
Upregulation of human autophagy-initiation kinase
ULK1 by tumor suppressor p53 contributes to
DNA-damage-induced cell death
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In yeast, activation of ATG1/ATG13 kinase complex initiates autophagy. This mechanism of autophagy initiation is conserved, as
unc-51-like kinase 1 (ULK1) and unc-51-like kinase 2 (ULK2) are two mammalian functional homologues of ATG1 and form similar
complex with mammalian ATG13. Here, we report that both ULK1 and ULK2 are transcriptional targets of tumor suppressor p53.
In response to DNA damage, ULK1 and ULK2 are upregulated by p53. The upregulation of ULK1 (ULK2)/ATG13 complex by p53 is
necessary for the sustained autophagy activity induced by DNA damage. In this context, elevated autophagy contributes to
subsequent cell death. These findings suggest that ULK1 and ULK2 may mediate part of tumor suppression activity in
mammalian cells and contribute to the efficacy of genotoxic chemotherapeutic drugs.
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Autophagy is an intracellular self-digestive process and
plays a critical role in maintaining energy homeostasis.
During autophagy, a double-membrane vesicle, termed
autophagosome, forms around a portion of cytosol and/or
damaged organelles. The autophagosome then fuses with
lysosome, and the sequestered cargos are degraded inside
the acidic compartment to provide cells necessary nutrient
supply.

Autophagy has been extensively studied in yeast Saccharo-
myces cerevisiae and dozens of autophagy-related proteins
(ATGs) have been discovered.1 These ATG proteins can be
classified into several functional groups, one of which is
autophagy-initiating complex composed of ATG1 and ATG13,
as well as ATG17, ATG29 and ATG31 under certain
circumstances.1 ATG1 is a serine/threonine protein kinase.
In yeast, autophagy initiation is triggered by nutrient starvation
or inhibition of TOR (target of rapamycin) kinase, resulting in
dephosphorylation of ATG13, association between ATG13
and ATG1, and subsequent full activation of ATG1’s kinase
activity.2 This process is largely conserved from yeast to
human.3 ATG1 has at least two mammalian functional
homologues named unc-51-like kinase 1 (ULK1)4,5 and
unc-51-like kinase 2 (ULK2),6 both of which form complex
with mammalian ATG13 protein. In mammals, ULK1 and
ULK2 have been shown to be necessary for the proper
autophagy induction and contribute to various developmental,
physiological and pathological processes.7

P53 is a well-known tumor suppressor protein. It functions
as a tumor suppressor partly through transcriptionally
regulating the expression of genes involved in cellular
senescence and apoptosis. It has also been reported to

induce autophagy by inhibiting mammalian TOR (mTOR)
signaling through elevating AMPK-b1, TSC2, PTEN8 and
Sesn1/2,9 all of which are negative regulators of mTOR. In
addition, p53 can also trigger autophagy through activating
the transcription of DRAM, a novel lysosomal protein.10

Autophagy has been implicated in various cell death
phenotypes, yet the true nature of these events remains
elusive, and it can be linked to both death-promoting11,12

and -inhibiting activities.13 Here in this study, we report that
the two human ATG1 homologues, ULK1 and ULK2, are
transcriptional targets of p53. Their upregulation by p53 leads
to sustained autophagy in response to DNA damage and
contributes to subsequent cell death.

Results

Sublethal DNA damage causes sustained increase of
autophagy. DNA topoisomerase inhibitors such as
camptothecin (CPT) and etoposide (Eto) can trigger DNA
damage, resulting in cell cycle arrest, apoptosis and
autophagy.11 In human osteosarcoma U2OS cells,
treatment with low doses of CPT (less than 1 mM) or Eto
(less than 15 mM) only induced cell cycle arrest, but not
apoptosis (Supplementary Figure 1). These sublethal
conditions were then used in the following studies.

Proteins with long half-life are generally degraded in
lysosomes through autophagy. Rate of long-lived protein
degradation (LLPD) can therefore be used to monitor
autophagy activity.14 As shown in Figure 1a, LLPD assay
indicates that both CPT and Eto treatments upregulated
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autophagy in a dose-dependent manner. 3-Methyladenine
(3-MA), an autophagy inhibitor, attenuated the increase of
LLPD rate induced by CPT/Eto (Figure 1b, compare lanes 4, 6
with lane 3, 5, respectively).

