organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination and absolute configuration of pruniflorone M monohydrate

Hoong-Kun Fun,^a*‡Suchada Chantrapromma,^b§Nawong Boonnak,^b Chatchanok Karalai^b and Kan Chantrapromma^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cResearch Unit of Natural Products Utilization, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand Correspondence e-mail: ht/jun@usm my

correspondence e main incluriousminy

Received 23 June 2011; accepted 27 June 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.120; data-to-parameter ratio = 10.9.

The title xanthone known as pruniflorone M (systematic (2R)-5,10-dihydroxy-2-hydroxymethyl-1,1-dimethylname: 1H-furo[2,3-c]xanthen-6-one), crystallized in a monohydrate form, $C_{18}H_{16}O_6 H_2O$. It was isolated from the green fruits of Cratoxylum formosum ssp. pruniflorum. The structure of the title compound has been reported previously [Boonnak et al. (2010). Aust. J. Chem. 63, 1550-1556], but we report here the absolute configuration determined using Cu K α radiation. There are two crystallograpically independent molecules in the asymmetric unit, which differ slightly in the bond angles. The hydroxymethyl substituents at position 2 of the furan rings of both pruniflorone M molecules adopt R configurations. In both molecules, the three rings of the xanthone skeleton are approximately coplanar, with an r.m.s. deviation of 0.0124 (2) Å for one molecule and 0.0289 (2) Å for the other, and the furan ring adopts an envelope conformation. In the crystal, molecules of pruniflorone M and water are linked into a two-dimensional network by O-H···O hydrogen bonds and weak C-H···O interactions. The crystal structure is further consolidated by π - π interactions with centroidcentroid distances in the range 3.5987 (13)-3.7498 (14) Å. Short C···C [3.378(3) Å] and O···O [2.918(3) Å] contacts are also observed.

Related literature

For details of hydrogen-bond motifs, see: Bernstein *et al.* (1995) and for ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen *et al.* (1987). For background to xanthones and their biological activity, see: Boonnak, Karalai *et al.* (2007); Boonnak *et al.* (2009, 2010);

Hay *et al.* (2008); Marques *et al.* (2000); Molinar-Toribio *et al.* (2006); Phongpaichit *et al.* (1994); Yu *et al.* (2007). For related structures, see: Boonnak *et al.* (2006); Boonnak, Fun *et al.* (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental

Crystal data

C₁₈H₁₆O₆·H₂O $M_r = 346.32$ Orthorhombic, $P2_12_12_1$ a = 9.8887 (3) Å b = 15.6028 (4) Å c = 20.4857 (5) Å

Data collection

Bruker APEX DUO CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *T*_{min} = 0.627, *T*_{max} = 0.913

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.120$ S = 1.02 4981 reflections 456 parameters H-atom parameters constrained

Z = 8Cu K α radiation $\mu = 0.95 \text{ mm}^{-1}$ T = 100 K $0.54 \times 0.17 \times 0.10 \text{ mm}$

 $V = 3160.77 (15) \text{ Å}^3$

13449 measured reflections 4981 independent reflections 4753 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$

 $\begin{array}{l} \Delta \rho_{max} = 0.56 \mbox{ e } \mbox{\AA}^{-3} \\ \Delta \rho_{min} = -0.23 \mbox{ e } \mbox{\AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 2102 \mbox{ Friedel pairs} \\ \mbox{Flack parameter: } 0.06 (19) \end{array}$

Table 1

Hydrogen-bond	geometry ((A, °	')	,
---------------	------------	-------	----	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3A−H3OA····O2A	0.98	1.62	2.530 (3)	152
$O4A - H4OA \cdots O1WA$	0.92	1.75	2.672 (3)	175
$O6A - H6OA \cdots O4B^{i}$	0.82	2.12	2.918 (3)	165
O3 <i>B</i> −H3 <i>OB</i> ···O2 <i>B</i>	1.06	1.57	2.529 (3)	148
$O4B - H4OB \cdot \cdot \cdot O1WB$	1.02	1.62	2.639 (3)	175
$O6B - H6OB \cdot \cdot \cdot O4A^{ii}$	0.82	2.25	3.059 (4)	167
$O1WA - H1WA \cdots O3A^{iii}$	0.83	2.06	2.889 (3)	173
$O1WA - H2WA \cdots O6B$	0.92	1.84	2.737 (5)	165
$O1WB - H1WB \cdots O6A$	0.89	1.86	2.691 (3)	153
$O1WB - H2WB \cdots O3B^{iv}$	0.82	2.06	2.868 (3)	164
$C16B - H16C \cdots O2B^{v}$	0.96	2.46	3.389 (3)	163

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

The authors thank the Thailand Research Fund (TRF) for research grant (RSA 5280033) and the Prince of Songkla University for financial support. The authors also thank the Koshinocorporation Group, Japan, and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/ 811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5174).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Boonnak, N., Chantrapromma, S. & Fun, H.-K. (2006). Acta Cryst. E62, o2034–o2036.
- Boonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). Acta Cryst. E63, 03958–03959.
- Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2009). *Tetrahedron*, 65, 3003–3013.

- Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Fun, H.-K. (2007). *Can. J. Chem.* 85, 341– 345.
- Boonnak, N., Khamthip, A., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Tewtrakul, S., Chantrapromma, K., Fun, H.-K. & Kato, S. (2010). Aust. J. Chem. 63, 1550–1556.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hay, A. E., Merza, J., Landreau, A., Litaudon, M., Pagniez, F., Pape, P. L. & Richomme, P. (2008). *Fitoterapia*, **79**, 42–46.
- Marques, V. L. L., Oliveira, F. M. D., Conserva, L. M., Brito, R. G. L. & Guilhon, G. M. S. P. (2000). *Phytochemistry*, 55, 815–818.
- Molinar-Toribio, E., González, J., Ortega-Barría, E., Capson, T. L., Coley, P. D., Kursar, T. A., McPhail, K. & Cubilla-Rios, L. (2006). *Pharm. Biol.* 44, 550– 553.
- Phongpaichit, S., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chuaprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399–405.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yu, L., Zhao, M., Yang, B., Zhao, Q. & Jiang, Y. (2007). Food Chem. 104, 176– 181.

