further, the changes in number of highly expressed genes during

germination within individual functional groups were investigated.

We used data from the alpha channel, as described in the

previous paragraph. To select genes that were highly expressed

and to eliminate the influence of the high variance of the low-

expressed genes on the analysis, we chose the threshold level of the

third quartile of the distribution calculated from alpha channel

signals. All of the mRNAs that had a signal higher than this

threshold were selected for further analysis. Then, for each time

point, all of the genes with an expression value above this

threshold were identified and sorted into 27 functional groups (as

defined in Table 2). The numbers of highly expressed genes

assigned into each individual functional group were counted at

each of the 13 time points, generating a time series of the number

of highly expressed genes in the individual functional groups

(Figure 5, the blue curve). To validate whether the threshold value

(defining high expression genes) could influence the profile shapes

of the numbers of expressed genes, the same process was repeated

with a threshold values that were equal to the first and second

quartile (data not shown). The results showed that the selection of

the threshold value has no effect on the shapes of the profiles given

in Figure 5, and therefore, we used the original threshold value of

the third quartile.

The resulting profiles are shown in Figure 5. Figure 5 shows that

the overall number of expressed genes during the course of

germination exhibited two peaks (Figure 5, caption ‘‘Total’’); the

first occurred in T0, and second occurred after approximately

2.5 hours of growth (time points 6–7). After the second peak, the

expression stabilized at a level of approximately 1200 highly

expressed genes. It is striking that there is a relatively high number

of mRNAs that are found in dormant spores (ca. 1600). A previous

study of S. granaticolor in experiments using the transcription

inhibitor rifamycin revealed that dormant spores preserve pre-

existing mRNAs, which are expressed at the beginning of

germination [5]. In our previous work on the proteomic dataset

[3], we found that several newly synthesized proteins appear just

minutes after germination initiation. The finding that a relatively

large number of mRNAs exist already in spores could suggest that

these proteins were synthesized from this stock.

To compare the trends in individual functional groups with the

overall trend, the individual profiles were divided by the general

pattern and were multiplied by 100 (red curves in the graphs of

Figure 5). Such curves show a deviation from the general pattern

(caption ‘‘Total’’ in Figure 5) for the given functional group. The

group of ‘‘Regulation/Protein kinases’’ was excluded because it

contained only a few mRNAs (0–3). Additionally, the groups of ‘‘Cell

division’’ and ‘‘Differentiation/sporulation’’ contained a small

number of mRNAs (5 on average), but they were retained for

comparison.

The time series of the abundance of the genes of different

functional groups can be dissected into 5 principal patterns

according to the development of the relative number of genes (red

curve in Figure 5) that were expressed during germination. The

first and largest group of functional assignments copied the profile

of the general pattern (blue curve and flat red curve in first column

of graphs in Figure 5). It can be expected that the genes in the

‘‘Unknown function’’ and ‘‘Not classified’’ groups will follow the

general pattern because they contain an uncharacterized mixture

of genes. Aside from the above-mentioned functional groups, this

group contained mainly regulatory genes and genes involved in

the synthesis of macromolecules and amino acids.

The second largest group showed an increase in the relative

number of expressed genes over time (red curves in second column of

graphs in Figure 5), including the genes of ‘‘Energy metabolism’’,

‘‘Central intermediary metabolism’’ and ‘‘Fatty acid biosynthesis’’.

The third group was formed by the genes that were expressed

always in the same numbers, regardless of the development phase

(blue curves in third column of graphs in Figure 5). Not

surprisingly, this group was formed by ‘‘Ribosome constituents’’,

which are expected to be constitutively expressed, and ‘‘Chaper-

ones’’. This group also contained the genes of ‘‘Nucleotide

biosynthesis’’ and ‘‘Macromolecular synthesis’’, which similarly

followed a constant trend.

Groups of ‘‘Macromolecular degradation’’, ‘‘Laterally acquired

elements’’ and ‘‘Transport/binding’’ followed the general trend

but had a much higher emphasis.

The genes of ‘‘Secondary metabolism’’ were surprisingly

expressed in non-negligible numbers (approximately 30 (12.5%)

of all secondary metabolism genes), and its numbers declined over

time and had a maximum in the dormant spores. These transcripts

usually originate from the sporulation stage, in which the

antibiotics are produced, and they are subsequently degraded.

The presence of several members of antibiotic gene clusters might

also suggest that their enzymatic activity is required in germina-

tion. However, none of those proteins were detected here. A

detailed inspection of the individual genes did not reveal any

specific and/or continuous gene clusters for the synthesis of

secondary metabolites. Because the group of ‘‘Secondary metab-

olism’’, as defined by the Sanger Institute, also includes a number

of other genes that are not directly associated with biosynthetic

clusters (such as lipoproteins), an over-representation of this group

is most likely not associated with secondary metabolite production

but is instead associated with those genes that are not directly

involved in the synthesis of secondary metabolites.

Similar pattern could also be observed for the genes of the

group ‘‘Degradation of small molecules’’.