Microtubule-associated protein light chain 3B (LC3B, or
LC3) is the mammalian functional homologue of yeast Atg8

protein. Cytoplasmic LC3B (LC3B-I) is translocated to
autophagosomes during autophagy and converted to LC3B-II
by proteolysis and lipidation at its C terminus.15 The
conversion of LC3B-I to -II is a classical marker for autophagy
induction. As shown in Figure 1c, LC3B-II levels were
increased after CPT or Eto treatment.
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Figure 1 Autophagy induction by sub-lethal DNA damage. (a) U2OS cells were treated with different concentrations of camptothecin (CPT, lanes 2 and 3) or etoposide
(Eto, lanes 4 and 5) for 2 days before doing the long-lived protein degradation (LLPD) assay as described in Materials and Methods. Y axis is the LLPD rate after 2 h. (b) U2OS
cells were treated with either 0.5mM CPT (lanes 3 and 4) or 5mM Eto (lanes 5 and 6) for 2 days. On the day of measuring LLPD rate, 5 mM of 3-methyladenine (3-MA) was
used to pretreat cells for 1 h (lanes 2, 4 and 6) before doing the LLPD assay. (c) U2OS cells were treated with either 0.5mM CPT (lane 2) or 5 mM Eto (lane 3) for 2 days. The
cells were collected and lysed to run western blot. The blot were probed with the antibody against unc-51-like kinase 1 (ULK1), p53, p21, T-389 phosphorylated form of p70S6K
(p-p70S6K), p70S6K, AMPK-a1, -b1, -b2, -g1, -g2, LC3B and actin. To measure the ratio of p-p70S6K over p70S6K, the blot was developed using enhanced
chemiluminescence (ECL) reagent and the band intensities were measured using Kodak Image Station 4000R pro. The relative ratio for the control is defined as 1. (d) U2OS
cells were treated with 1 mM rapamycin or 0.5mM CPT for 2, 6, 24, 48 and 72 h, after which LLPD rates were measured for each sample and plotted against treatment time.
(e) U2OS cells were treated with 1 mM CPT for 1 day. The cells were then collected and lysed to do western blot. The blots were probed with the antibodies against p53, ULK1,
ATG13, FIP200, ATG5, ATG7, ATG12, beclin 1 and actin. (f) MCF7 cells were untreated (E, lane 1) or treated with either Hank’s buffered salt solution (HBSS) for 2 h (H,
lane 2), 0.3mM CPT for 1 day (lane 3), 1mM CPT for 1 day (lane 4) and 1 mM rapamycin for 6 h (R, lane 5). The cells were then collected and lysed to do western blot. The blots
were probed with the antibodies against ULK1, p-p70S6K and p70S6K. (g) U2OS cells were transfected with either luciferase control small interfering (si)RNA (lanes 1–3) or
ATG13 siRNA (lanes 4–6) as described in Materials and Methods. After 3 days of siRNA transfection, they were treated with (lanes 2 and 5) or without (lanes 1 and 4) 0.5mM
CPT for 2 days and measured the LLPD rates. HBSS treatments (lanes 3 and 6) were used as controls. (h) The same samples as in (g) were used to do western blot to confirm
the knockdown efficiency of ATG13. These data are presented as meanþS.D. and are representative of at least two independent experiments
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Both the LLPD and the LC3B-II conversion assays confirm
the authenticity of autophagy induced by DNA damage. As the
LLPD rate more quantitatively reflects the flux of autophagy,
we used it as our primary assay in later experiments. In
agreement with previous reports,8,11 expression level of
human ULK1 and AMPK-b1/2 were upregulated after DNA
damage (Figure 1c). AMPK-a1 and -g1 were also upregulated
by DNA damage, whereas AMPK-g2 was not. Activity of
mTOR was inhibited after treatment, as reflected by the
decrease of p70S6K phosphorylation at threonine 389
(Figure 1c), a classical marker for mTOR activity.16 Compared
with Eto treatment, CPT induced a stronger response, an
observation that prompted us to use CPT treatment in the
following studies.

Time-course analysis of the LLPD rate after CPT treatment
was performed and rapamycin treatment was used as the
positive control. CPT treatment resulted in sustained increase
of autophagy activity up to 3 days. In comparison, the
maximum autophagy induced by rapamycin was achieved
during the first few hours after treatment, and the LLPD rate
actually declined back to the basal level after rapamycin
treatment for 2 days (Figure 1d).