Acta Cryst. (2011). E67, o1916-o1917 [doi:10.1107/S1600536811025177]

Redetermination and absolute configuration of pruniflorone M monohydrate

H.-K. Fun, S. Chantrapromma, N. Boonnak, C. Karalai and K. Chantrapromma

Comment

Xanthones are secondary metabolites of several plants and exhibit considerable biological activities such as antibacterial, antioxidant, antiprotozoal, cytotoxic and nitric oxide inhibitory activities (Boonnak, Karalai *et al.* 2007; Boonnak *et al.* 2009, 2010; Hay *et al.* 2008; Marques *et al.* 2000; Molinar-Toribio *et al.*, 2006; Phongpaichit *et al.*, 1994; Yu *et al.*, 2007). During the course of our research on the chemical constituents and bioactive compounds from the green fruits of *Cratoxylum formosum* ssp. *pruniflorum*, which were collected from Pha Yao province in the northern part of Thailand, the title xanthone (I) known as pruniflorone M (Boonnak *et al.*, 2010) was isolated. The previous report showed that (I) possess nitric oxide inhibitory activity (Boonnak *et al.*, 2010). The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu Kα *X*-radiation with the Flack parameter being refined to 0.06 (19). We report herein the crystal structure of (I).

There are two crystallograpically independent molecules *A* and *B* in the asymmetric unit of (I), $C_{18}H_{16}O_{6}H_{2}O$, (Fig. 1) with the same conformation but with slight differences in bond angles. In the structure of (I), the three ring system [C1–C13/O1] is essentially planar with *r.m.s.* deviations of 0.0124 (2) Å for molecule *A* [0.0289 (2) Å for molecule *B*] from the plane through 14 non-hydrogen atoms of the three rings. The O3 and O4 hydroxy O atoms lie close to this plane with deviations +0.038 (2) for O3 and +0.004 (2) Å for O4 for molecule *A* [the corresponding values are +0.043 (2) and -0.024 (2) Å for molecule *B*]. The furan ring (C3–C4/C14–C15/O5) is in an envelope conformation with the puckering atom C15 of 0.148 (3) Å, and puckering parameter Q = 0.239 (2) Å and $\varphi = 132.0$ (6)° (Cremer & Pople, 1975) for molecule *A* and the corresponding values are 0.134 (3) Å, 0.213 (3) Å and $\varphi = 137.8$ (7)° for molecule *B*. The orientation of the hydroxymethyl moiety at atom C15 can be indicated by the torsion angle of C14–C15–C16–O6 = -73.3 (3)° for molecule *A* [165.0 (3)° for molecule *B*]. Intramolecular O3A—H3OA···O2A and O3B—H3OB..O2B hydrogen bonds (Table 1) generate S(6) ring motifs (Bernstein *et al.*, 1995). The bond distances in (I) are within normal ranges (Allen *et al.*, 1987) and comparable to the related structures (Boonnak *et al.*, 2006; Boonnak, Fun *et al.*, 2007). The hydroxymethyl substituents at position 2 (on atoms C15A and C15B) of the furan rings of both pruniflorone M molecules adopt *R* configurations.

In the crystal packing of (I) (Fig. 2), the molecules of pruniflorone M and water are linked into a two dimensional network by O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). π ··· π interactions were also observed with centroid···centroid distances: Cg_1 ··· $Cg_5^{V} = 3.7453$ (13) Å; Cg_1 ··· $Cg_6^{Vi} = 3.6847$ (13) Å; Cg_2 ··· $Cg_4^{Vi} = 3.7189$ (12) Å; Cg_2 ··· $Cg_6^{Vi} = 3.6940$ (14) Å; Cg_3 ··· $Cg_4^{V} = 3.5987$ (13) Å and Cg_3 ··· $Cg_5^{V} = 3.7498$ (14) Å; Cg_1 , Cg_2 , Cg_3 , Cg_4 , Cg_5 and Cg_6 are the centroids of C9A–C13A/O1A, C1A–C4A/C11A–C12A, C5A–C9A/C13A, C9B–C13B/O1B, C1B–C4B/C11B–C12B and C5B–C9B/C13B rings, respectively. C···C^V[3.378 (3) Å;] and O···Oⁱ[2.918 (3) Å short contacts were also observed; [symmetry codes: (i) -1/2+x, 3/2-y, 1-z; (v) 3/2-x, 1-y, 1/2+z and (vi) 1/2-x, 1-y, 1/2-z].

Experimental

The green fruits of *C. formosum* ssp. *pruniflorum* (5.00 kg) were extracted with CH_2Cl_2 (2x20 L, for a week) successively at room temperature and were further evaporated under reduced pressure to afford the crude CH_2Cl_2 extracts (31.42 g). The crude extract was further subjected to QCC (Quick Column Chromatography) on silica gel using hexane as a first eluent and then increasing the polarity with acetone to give 14 fractions (F1-F14). Fraction F10 was separated by QCC eluting with a gradient of acetone-hexane to give 17 subfractions (F10A-F10Q). Subfractions F10N was further separated by CC and eluted with a gradient of EtOAc-hexane to give 8 subfractions (F10N1-F10N8). Subfraction F10N2 was further separated by CC and eluted with CHCl₃ to give the title compound as yellow powder (28.0 mg). Yellow block-shaped single crystals of the title compound suitable for *x*-ray structure determination were recrystallized from CHCl₃ by the slow evaporation of the solvent at room temperature after several days, Mp. 508-510 K.

Refinement

All H atoms were placed in calculated positions with (O-H) = 0.82-1.06 Å for OH, (C-H) = 0.93 for aromatic and 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.34 Å from O6B and the deepest hole is located at 0.51 Å from O6B. 2102 Friedel pairs were used to determine the absolute configuration. There is no pseudo-symmetry observed in the crystal structure.

Figures

Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atomnumbering scheme. Hydrogen bonds are shown as dashed lines.

Fig. 2. The crystal packing of (I) viewed along the c axis, showing two dimensional network. Hydrogen bonds are shown as dashed lines.