Discussion

A correlation analysis between proteomic and transcriptomic

data showed a rather low correlation between the mRNA and the

accumulated protein expression profiles. Of the 247 genes/

proteins that were investigated, 27.9% were highly correlated (a

correlation interval of $0.95). This finding is consistent with other

analyses on Streptomyces species, which also found a correlation for

approximately one-third of the genes that were expressed during

the stationary phase [10,11,12]. Several similar studies, which

were mostly performed in yeast [32,33,34,35], have reported

varying, but still rather low, correlations between mRNA and

protein abundances, which range from 0.21 to 0.74 (Pearson

correlation). The variability between datasets mostly goes to the
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account of the translation and posttranslational processes and also

the errors in the measurements, which are quite high.

Whenever a comparison between proteomic and transcriptomic

data is performed, two sets that substantially differ in size are

compared. While proteomic experiments, which are made either

by 2D electrophoresis or mass spectrometry, can quantify usually

hundreds of proteins, microarrays provide information about

thousand of genes. The sets differ in size by one order of

magnitude, which leads to a comparison of biased selection of only

highly abundant proteins with unbiased microarray expression

data. We must admit that, except for the analyzed intersect, we do

not and will not know what is the ‘‘true’’ correlation (across the

whole proteome and transcriptome), until the proteomics will be

able to quantify a more representative part of the real proteome.

Therefore, instead of focusing on the correlation of individual

expression profiles, it is more reliable to focus on extracting the

common features of the system that are inherent in the gene

expression time series. One of these methods is the principal

components analysis, which, when used to analyze a set of gene

expression profiles, allows us to identify patterns of gene expression

that contribute to the pathways controlling the observed process.

Comparing these patterns for different experiments (proteomic or

microarray) could say how much these methods identify common

features of the system and could show how much they give similar

results. The analyses made so far on Streptomyces [11,12] show very

good agreement between proteomic and transcriptomic temporal

data at the level of the first eigenvectors, which confirms that the

fundamental processes are controlled in a coordinated fashion on

both the transcriptomic and proteomic levels. The pulse-labeled

data differed substantially, which is most likely caused by the

different nature of the measured values – the accumulation of the

mRNA and protein fluorescence staining vs. the expression rate

for the pulse radiolabeling. By correlating individual gene

expression profiles with the first eigenvectors, we were able to

identify the metabolic and regulatory pathways that control the

fundamental processes during the germination of S. coelicolor.

The analysis of highly expressed genes showed a correlation

between the expression levels of the mRNAs and the correspond-

ing proteins; genes that are highly expressed on the mRNA level

are also highly expressed on the protein level. Functional analysis

of most of the highly expressed genes showed that the highly

expressed genes are also those that are correlated with PC1. This

comparison shows that the principal regulatory groups that are

necessary for the germination control and progression are, overall,

highly expressed and have a kinetic profile that is defined by the

shape of the first principal component.

Respecting the limitations of the proteomics approach, we

utilized a more detailed analysis that addresses individual genes

and functional groups, and we focused on mRNA data and

interpreted the gene expression in the sense of genome utilization

over the course of the experiment. The analysis of the number of

genes of individual functional groups that were expressed during

the course of germination showed that a relatively high number of

mRNAs existed already in the dormant spores. The mRNA

synthesis peaked at the first time point of the germination and

declined until the end of the observed period, with a small local

maximum at 2.5 hours. This result, which is in agreement with

previous proteomic analysis [3], suggests that dormant spores

already contain most of the genetic material that is necessary for

the spore germination initiation that was stored, most likely in

aggregates, that stabilize both the mRNA and proteins and which,

after rehydration, can readily initiate the growth of the spores. The

peak of the macromolecule synthesis that was found at the first

30 min after initiation supports this statement.

In interpreting both the transcriptomics and proteomics data,

we could not go below a certain level of generality given by the

inherent information content that is different for both of the data

sources. However, analyzing large-scale gene expression data

using statistical methods such as PCA can give us insights into how

biochemical and regulatory processes work in the cell on the

systems level.

Supporting Information

Figure S1 The phenotypic change occurring during
germination is illustrated in the electron microscopy
images of S. coelicolor spores at primary magnification
of 30 000 times. A) Dormant spores (T Dorm). B) Germinating

spores, 5,5 hours after germination initiation with grown germ

tubes.

(TIF)

Figure S2 Comparison of the principal components
with DNA synthesis. To observe the status of DNA replication

during germination the cells were germinated in 50 ml AMK

media with radioactive (5.5 mCi) nucleobase 14C Thymine.

Radioactive thymine incorporated into newly synthesized DNA

molecules within replication. We collected 26100 ml of cell

suspension in 20 min intervals up to 5 hours of germination.

The samples were washed to remove unincorporated radioisotope

and remaining radioactive signal of the cells was measured. The

average radioisotope signal CPM (count per minute) of two

samples at each examined time point is represented by the black

cross. The black dash line indicates that the first DNA replication

occurred around 2.5 h after germination initiation where the

significant increase of radioisotope signal was detected. Up to

140 min the radioisotope signal is constant (approximately 110

CPM) and represent background but from 160 min the sudden

increase (roughly doubled to 230 CPM) correspond to the

doubling of DNA in the first DNA replication.

(TIF)

Table S1 Genes with highly correlated scores (Pearson
correlation . = 0.95) of Sypro Ruby stained proteins
(PC2) and mRNA (PC1).
(XLSX)

Table S2 Genes that have an expression profile that is
correlated with PC1.
(XLSX)

Table S3 Genes that have an expression profile that is
correlated with PC2.
(XLSX)

Table S4 Genes that have an expression profile that is
correlated with PC3.
(XLSX)
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