Interestingly, only the protein level of ULK1 was increased
after CPT treatment, whereas other core autophagy compo-
nents including ATG13, FIP200, ATG5, ATG7, ATG12 and
beclin 1 (mammalian ATG6) stayed unchanged (Figure 1e).
The increase of ULK1 after DNA damage was also observed
in human breast cancer MCF7 cells (Figure 1f).

As ULK1/ULK2, ATG13 and FIP200 form an autophagy-
initiating kinase complex,17–19 we next tested whether
other component besides ULK1/ULK2 in this complex
contributed to DNA damage-induced autophagy. Consis-
tently, knock down of ATG13 attenuated CPT/Eto-induced
autophagy (Figure 1g, compare lane 2 with lane 5;
Supplementary Figure 2A, compare lane 3 with lane 4).
As reported previously,19 removal of ATG13 resulted in
destabilization of ULK1 as well (Supplementary Figure 3,
lanes 3–6, 8 and 10). These data indicate that ULK1/ATG13
autophagy-initiating complex is involved in the DNA damage
response.

Upregulation of ULK1 and autophagy by DNA damage is
dependent on p53. It has been reported that DNA damage
induces autophagy through p53.10 P53 does so by
transcriptionally elevating AMPK-b1/2, TSC2, PTEN,8

DRAM10 or Sesn1/2.9 To our knowledge, there is no report
showing that p53 can directly regulate any core component
of autophagy machinery (ATG proteins).

DNA damage reagent like Eto has been shown to elevate
ULK1 protein level, although it remains unclear as to whether
it is through p53 or not.11 We noticed that upregulation of
ULK1 by CPT treatment was attenuated by knocking down
p53 in U2OS cells (Figure 2a, compare lane 2 with lane 4, and
lane 6 with lane 8). Consistently, the LLPD induced by DNA
damage was also attenuated (Figure 2b with CPT treatment
and Supplementary Figure 2B with Eto treatment). As a
control, knockdown of La, an autophagy-unrelated protein, did
not affect either ULK1 protein level (Figure 2a) or autophagy
activity (Figure 2b).

Ectopic expression of p53 transcriptionally upregulates
ULK1 and increases autophagy. To show that ULK1 is a
transcriptional target of p53, we generated stable U2OS cell
lines in which p53 could be inducibly expressed upon
addition of tetracycline (Tet) into the culture medium. As
shown in Figures 2c and d, both ULK1 protein level and the
LLPD rate were increased after p53 induction. The LLPD rate
can be attenuated by either 3-MA treatment or ATG13
knockdown (Figure 2d, Supplementary Figure 4), confirming
that p53 regulates autophagy at the step of ULK1/ATG13
kinase complex.

Increase of ULK1 protein level may be due to either
transcriptional upregulation or post-translational modifica-
tions. To differentiate these two possibilities, we measured
the mRNA level of ULK1 with quantitative PCR (Q-PCR). As
shown in Figure 2e, ULK1 mRNA level was increased after
p53 induction or CPT treatment in U2OS cells.

There are five potential ATG1 homologues in human,
among which ULK1 and ULK2 are considered the true
functional homologues of yeast ATG1 kinase.20 Interestingly,
upregulation of ULK2 mRNA level was also observed, but only
after CPT treatment, not after p53 ectopic expression
(Supplementary Figure 5). Therefore, ectopic expression of
p53 is sufficient to upregulate ULK1, but not ULK2.

ULK1 is upregulated at transcription level by p53 after
DNA damage. To further confirm p53 is responsible for the
transcriptional upregulation of ULK1/ULK2 after CPT
treatment, mRNA levels of ULK1/ULK2 were compared in
cells with or without p53. Q-PCR experiments were
performed in either p53-inducible knockdown U2OS stable
cell line or various human colon carcinoma cell lines with
different p53 status, including HCT116, HCT116/p53KO (p53
knockout cells), RKO and RKO-E6 (p53-blunted). For U2OS
cells, knocking down p53 attenuated mRNA increase for both
ULK1 and ULK2 after CPT treatment (Supplementary Figure
6A). In colon carcinoma lines, ULK1 expression level also
increased after CPT treatment and was attenuated in
p53-blunted cells (Supplementary Figure 6B). However, in
these colon cancer lines, ULK2 mRNA level did not change
after CPT treatment, indicating that the regulation of ULK1
and ULK2 may differ in different tissues (Supplementary
Figure 6B). In HCT116 p53 knockout cells, although the
upregulation of ULK1 mRNA level was attenuated compared
with parental cells after CPT treatment, it was still higher
than the non-CPT treatment control group (Supplementary
Figure 6B, comparing lane 3 with lane 4), suggesting the
existence of a p53-independent pathway for upregulating
ULK1 after DNA damage in this colon cancer cell line.