(2R)-5,10-Dihydroxy-2-hydroxymethyl-1,1-dimethyl-1H- furo[2,3-c]xanthen-6-one monohydrate

 $D_{\rm x} = 1.456 {\rm Mg m}^{-3}$

 $\theta = 5.3-63.5^{\circ}$ $\mu = 0.95 \text{ mm}^{-1}$ T = 100 KBlock, yellow

Melting point = 508–510 K Cu $K\alpha$ radiation, λ = 1.54178 Å Cell parameters from 4981 reflections

 $0.54 \times 0.17 \times 0.10 \text{ mm}$

Crystal data

$C_{18}H_{16}O_6{\cdot}H_2O$
$M_r = 346.32$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
a = 9.8887 (3) Å
<i>b</i> = 15.6028 (4) Å
<i>c</i> = 20.4857 (5) Å
$V = 3160.77 (15) \text{ Å}^3$
Z = 8
F(000) = 1456

Data collection

Bruker APEX DUO CCD area-detector diffractometer	4981 independent reflections
Radiation source: sealed tube	4753 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
ϕ and ω scans	$\theta_{\text{max}} = 63.5^{\circ}, \ \theta_{\text{min}} = 5.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -7 \rightarrow 11$
$T_{\min} = 0.627, \ T_{\max} = 0.913$	$k = -18 \rightarrow 18$
13449 measured reflections	<i>l</i> = −23→23

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0751P)^2 + 0.9688P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
4981 reflections	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$
456 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 2102 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.06 (19)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1A	0.40973 (17)	0.43207 (10)	0.67334 (7)	0.0370 (4)
O2A	0.3650 (2)	0.44183 (12)	0.87235 (8)	0.0512 (5)
O3A	0.18470 (19)	0.55552 (12)	0.85896 (8)	0.0483 (4)
H3OA	0.2444	0.5118	0.8781	0.072*
O4A	0.58566 (19)	0.32867 (12)	0.61541 (8)	0.0484 (4)
H4OA	0.6449	0.2869	0.6019	0.062 (9)*
O5A	0.06909 (18)	0.63151 (11)	0.64104 (8)	0.0444 (4)
O6A	0.1454 (2)	0.74151 (11)	0.54195 (9)	0.0551 (5)
H6OA	0.0952	0.7697	0.5655	0.083*
C1A	0.2000 (2)	0.54898 (15)	0.79348 (11)	0.0357 (5)
C2A	0.1201 (2)	0.59682 (17)	0.75260 (11)	0.0381 (5)
H2A	0.0538	0.6334	0.7688	0.046*
C3A	0.1426 (2)	0.58815 (14)	0.68612 (11)	0.0353 (5)
C4A	0.2403 (2)	0.53548 (14)	0.65853 (11)	0.0339 (5)
C5A	0.5798 (2)	0.32706 (15)	0.68149 (11)	0.0378 (5)
C6A	0.6618 (3)	0.27595 (16)	0.71967 (13)	0.0426 (6)
H6A	0.7249	0.2404	0.6997	0.051*
C7A	0.6521 (3)	0.27649 (16)	0.78758 (13)	0.0460 (6)
H7A	0.7088	0.2418	0.8123	0.055*
C8A	0.5592 (3)	0.32806 (16)	0.81792 (12)	0.0428 (6)
H8A	0.5519	0.3275	0.8632	0.051*
C9A	0.4758 (3)	0.38129 (15)	0.78110 (11)	0.0375 (5)
C10A	0.3778 (2)	0.43875 (15)	0.81172 (11)	0.0374 (5)
C11A	0.2983 (2)	0.49098 (15)	0.76823 (11)	0.0341 (5)
C12A	0.3168 (2)	0.48597 (14)	0.70018 (11)	0.0336 (5)
C13A	0.4870 (2)	0.38085 (15)	0.71280 (11)	0.0345 (5)
C14A	0.2429 (2)	0.54925 (16)	0.58514 (11)	0.0376 (5)
C15A	0.1020 (3)	0.59373 (16)	0.57746 (11)	0.0409 (5)
H15A	0.0355	0.5485	0.5691	0.049*
C16A	0.0818 (3)	0.66176 (16)	0.52624 (12)	0.0476 (6)
H16A	0.1176	0.6411	0.4851	0.057*
H16B	-0.0144	0.6714	0.5205	0.057*
C17A	0.3638 (3)	0.6064 (2)	0.56656 (13)	0.0528 (7)
H17A	0.4466	0.5770	0.5764	0.079*
H17B	0.3598	0.6589	0.5910	0.079*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17C	0.3604	0.6100	0.5207	0.070*
C18A	0.3004	0.0190	0.5207	0.079° 0.0535 (7)
H18A	0.2474 (3)	0.40718 (18)	0.54520 (15)	0.0333(7)
H18R	0.3320	0.4391	0.3320	0.080*
H18C	0.2370	0.4307	0.4998	0.080*
01B	0.1754 0.50342 (16)	0.4299	0.3388	0.030°
O1B O2B	0.59342(10) 0.64340(10)	0.57000(10) 0.55237(12)	0.32981(7) 0.13115(7)	0.0339(4)
02B 02P	0.04340(19) 0.82577(10)	0.33237(12) 0.44007(12)	0.13113(7) 0.14927(9)	0.0439(4)
H3OB	0.82377 (19)	0.44097(12) 0.4841	0.14837 (8)	0.0470 (4)
04B	0.7392 0.42557 (18)	0.4641	0.1249 0.38433 (7)	0.070°
	0.42337(18)	0.07981 (11)	0.36433 (7)	0.0433 (4)
050	0.0002(2)	0.7203	0.3337	0.003°
03B 06B	0.9092(2)	0.33711(12) 0.2762(2)	0.30830(9)	0.0333(3)
	0.9030 (4)	0.2702 (3)	0.49013 (14)	0.1384 (10)
HOUB C1D	0.9941	0.2549	0.4020	0.208^{+}
CIB	0.8040(2)	0.44754 (15)	0.21300(11)	0.0356(5)
C2B	0.8789 (3)	0.39760 (16)	0.25614 (11)	0.0395 (5)
H2B	0.9461	0.3606	0.2415	0.04/*
C3B	0.8480 (3)	0.40551 (15)	0.32155 (11)	0.0386 (5)
C4B	0.7515 (2)	0.46058 (14)	0.34/6/(11)	0.0353 (5)
C5B	0.4287 (2)	0.6/6/3 (14)	0.31800 (11)	0.0348 (5)
C6B	0.3467 (3)	0.72657 (16)	0.2/86/(13)	0.0444 (6)
H6B	0.2848	0.7640	0.2975	0.053*
С/В	0.3563 (3)	0.72109 (17)	0.21084 (13)	0.0496 (7)
H/B	0.2996	0.7545	0.1850	0.059*
C8B	0.4466 (3)	0.66814 (16)	0.18191 (12)	0.0437 (6)
H8B	0.4534	0.6663	0.1367	0.052*
C9B	0.5303 (2)	0.61584 (15)	0.22073 (11)	0.0348 (5)
C10B	0.6281 (2)	0.55735 (15)	0.19175 (10)	0.0359 (5)
C11B	0.7058 (2)	0.50642 (15)	0.23627 (11)	0.0336 (5)
C12B	0.6838 (2)	0.51255 (14)	0.30405 (11)	0.0313 (5)
C13B	0.5192 (2)	0.61998 (14)	0.28842 (11)	0.0328 (5)
C14B	0.7477 (2)	0.45210 (16)	0.42106 (11)	0.0396 (5)
C15B	0.8276 (3)	0.36851 (19)	0.42911 (13)	0.0539 (7)
H15B	0.7623	0.3214	0.4312	0.065*
C16B	0.9217 (3)	0.35831 (15)	0.48366 (10)	0.0792 (11)
H16C	0.8832	0.3818	0.5229	0.095*
H16D	1.0059	0.3875	0.4745	0.095*
C17B	0.8116 (3)	0.53045 (15)	0.45315 (10)	0.0629 (8)
H17D	0.9028	0.5369	0.4379	0.094*
H17E	0.8119	0.5231	0.4997	0.094*
H17F	0.7604	0.5806	0.4421	0.094*
C18B	0.6051 (3)	0.4398 (2)	0.44913 (14)	0.0662 (8)
H18D	0.5559	0.4927	0.4460	0.099*
H18E	0.6115	0.4230	0.4941	0.099*
H18F	0.5588	0.3961	0.4249	0.099*
O1WA	0.7567 (3)	0.21065 (14)	0.56948 (11)	0.0822 (8)
H1WA	0.7741	0.1639	0.5869	0.123*
H2WA	0.8243	0.2244	0.5407	0.123*
O1WB	0.2432 (2)	0.79095 (14)	0.42531 (11)	0.0745 (7)