p53-responsive elements in the promoter region of ULK1
and ULK2. To confirm ULK1 and ULK2 are bona fide
transcriptional targets of p53, we identified putative p53
binding sites in the promoter regions of ULK1 (Figure 3a) and
ULK2 (Supplementary Figure 7A) using bioinformatics
methods. To verify the authenticity of these p53 binding
sites, electrophoretic mobility shift assay was performed
using biotinylated oligonucleotides containing these
sequences. Recombinant p53 caused the up-shift of
wild-type (wt) probes (ULK1, Figure 3b, lane 3; ULK2,
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Supplementary Figure 7B, lane 3), but not the mutants (mts)
(ULK1, Figure 3b, lane 2; ULK2, Supplementary Figure 7B,
lane 2). Moreover, excessive non-biotinylated oligonucleo-
tide containing the wt p53 site was able to compete for
binding (ULK1, Figure 3b, lane 4; ULK2, Supplementary
Figure 7B, lane 4), whereas the mt could not (ULK1,
Figure 3b, lane 5; ULK2, Supplementary Figure 7B,
lane 5), confirming the specificity of these up-shifts.

We next performed a luciferase reporter assay to further
verify the transcriptional regulation of p53 at the ULK1 site.
Four copies of the wt or mt form of ULK1-p53 binding site
(p53BS) was cloned into pGL3-promoter vector and
co-transfected into U2OS cells with either wt or mt p53.21 As
shown in Figure 3c, only the combination of wt p53 and wt
ULK1-p53 binding sites (Figure 3c, lane 5) resulted in strong
luciferase activity (over 200-fold increase), but not any other
combinations. As for ULK2, as overexpression of p53 did not
result in ULK2 upregulation, we did not test the activity of
ULK2 p53 binding site with this assay. It is possible that after

DNA damage, some other transcription factors are required to
upregulate ULK2 together with p53.

ULK1 knockdown attenuates p53 ectopic expression-
induced autophagy. We subsequently focused on ULK1 to
study autophagy using gain-of-function and loss-of-function
assays as ULK2 upregulation by p53 remains complex in
different cell lines under different treatment conditions
(Supplementary Figure 5 and 6B). As shown in Figure 4a,
knocking down ULK1 was sufficient to attenuate autophagy
induced by p53 ectopic expression. To eliminate the
possibility of off-target RNAi effect, the specificity of ULK1
siRNA was confirmed with rescue experiments using cDNA
bearing silent mutations at the shRNA targeting site
(Supplementary Figure 8A, compare lane 4 with lane 8).
Total nutrient and serum starvation by switching the culture
medium to Hank’s buffered salt solution was used here as a
positive control for autophagy induction (Figure 4a, lanes 2
and 5). As CPT treatment caused upregulation of both ULK1
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Figure 2 Unc-51-like kinase 1 (ULK1) upregulation after DNA damage is dependent on p53. (a) Three U2OS clones containing tetracycline (Tet)-responsive p53shRNA
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and lysed to do western blot. The blots were probed with antibodies against ULK1, p53 and p21. Actin was used as a loading control. (b) The same cells were treated as in (a)
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levels of ULK1. These data are presented as mean±standard deviation (S.D.) and are representative of at least two independent experiments
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and ULK2 in U2OS cells, it is then difficult to observe
attenuation of autophagy by just knocking down ULK1. As an
indirect evidence, ATG13 knockdown attenuated autophagy
induced by CPT treatment (Figure 1g, compare lane 2
with 5), suggesting a putative involvement of ULK2 and/or
other uncharacterized human ATG1 homologue22 in DNA-
damage-induced autophagy.

Ectopic expression of ULK1 and rapamycin treatment
has additive effect on autophagy. We have shown that
ULK1 is an important transcriptional target of p53 for
autophagy induction. To test whether ectopic expression of
ULK1 alone leads to autophagy, we generated ULK1-
inducible expression stable lines in U2OS cells (Figure 4d).
As shown in Figure 4c, ectopic expression of ULK1 alone did
not result in significant increase of autophagy as tested by
LLPD assay (lanes 3 and 7).

Recent studies have shown that mTOR functions directly
upstream of endogenous ULK1/ATG13 complex to inhibit
their autophagy-initiating activity.17–19 It is plausible that
mTOR blocks the activation of exogenously expressed
ULK1. We tested this hypothesis by adding rapamycin to the
cells in undergoing ULK1 induction. Rapamycin treatment
alone resulted in about 50% increase of LLPD (Figure 4c,
lanes 2 and 6) compared with non-treatment control
(Figure 4c, lanes 1 and 5), whereas ectopic expression of
ULK1 plus rapamycin treatment caused 75% increase of
LLPD (Figure 4c, lanes 4 and 8). Similarly, ULK1 ectopic
expression alone did not have any impact on LC3 processing
(Figure 4e, compare lane 3 with lane 1), whereas addition of

rapamycin plus ectopically expressed ULK1 increased the
ratio of LC3-II/LC3-I conversion from 2 to 3.4 (Figure 4e,
compare lane 4 with lane 1). Decrease in LC3-I is not due to
the translational inhibition effect of rapamycin, as treatment
with rapamycin alone did not have such a dramatic effect
(Figure 4e, lane 2). Taken together, these data suggest that
treatment of rapamycin can remove the inhibition of mTOR on
ULK1, which results in an additive effect on autophagy with
ectopically expressed ULK1.

ATG13 knockdown promotes cell survival after DNA
damage. Long-term cell survival assay was performed in
ATG13 knockdown stable cell line with CPT treatment, as
ATG13 is required for the activation of both ULK1 and ULK2,
and ATG13 knockdown resulted in destabilization of
endogenous ULK1 (Figure 5b and Supplementary Figure
3). As shown in Figures 5a and d, ATG13 knockdown
resulted in more surviving colonies after CPT treatment,
suggesting that autophagy facilitates cell death induced by
DNA damage. Exogenously expressed ATG13 restored
endogenous ULK1 level (Figure 5b, lanes 4 and 6) and
also rescued the LLPD rate induced by CPT treatment
(Figure 5c, compare lane 4 with lane 8/12). For the long-term
cell survival assay, there were fewer survival colonies in the
rescue lines after CPT treatment (Figure 5d, lanes 8 and 12)
compared with the knockdown line (Figure 5d, lane 4).
ATG13 knockdown also promoted cell survival in short-term
treatment (after 3 days of CPT treatment, Supplementary
Figure 9), although the effect is not as strong as in long-term
survival assay.
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Discussion

Here we identified that both ULK1 and ULK2, the two
autophagy-initiating kinases, are bona fide transcriptional
targets of tumor suppressor p53. In response to DNA damage,
p53 elevates the transcription level of ULK1/ULK2 and
initiates sustained autophagy. The autophagy induced in this
scenario leads to increased non-apoptotic cell death.

Relationship between autophagy and cell death is compli-
cated.11,12,23,24 It was reported that antiapoptotic proteins like
Bcl-2 and Bcl-XL12,25 can inhibit autophagy and some

proapoptotic protein like BNIP326,27 can induce autophagic
cell death. On the contrary, autophagy inhibition was also
reported to promote cancer cell death after chemotherapy
(reviewed by Chen and Debnath28). These seemingly
opposite observations could be due to the fact that autophagy
exhibits distinct functions under different settings. For
example, during the initiation of tumorigenesis, cancer cells
rapidly outgrow their blood supply, and portions of cells
encounter ischemia condition. Autophagy helps cancer cells
cope with ischemia stress, making them survive long enough
for angiogenesis and further tumor growth. In this scenario,
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autophagy facilitates tumorigenesis. On the other hand,
autophagy defects have also been related to cancer forma-
tion. For instance, beclin 1 haplo-insufficiency mouse results
in liver cancer.29,30 ATG4c knockout mice are also prone to
cancer formation.31 These could be owing to the fact that
autophagy defects result in chronic necrosis, and necrosis in
turn triggers inflammatory responses and angiogenesis,
finally leading to tumor growth (a situation analogous to
wound-healing response).32 In addition, lack of autophagy
could result in the accumulation of damaged mitochondria and
high-level reactive oxygen species generation and exposure,
a stress condition that favor cancer cell growth, as they mainly
rely on glycolysis for energy generation. Therefore, autophagy
may participate in either inhibition or acceleration of tumor cell
death, but under different circumstances: it may serve as a
tumor suppressor mechanism before cancers form, whereas
it is kidnapped and transformed to maintain tumor survival
before angiogenesis. After tumor cells acquire sufficient blood
supply, autophagy may again be inhibited for the sake of more
rapid tumor growth.