H1WB	0.1943	0.7889	0.4620	0.112*
H2WB	0.2087	0.8328	0.4072	0.112*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0379 (9)	0.0434 (8)	0.0296 (8)	0.0054 (8)	0.0003 (7)	0.0028 (7)
O2A	0.0608 (11)	0.0647 (11)	0.0282 (8)	0.0099 (10)	-0.0001 (8)	0.0017 (8)
O3A	0.0581 (11)	0.0559 (10)	0.0308 (8)	0.0056 (9)	0.0069 (8)	-0.0025 (8)
O4A	0.0507 (10)	0.0568 (10)	0.0378 (9)	0.0077 (9)	0.0027 (8)	0.0010 (8)
O5A	0.0495 (10)	0.0472 (9)	0.0366 (8)	0.0105 (8)	-0.0005 (7)	0.0036 (7)
06A	0.0697 (13)	0.0465 (9)	0.0491 (10)	0.0035 (9)	0.0140 (9)	0.0032 (8)
C1A	0.0389 (12)	0.0386 (12)	0.0297 (11)	-0.0064 (10)	0.0026 (9)	-0.0022 (10)
C2A	0.0401 (13)	0.0396 (12)	0.0346 (12)	-0.0005 (11)	0.0056 (10)	-0.0039 (9)
C3A	0.0337 (12)	0.0364 (11)	0.0358 (12)	-0.0034 (10)	-0.0022 (10)	0.0030 (10)
C4A	0.0358 (12)	0.0363 (11)	0.0296 (12)	-0.0027 (10)	-0.0005 (9)	-0.0001 (9)
C5A	0.0377 (13)	0.0385 (11)	0.0371 (12)	-0.0047 (11)	0.0006 (10)	0.0021 (10)
C6A	0.0409 (14)	0.0387 (12)	0.0482 (14)	0.0029 (12)	-0.0041 (11)	-0.0003 (11)
C7A	0.0492 (15)	0.0405 (13)	0.0484 (14)	0.0062 (13)	-0.0079 (12)	0.0060 (11)
C8A	0.0475 (15)	0.0425 (12)	0.0385 (13)	-0.0009 (12)	-0.0093 (11)	0.0020 (11)
C9A	0.0388 (13)	0.0396 (13)	0.0341 (12)	-0.0045 (11)	-0.0034 (10)	0.0017 (10)
C10A	0.0368 (13)	0.0439 (12)	0.0314 (11)	-0.0035 (11)	-0.0024 (10)	0.0024 (10)
C11A	0.0351 (12)	0.0376 (11)	0.0297 (11)	-0.0067 (10)	0.0005 (9)	0.0001 (10)
C12A	0.0315 (12)	0.0353 (11)	0.0341 (12)	-0.0043 (10)	0.0012 (10)	-0.0033 (9)
C13A	0.0332 (12)	0.0358 (12)	0.0344 (11)	-0.0043 (10)	-0.0036 (9)	0.0013 (9)
C14A	0.0408 (13)	0.0441 (12)	0.0279 (11)	-0.0001 (11)	-0.0011 (9)	0.0020 (10)
C15A	0.0407 (13)	0.0451 (12)	0.0370 (12)	-0.0020 (11)	-0.0020 (10)	0.0000 (10)
C16A	0.0545 (15)	0.0507 (14)	0.0378 (13)	0.0056 (13)	-0.0074 (12)	0.0036 (11)
C17A	0.0467 (15)	0.0684 (17)	0.0435 (14)	-0.0061 (14)	0.0012 (12)	0.0105 (13)
C18A	0.0688 (19)	0.0559 (15)	0.0358 (13)	0.0049 (14)	-0.0066 (12)	-0.0031 (11)
O1B	0.0369 (9)	0.0433 (8)	0.0274 (7)	0.0066 (7)	0.0002 (6)	-0.0002 (7)
O2B	0.0573 (11)	0.0624 (11)	0.0269 (8)	0.0038 (10)	0.0001 (8)	-0.0015 (8)
O3B	0.0565 (11)	0.0537 (10)	0.0307 (8)	0.0019 (9)	0.0080 (8)	-0.0073 (8)
O4B	0.0482 (10)	0.0480 (9)	0.0339 (8)	0.0089 (8)	0.0033 (8)	-0.0014 (7)
O5B	0.0621 (12)	0.0578 (11)	0.0407 (9)	0.0249 (10)	-0.0030 (9)	0.0005 (8)
O6B	0.152 (3)	0.180 (3)	0.0829 (18)	0.119 (3)	0.0523 (19)	0.066 (2)
C1B	0.0375 (12)	0.0370 (11)	0.0323 (11)	-0.0074 (10)	0.0037 (10)	-0.0076 (9)
C2B	0.0393 (13)	0.0366 (11)	0.0426 (13)	0.0030 (11)	0.0017 (11)	-0.0058 (10)
C3B	0.0419 (13)	0.0361 (11)	0.0379 (12)	0.0043 (10)	-0.0042 (11)	-0.0019 (10)
C4B	0.0383 (12)	0.0343 (11)	0.0333 (12)	-0.0002 (10)	-0.0021 (9)	-0.0045 (9)
C5B	0.0361 (12)	0.0348 (11)	0.0336 (11)	-0.0027 (10)	-0.0001 (10)	-0.0009 (9)
C6B	0.0457 (14)	0.0386 (12)	0.0488 (14)	0.0061 (12)	-0.0013 (12)	-0.0004 (11)
C7B	0.0560 (17)	0.0451 (13)	0.0476 (15)	0.0068 (14)	-0.0128 (13)	0.0047 (12)
C8B	0.0521 (15)	0.0474 (13)	0.0315 (12)	-0.0016 (13)	-0.0073 (11)	0.0034 (11)
C9B	0.0359 (12)	0.0366 (12)	0.0320 (11)	-0.0040 (10)	-0.0048 (9)	0.0002 (9)
C10B	0.0375 (13)	0.0421 (12)	0.0280 (11)	-0.0084 (11)	0.0000 (9)	-0.0020 (10)
C11B	0.0328 (11)	0.0370 (11)	0.0310 (11)	-0.0046 (10)	-0.0012 (9)	-0.0028 (10)
C12B	0.0306 (12)	0.0325 (11)	0.0307 (11)	-0.0011 (9)	0.0015 (9)	-0.0022 (9)

C13B	0.0309 (12)	0.0319 (11)	0.0355 (12)	-0.0020 (10)	-0.0030 (9)	0.0024 (9)
C14B	0.0434 (14)	0.0447 (13)	0.0308 (12)	0.0000 (11)	-0.0027 (10)	0.0013 (10)
C15B	0.0582 (17)	0.0585 (15)	0.0449 (14)	0.0020 (14)	0.0059 (13)	0.0060 (12)
C16B	0.0600 (19)	0.128 (3)	0.0492 (17)	0.033 (2)	-0.0001 (14)	0.0274 (19)
C17B	0.093 (2)	0.0581 (16)	0.0370 (14)	-0.0074 (17)	-0.0121 (15)	-0.0035 (12)
C18B	0.0537 (17)	0.098 (2)	0.0468 (15)	0.0024 (17)	0.0042 (13)	0.0220 (16)
O1WA	0.117 (2)	0.0625 (12)	0.0666 (14)	0.0365 (14)	0.0257 (13)	0.0038 (11)
O1WB	0.0965 (18)	0.0644 (12)	0.0627 (14)	0.0328 (13)	0.0390 (12)	0.0206 (11)
Geometric par	ameters (Å, °)					
O1A—C12A		1.361 (3)	O2B-	C10B	1.25	3 (3)
O1A—C13A		1.370 (3)	O3B-	C1B	1.35	6 (3)
O2A—C10A		1.249 (3)	O3B-	-H3OB	1.05	64
O3A—C1A		1.354 (3)	O4B-	—С5В	1.36	0 (3)
ОЗА—НЗОА		0.9841	O4B-	-H4OB	1.02	23
O4A—C5A		1.355 (3)	O5B-	—С3В	1.36	3 (3)
O4A—H4OA		0.9200	O5B-	C15B	1.49	4 (3)
O5A—C3A		1.356 (3)	O6B-	C16B	1.37	1 (4)
O5A—C15A		1.466 (3)	O6B-	-H6OB	0.82	00
O6A—C16A		1.431 (3)	C1B-	–C2B	1.38	1 (3)
06A—H6OA		0.8200	C1B-	C11B	1.41	9 (3)
C1A—C2A		1.372 (3)	C2B-	СЗВ	1.38	0 (3)
C1A—C11A		1.425 (4)	C2B-	–H2B	0.93	00
C2A—C3A		1.387 (3)	C3B-	–C4B	1.39	1 (3)
C2A—H2A		0.9300	C4B-	C12B	1.38	0 (3)
C3A—C4A		1.389 (3)	C4B-	C14B	1.51	0 (3)
C4A—C12A		1.377 (3)	C5B-	—С6В	1.38	2 (3)
C4A—C14A		1.519 (3)	C5B-	C13B	1.39	7 (3)
C5A—C6A		1.380 (3)	C6B-	—С7В	1.39	5 (4)
C5A—C13A		1.399 (3)	C6B-	-H6B	0.93	00
C6A—C7A		1.394 (4)	C7B-	C8B	1.35	3 (4)
С6А—Н6А		0.9300	C7B-	-H7B	0.93	00
C7A—C8A		1.370 (4)	C8B-	-С9В	1.40	8 (3)
C7A—H7A		0.9300	C8B-	-H8B	0.93	00
C8A—C9A		1.392 (3)	C9B-	C13B	1.39	3 (3)
C8A—H8A		0.9300	C9B-	C10B	1.45	7 (3)
C9A—C13A		1.404 (3)	C10B	—C11B	1.43	3 (3)
C9A—C10A		1.462 (3)	C11B	—C12B	1.40	9 (3)
C10A—C11A		1.441 (3)	C14B	—C17B	1.52	5 (3)
C11A—C12A		1.408 (3)	C14B	—C15B	1.53	4 (4)
C14A—C18A		1.520 (3)	C14B		1.53	5 (4)
C14A—C17A		1.539 (4)	C15B		1.46	3 (4)
C14A—C15A		1.565 (3)	C15B	—H15B	0.98	00
C15A—C16A		1.506 (3)	C16B	—Н16С	0.96	33
C15A—H15A		0.9800	C16B	—H16D	0.96	69
C16A—H16A		0.9700	C17B	—H17D	0.96	00
C16A—H16B		0.9700	C17B	—Н17Е	0.96	00
C17A—H17A		0.9600	C17B	—H17F	0.96	00