The role of p53 in regulating autophagy is complicated.
Nucleus-localized p53 has been reported to induce autophagy
through upregulating AMPK-b1/2, PTEN, TSC1/2, Sesn1/2 or
DRAM, whereas cytosolic p53 is reported to inhibit auto-
phagy.33 In our system, either p53 induced by DNA damage or
ectopic expression of p53 resulted in the upregulation of
ULK1/ULK2 and autophagy, which can be attenuated by
pretreatment with 3-MA, an autophagy inhibitor. These data
indicate that p53 can directly regulate autophagy via increas-
ing the expression level of important components of auto-
phagy machinery. As shown schematically in Figure 6, p53 is
able to regulate autophagy through many layers at various
steps. By upregulating ULK1/2, p53 facilitates the generation
of more ULK1 (ULK2) kinase complexes with ATG13, FIP200
and other autophagy-initiating components, and primes cells
for autophagy induction. P53 also upregulates AMPK and
Sesn1/2, which inhibits the activity of mTOR kinase, resulting
in the removal of upstream inhibition by mTOR. The
de-inhibition of mTOR further facilitates the autophagy flux,
causing sustained high level of autophagy.
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ULK1 and ULK2 are differently regulated by p53. Ectopic
expression of p53 is sufficient to elevate expression of ULK1,
but not ULK2. Some extra transcription factors may be
necessary to upregulate ULK2 in addition to p53. For
example, p53 has two homologues, p6334,35 and p73,36,37

which can bind to the same p53-responsive elements in
response to DNA damage.38 It is plausible that ULK kinases
are also under the regulation of p63/p73 during DNA damage
response. Moreover, ULK2 upregulation after DNA damage
was only observed in human osteosarcoma U2OS cells, but
not in various human colon cancer cell lines, suggesting that
there may exist tissue-specific regulations for ULK1/ULK2.

DNA damage reagents trigger autophagy in a way different
from rapamycin (inhibiting mTOR) and nutrient starvation.
The primary toxicity of CPT occurs during the S phase,39 so its
toxic effect is cell cycle dependent and mainly occurs after
cells enter the S phase. After 2 days of sublethal CPT
treatment, majority of the cells were damaged and we
observed significant increase of autophagy. This may explain
the deferred effect on autophagy by CPT treatment. As to
rapamycin or nutrient starvation, these conditions are
independent of cell cycle; therefore, the maximum autophagy
effect can be observed in relatively shorter time. Prolonged
treatment with rapamycin did not lead to sustained autophagy
induction. The autophagy rate actually decreased to nearly
basal level after 2 days of rapamycin treatment (only 10%
above basal level). The mTOR activity was still suppressed
with prolonged rapamycin treatment (data not shown). One
explanation for these rapamycin-induced phenotypes could
be that cells are depleted of autophagy-executing proteins
owing to the translational inhibition effects of rapamycin.

It has been reported that 56% of glioblastoma patients
exhibited more than 50% reduction in the expression levels
of both ULK1 and ULK2 (according to the data deposited in
The Cancer Genome Atlas). Downregulation of both ULK1

and ULK2 will surely result in the attenuation of autophagy,
making tumors grow much more uncontrolled. Accordingly,
our experiments show that knocking down ATG13 promoted
cell survival after DNA damage, which suggests that
sustained increase of autophagy leads to cell death. In this
scenario, untamed autophagy induced by DNA-damaging
agents may disrupt cells’ homeostasis, contributing to cell
death. Taken together, treatment of sublethal doses of DNA-
damaging agents (Supplementary Figure 9) should provide us
a good system to study autophagy-mediated non-apoptotic
cell death.