C17A—H17B	0.9600	C18B—H18D	0.9600
C17A—H17C	0.9600	C18B—H18E	0.9600
C18A—H18A	0.9600	C18B—H18F	0.9600
C18A—H18B	0.9600	O1WA—H1WA	0.8300
C18A—H18C	0.9600	O1WA—H2WA	0.9169
O1B—C13B	1.366 (3)	O1WB—H1WB	0.8939
O1B—C12B	1.371 (3)	O1WB—H2WB	0.8249
C12A—O1A—C13A	119.90 (17)	C1B—O3B—H3OB	107.7
С1А—ОЗА—НЗОА	106.0	C5B—O4B—H4OB	110.2
С5А—О4А—Н4ОА	108.4	C3B—O5B—C15B	106.26 (19)
C3A—O5A—C15A	106.59 (18)	C16B—O6B—H6OB	109.5
С16А—О6А—Н6ОА	109.5	O3B—C1B—C2B	119.8 (2)
O3A—C1A—C2A	119.9 (2)	O3B—C1B—C11B	118.5 (2)
O3A—C1A—C11A	118.9 (2)	C2B—C1B—C11B	121.7 (2)
C2A—C1A—C11A	121.1 (2)	C3B—C2B—C1B	116.4 (2)
C1A—C2A—C3A	117.0 (2)	C3B—C2B—H2B	121.8
C1A—C2A—H2A	121.5	C1B—C2B—H2B	121.8
СЗА—С2А—Н2А	121.5	O5B—C3B—C2B	122.4 (2)
O5A—C3A—C2A	122.3 (2)	O5B—C3B—C4B	112.1 (2)
O5A—C3A—C4A	113.02 (19)	C2B—C3B—C4B	125.5 (2)
C2A—C3A—C4A	124.7 (2)	C12B—C4B—C3B	116.5 (2)
C12A—C4A—C3A	117.5 (2)	C12B—C4B—C14B	133.2 (2)
C12A—C4A—C14A	133.1 (2)	C3B—C4B—C14B	110.2 (2)
C3A - C4A - C14A	109.32 (19)	04B—C5B—C6B	123.3 (2)
Q4A—C5A—C6A	123 5 (2)	O4B - C5B - C13B	118 1 (2)
O4A - C5A - C13A	118 3 (2)	C6B - C5B - C13B	118.6(2)
C6A - C5A - C13A	118.2 (2)	C5B-C6B-C7B	1204(2)
C5A - C6A - C7A	121 4 (2)	C5B—C6B—H6B	119.8
C5A - C6A - H6A	119.3	C7B—C6B—H6B	119.8
C7A - C6A - H6A	119.3	C8B - C7B - C6B	121.2(2)
C8A - C7A - C6A	120.2 (2)	C8B—C7B—H7B	119.4
C8A - C7A - H7A	119.9	C6B - C7B - H7B	119.1
C6A - C7A - H7A	119.9	C7B - C8B - C9B	119.6 (2)
C7A - C8A - C9A	120 1 (2)	C7B $C8B$ $H8B$	120.2
C7A - C8A - H8A	110.0	CPB = C8B = H8B	120.2
	119.9	$C_{13B} = C_{0B} = C_{8B}$	120.2 110.3 (2)
C8A - C9A - C13A	119.9 119.4(2)	C13B - C9B - C10B	119.3(2)
C8A = C9A = C10A	119.4(2) 121.7(2)	$C^{8}B = C^{0}B = C^{1}0B$	119.1(2) 121.6(2)
$C_{0A} = C_{0A} = C_{10A}$	121.7(2)	$C_{0}D_{0}$	121.0(2)
C13A - C9A - C10A	118.9(2) 122.5(2)	$O_{2B} = C_{10B} = C_{11B}$	122.1(2)
$O_{2A} = C_{10A} = C_{10A}$	122.3(2)	O_{2B} C_{10B} C_{9B} C_{11B} C_{10B} C_{0B}	121.3(2) 116.28(10)
O_{2A} C_{10A} C_{9A}	121.1(2)	C12D = C11D = C1D	110.38 (19)
C12A = C11A = C1A	110.32 (19)	C12B - C11B - C10B	110.2(2)
CI2A—CIIA—CIA	118.9 (2)		120.4(2)
C12A - C11A - C10A	120.0(2)		121.3(2)
CIA—CIIA—CIUA	120.4 (2)	$\bigcup B = \bigcup U B = \bigcup U B$	110.81 (19)
O1A - C12A - C4A	11/.ð (2)	UIB-UI2B-UIIB	121.63 (19)
UIA—UI2A—UIIA	121.5 (2)	$C4B \rightarrow C12B \rightarrow C11B$	121.6 (2)
C4A—C12A—C11A	120.7 (2)	UIB-CI3B-C9B	123.3 (2)
OIA—C13A—C5A	116.4 (2)	O1B—C13B—C5B	115.90 (19)

O1A—C13A—C9A	122.8 (2)	C9B—C13B—C5B	120.8 (2)
C5A—C13A—C9A	120.8 (2)	C4B—C14B—C17B	110.42 (19)
C4A—C14A—C18A	114.4 (2)	C4B—C14B—C15B	99.73 (19)
C4A—C14A—C17A	109.87 (19)	C17B—C14B—C15B	115.0 (2)
C18A—C14A—C17A	109.4 (2)	C4B—C14B—C18B	114.0 (2)
C4A—C14A—C15A	98.47 (18)	C17B—C14B—C18B	108.6 (2)
C18A—C14A—C15A	110.2 (2)	C15B—C14B—C18B	109.1 (2)
C17A—C14A—C15A	114.2 (2)	C16B—C15B—O5B	106.2 (2)
O5A—C15A—C16A	107.8 (2)	C16B—C15B—C14B	120.1 (2)
O5A—C15A—C14A	106.66 (19)	O5B-C15B-C14B	106.9 (2)
C16A—C15A—C14A	120.1 (2)	C16B—C15B—H15B	107.7
O5A—C15A—H15A	107.2	O5B-C15B-H15B	107.7
C16A—C15A—H15A	107.2	C14B—C15B—H15B	107.7
C14A—C15A—H15A	107.2	O6B—C16B—C15B	115.9 (3)
O6A—C16A—C15A	113.4 (2)	O6B—C16B—H16C	108.7
O6A—C16A—H16A	108.9	C15B—C16B—H16C	110.2
C15A—C16A—H16A	108.9	O6B—C16B—H16D	102.5
O6A—C16A—H16B	108.9	C15B—C16B—H16D	110.3
C15A—C16A—H16B	108.9	H16C—C16B—H16D	108.9
H16A—C16A—H16B	107.7	C14B—C17B—H17D	109.5
C14A—C17A—H17A	109.5	C14B—C17B—H17E	109.5
C14A—C17A—H17B	109.5	H17D—C17B—H17E	109.5
H17A—C17A—H17B	109.5	C14B—C17B—H17F	109.5
C14A—C17A—H17C	109.5	H17D—C17B—H17F	109.5
H17A—C17A—H17C	109.5	H17E—C17B—H17F	109.5
H17B—C17A—H17C	109.5	C14B—C18B—H18D	109.5
C14A—C18A—H18A	109.5	C14B—C18B—H18E	109.5
C14A—C18A—H18B	109.5	H18D—C18B—H18E	109.5
H18A—C18A—H18B	109.5	C14B—C18B—H18F	109.5
C14A—C18A—H18C	109.5	H18D—C18B—H18F	109.5
H18A—C18A—H18C	109.5	H18E—C18B—H18F	109.5
H18B—C18A—H18C	109.5	H1WA—O1WA—H2WA	109.3
C13B—O1B—C12B	118.98 (17)	H1WB—O1WB—H2WB	100.6
O3A—C1A—C2A—C3A	178.9 (2)	O3B—C1B—C2B—C3B	-177.6 (2)
C11A—C1A—C2A—C3A	-2.1 (3)	C11B—C1B—C2B—C3B	2.6 (4)
C15A—O5A—C3A—C2A	-168.9 (2)	C15B—O5B—C3B—C2B	-166.8 (3)
C15A—O5A—C3A—C4A	11.1 (3)	C15B—O5B—C3B—C4B	11.9 (3)
C1A—C2A—C3A—O5A	179.4 (2)	C1B—C2B—C3B—O5B	176.9 (2)
C1A—C2A—C3A—C4A	-0.6 (4)	C1B—C2B—C3B—C4B	-1.6 (4)
O5A—C3A—C4A—C12A	-177.4 (2)	O5B-C3B-C4B-C12B	179.9 (2)
C2A—C3A—C4A—C12A	2.6 (4)	C2B—C3B—C4B—C12B	-1.5 (4)
O5A—C3A—C4A—C14A	5.2 (3)	O5B—C3B—C4B—C14B	2.1 (3)
C2A—C3A—C4A—C14A	-174.8 (2)	C2B—C3B—C4B—C14B	-179.2 (2)
O4A—C5A—C6A—C7A	180.0 (2)	O4B—C5B—C6B—C7B	179.1 (2)
C13A—C5A—C6A—C7A	0.9 (4)	C13B—C5B—C6B—C7B	-1.1 (4)
C5A—C6A—C7A—C8A	0.4 (4)	C5B—C6B—C7B—C8B	-0.9 (4)
C6A—C7A—C8A—C9A	-1.1 (4)	C6B—C7B—C8B—C9B	1.7 (4)
C7A—C8A—C9A—C13A	0.6 (4)	C7B—C8B—C9B—C13B	-0.4 (4)
C7A—C8A—C9A—C10A	-178.5 (2)	C7B—C8B—C9B—C10B	179.5 (2)