Materials and Methods
Reagents. Opti-MEM I, Lipofectamine 2000 reagent and blasticidin were from
Invitrogen (Carlsbad, CA, USA). Blasticidin was dissolved in H2O at 10 mg/ml.
Tet-system-approved FBS and pPur were from Clontech (Mountain View, CA, USA).
Puromycin and G418 were from Calbiochem (Gibbstown, NJ, USA). Puromycin was
dissolved in H2O at 10 mg/ml and G418 was dissolved in PBS at 500 mg/ml. Tet was
from Sigma (St Louis, MO, USA) and dissolved in 50% ethanol at 10 mg/ml. Cloning
cylinder was from Bellco Glass Inc (Vineland, NJ, USA). ULK1 and p53 antibodies
were from Santa Cruz (Santa Cruz, CA, USA). Autophagy antibody kits and p21
antibody were from Cell Signaling (Beverly, MA, USA). Actin antibody was from
Sigma. Cell Titer-Glo assay reagents and Dual-Glo luciferase assay system were
from Promega (Madison, WI, USA). Rapamycin was from Calbiochem. Wt and mt
p53 plasmid, HCT 116 and HCT 116/p53KO were gifts from Dr. Bert Vogelstein.

Generation of RNAi stable cell lines. The Tet repressor stable cell line
was first generated and cultured in DMEM containing 5mg/ml blasticidin. The 19 bp
of functional siRNA sequences were adapted into pSuperior vector (from
Oligoengine, Seattle, WA, USA) according to the manufacturer’s protocol. The
cassettes of H1 promoter together with the shRNA sequence were cut out and
cloned into a modified pBSK with BamHI and BglII sites flanking both sides. Four
copies of the cassettes were generated using the compatibility of BamHI and BglII
sites as described in ref. 40 and were then cut out and cloned into pPur vector using
BamHI site. The resulting four copies of shRNA cassette-pPur plasmids were
linearized with NdeI and transfected into U2OS-TetR to select stable colonies in
Tet-free medium with 2mg/ml puromycin. Usually 24 colonies were enough to screen for
the stable expression cell lines. The 19-bp shRNA sequences were as follows:
ATG13siRNA1, AGACCATCTTTGTCCGAAA; ATG13siRNA2, GAAGAATGTCCG
CGAGTTT; and ULK1siRNA, GGAGAAAACTTGTAGGTGT.

Long-lived protein degradation assay. The protocol was modified from
Gronostajski et al.’s method.14 On day 0, the cells were seeded in six-well plates at
40 000 cells per well in DMEM containing 65 mM leucine and 1mCi/ml 3H-labeled
leucine. Each condition has three independent wells. On day 3, the cells were
washed three times with normal DMEM and replaced with 2 mM cold leucine in
DMEM. On day 4, the cells were washed again with normal DMEM and replaced
with required medium. After 2 h, 1 ml of medium was taken out from each sample
and added with 112ml of 100% TCA. The samples were then vortexed and
centrifuged at 14 000 r.p.m. for 5 min. A measure of 0.4 ml aliquots of the
supernatant was measured for the content of tritium with a scintillation counter and
the number was converted to the total amounts in the supernatant and was labeled
as A. The cells were washed with PBS once and 10% TCA was then added and
incubated at room temperature for 5 min. Next, the cells were washed with 10%
TCA twice and 2 ml of 0.2 N NaOH (371C) was added and incubated at 371C for
10 min. A measure of 0.4 ml of the lysed sample was used to measure tritium
content using a scintillation counter and the number was converted to total amounts
in the pellet and was labeled as B. The ratio of A/(AþB) was the rate of long-lived
protein degradation rate at 2 h. Every experiment was repeated at least twice.

siRNA transfection. On day 0, one million U2OS cells were seeded onto each
6-cm tissue culture dish. siRNA (600 pmol) was used to transfect the cells with 9 ml
of Lipofectamine 2000 reagent (Invitrogen) at the same time of plating cells. On
day 1, the cells were transfected with the same amount of siRNA again for 4 h. The
cells were then trypsinized and half of them were used to do long-lived protein
degradation assay. The other half were left to grow for 3 more days to test
knockdown efficiency.