C8A—C9A—C10A—O2A	-0.3 (4)	C13B—C9B—C10B—O2B	-178.8 (2)
C13A—C9A—C10A—O2A	-179.4 (2)	C8B—C9B—C10B—O2B	1.3 (4)
C8A—C9A—C10A—C11A	179.5 (2)	C13B-C9B-C10B-C11B	1.0 (3)
C13A—C9A—C10A—C11A	0.4 (3)	C8B—C9B—C10B—C11B	-179.0 (2)
O3A—C1A—C11A—C12A	-178.2 (2)	O3B—C1B—C11B—C12B	179.7 (2)
C2A—C1A—C11A—C12A	2.8 (3)	C2B—C1B—C11B—C12B	-0.5 (3)
O3A—C1A—C11A—C10A	1.4 (3)	O3B-C1B-C11B-C10B	0.9 (3)
C2A—C1A—C11A—C10A	-177.6 (2)	C2B-C1B-C11B-C10B	-179.3 (2)
O2A—C10A—C11A—C12A	179.4 (2)	O2B-C10B-C11B-C12B	-178.7 (2)
C9A—C10A—C11A—C12A	-0.4 (3)	C9B-C10B-C11B-C12B	1.5 (3)
O2A—C10A—C11A—C1A	-0.2 (4)	O2B—C10B—C11B—C1B	0.1 (4)
C9A—C10A—C11A—C1A	180.0 (2)	C9B—C10B—C11B—C1B	-179.7 (2)
C13A—O1A—C12A—C4A	-179.2 (2)	C13B—O1B—C12B—C4B	-176.88 (19)
C13A—O1A—C12A—C11A	0.4 (3)	C13B—O1B—C12B—C11B	2.7 (3)
C3A—C4A—C12A—O1A	177.84 (19)	C3B—C4B—C12B—O1B	-176.83 (19)
C14A—C4A—C12A—O1A	-5.5 (4)	C14B—C4B—C12B—O1B	0.3 (4)
C3A—C4A—C12A—C11A	-1.8 (3)	C3B—C4B—C12B—C11B	3.6 (3)
C14A—C4A—C12A—C11A	174.9 (2)	C14B—C4B—C12B—C11B	-179.2 (2)
C1A—C11A—C12A—O1A	179.6 (2)	C1B—C11B—C12B—O1B	177.8 (2)
C10A—C11A—C12A—O1A	0.0 (3)	C10B—C11B—C12B—O1B	-3.4 (3)
C1A—C11A—C12A—C4A	-0.8 (3)	C1B—C11B—C12B—C4B	-2.7(3)
C10A—C11A—C12A—C4A	179.6 (2)	C10B—C11B—C12B—C4B	176.1 (2)
C12A—O1A—C13A—C5A	179.80 (19)	C12B—O1B—C13B—C9B	0.0 (3)
C12A—O1A—C13A—C9A	-0.4 (3)	C12B—O1B—C13B—C5B	179.70 (18)
04A—C5A—C13A—O1A	-0.7 (3)	C8B—C9B—C13B—O1B	178.1 (2)
C6A—C5A—C13A—O1A	178.5 (2)	C10B—C9B—C13B—O1B	-1.8 (3)
Q4A—C5A—C13A—C9A	179.5 (2)	C8B—C9B—C13B—C5B	-1.6(3)
C6A—C5A—C13A—C9A	-1.4 (3)	C10B—C9B—C13B—C5B	178.5 (2)
C8A—C9A—C13A—O1A	-179.2 (2)	O4B—C5B—C13B—O1B	2.4 (3)
C10A—C9A—C13A—O1A	0.0 (3)	C6B—C5B—C13B—O1B	-177.4 (2)
C8A—C9A—C13A—C5A	0.6 (3)	O4B—C5B—C13B—C9B	-177.9 (2)
C10A—C9A—C13A—C5A	179.8 (2)	C6B—C5B—C13B—C9B	2.3 (3)
C12A—C4A—C14A—C18A	48.8 (4)	C12B—C4B—C14B—C17B	-70.3 (3)
C3A—C4A—C14A—C18A	-134.4 (2)	C3B—C4B—C14B—C17B	106.9 (2)
C12A—C4A—C14A—C17A	-74.8 (3)	C12B—C4B—C14B—C15B	168.3 (3)
C3A—C4A—C14A—C17A	102.1 (2)	C3B—C4B—C14B—C15B	-14.4 (3)
C12A—C4A—C14A—C15A	165.6 (3)	C12B—C4B—C14B—C18B	52.2 (4)
C3A—C4A—C14A—C15A	-17.5 (2)	C3B—C4B—C14B—C18B	-130.5 (3)
C3A—O5A—C15A—C16A	-152.6 (2)	C3B	-150.5 (2)
C3A—O5A—C15A—C14A	-22.4 (2)	C3B	-21.1 (3)
C4A—C14A—C15A—O5A	23.6 (2)	C4B—C14B—C15B—C16B	141.8 (2)
C18A—C14A—C15A—O5A	143.6 (2)	C17B—C14B—C15B—C16B	23.8 (3)
C17A—C14A—C15A—O5A	-92.7 (2)	C18B—C14B—C15B—C16B	-98.5 (3)
C4A—C14A—C15A—C16A	146.4 (2)	C4B—C14B—C15B—O5B	20.9 (3)
C18A—C14A—C15A—C16A	-93.5 (3)	C17B—C14B—C15B—O5B	-97.2 (3)
C17A—C14A—C15A—C16A	30.1 (3)	C18B—C14B—C15B—O5B	140.6 (2)
O5A—C15A—C16A—O6A	48.9 (3)	O5B—C15B—C16B—O6B	-73.8 (3)
C14A—C15A—C16A—O6A	-73.3 (3)	C14B—C15B—C16B—O6B	165.0 (3)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
ОЗА—НЗОА…О2А	0.98	1.62	2.530 (3)	152
O4A—H4OA…O1WA	0.92	1.75	2.672 (3)	175
O6A—H6OA…O4B ⁱ	0.82	2.12	2.918 (3)	165
O3B—H3OB···O2B	1.06	1.57	2.529 (3)	148
O4B—H4OB…O1WB	1.02	1.62	2.639 (3)	175
O6B—H6OB···O4A ⁱⁱ	0.82	2.25	3.059 (4)	167
O1WA—H1WA···O3A ⁱⁱⁱ	0.83	2.06	2.889 (3)	173
O1WA—H2WA···O6B	0.92	1.84	2.737 (5)	165
O1WB—H1WB…O6A	0.89	1.86	2.691 (3)	153
O1WB—H2WB···O3B ^{iv}	0.82	2.06	2.868 (3)	164
C16B—H16C…O2B ^v	0.96	2.46	3.389 (3)	163
	1 () +1/2 +1/2 +1 (1/2 () 1/2

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1/2, -*y*+3/2, -*z*+1; (ii) *x*+1/2, -*y*+1/2, -*z*+1; (iii) -*x*+1, *y*-1/2, -*z*+3/2; (iv) -*x*+1, *y*+1/2, -*z*+1/2; (v) -*x*+3/2, -*y*+1, *z*+1/2.

Fig. 1

Fig. 2