TSC1/2

Rheb

mTOR

ATG1 (ULK1/ULK2)

Autophagy

AMPK

Sesn1/2

p53

DRAMEI24

Figure 6 Model: p53 regulates autophagy in multiple nodes
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Quantitative PCR. Total RNA was extracted from five million U2OS cells,
using Trizol reagent from Invitrogen, according to the manufacturer’s instruction.
The first strand of cDNA was generated from 2 mg total RNA using the SuperScript
III Reverse Transcriptase kit from Invitrogen according to the protocol. The forward
and reverse primers for ULK1 were as follows: TCGAGTTCTCCCGCAAGG and
CGTCTGAGACTTGGCGAGGT. The probe for ULK1 was CACCGCGAGAAGCA
CGATTTGGA. The forward and reverse primers for ULK2 were as follows:
TGGGTCCTCCCAACTATCTACAAGT CGAGATGTTGTGTGGCACCAA. The
probe for ULK2 was: TCTGCCAGTACTAGTAGCAAG. The quantitative PCR was
carried out according to the manufacturer’s protocol.

Luciferase reporter assay. Oligonucleotides containing four copies of either
wt or mt ULK1-p53BS were synthesized by Integrated DNA Technology (IDT) DNA
technology and cloned into pGL3-promoter between KpnI and XhoI sites. The
sequence of the wt ULK1-p53BS (four copies) was: AAACATGTCCTTCCTCGGT
GGGCCTAGTAAAAACATGTCCTTCCTCGGTGGGCCTAGTAAAAACATGTCCTT
CCTCGGTGGGCCTAGTAAAAACATGTCCTTCCTCGGTGGGCCTAGTAA; the
sequence of the mt ULK1-p53BS (four copies) was: AAAaATaTCCTTCCTCGGT
GGGCaTAaTAAAAAaATaTCCTTCCTCGGTGGGCaTAaTAAAAAaATaTCCTTCC
TCGGTGGGCaTAaTAAAAAaATaTCCTTCCTCGGTGGGCaTAaTAA (lower case
alphabets represent mutations different from the wt ULK1-p53BS). Transfection of
U2OS cells were performed in 48-well plate using 0.3mg of luciferase reporter
plasmid, 0.1mg of pRL-CMV and 0.2mg of pcDNA3.1 encoding either wt p53 or mt
p53R175H. The Renilla luciferase containing pRL-CMV plasmid was used as a
control for transfection efficiency. Firefly luciferase reporter assay and Renilla
luciferase reporter assays were performed 24 h after transfection using the Dual-Glo
luciferase assay system from Promega. Each condition was performed three times
independently with the error bars representing the standard deviation.

Long-term cell survival assay. On day 0, 500 U2OSATG13shRNA cells
were seeded in 100 mm plates in the absence or presence of 1mg/ml Tet. On day 5, the
cells were treated with 1mg/ml of CPT. On day 6, the cells were washed and replaced
with fresh DMEM with or without Tet. The cells were replaced with fresh media every 3
days thereafter. After 2–3 weeks, cells were washed with PBS once and stained with
0.1% methylene blue for 10 min. The cells were then washed with pure water several
times, air dried and imaged. The colonies were counted in three independent plates for
each condition and the error bars represent the standard deviation.

Electrophoretic mobility shift assay. The binding of recombinant p53 to
the putative p53 binding sites of ULK1 and ULK2 were analyzed by electrophoretic
mobility shift assay according to the manufacturer’s protocol using the LightShift
Chemiluminescent EMSA kit (Catalogue no. 20148) from Pierce. Oligonucleotides
containing two duplicated p53 binding sites were synthesized by IDT with biotin at
50 end. The wt of putative p53 binding site for ULK1 was: AAACATGTCCTTCCTCGG
TGGGCCTAGTAA; and the mt p53 binding site for ULK1 was: AAAaATaTCCT
TCCTCGGTGGGCaTAaTAA; the wt of putative p53 binding site for ULK2 was:
AAGCATGTTTAGACACACATGCAT and the mt p53 binding site for ULK2 was:
AAGaATaTTTAGACACAaATaCAT.

Cell Titer-Glo assay. To knock down ATG13, the Tet-ATG13shRNA-stable
knockdown cells were pretreated with 1 mg/ml Tet for 5 days and the control cells
were not pretreated. On day 0, 100ml of cells from each treatment were plated into
96-well plates at 5000 cells per well in triplicate. On day 1, different concentrations of
CPT were added and the cells were collected after 1 day, 2 days or 3 days of
treatment. To do the CellTiter-Glo assay, the plates were taken out to cool to room
temperature and 25ml of CellTiter-Glo reagents were then added to each well. The
plates were shaken vigorously at room temperature for 10 min and incubated for
another 10 min at rest. The plates were then taken to measure luminescence.
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