
RESEARCH Open Access

Cardiovascular magnetic resonance myocardial
feature tracking detects quantitative wall motion
during dobutamine stress
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Abstract

Background: Dobutamine stress cardiovascular magnetic resonance (DS-CMR) is an established tool to assess
hibernating myocardium and ischemia. Analysis is typically based on visual assessment with considerable operator
dependency. CMR myocardial feature tracking (CMR-FT) is a recently introduced technique for tissue voxel motion
tracking on standard steady-state free precession (SSFP) images to derive circumferential and radial myocardial
mechanics.
We sought to determine the feasibility and reproducibility of CMR-FT for quantitative wall motion assessment
during intermediate dose DS-CMR.

Methods: 10 healthy subjects were studied at 1.5 Tesla. Myocardial strain parameters were derived from SSFP cine
images using dedicated CMR-FT software (Diogenes MRI prototype; Tomtec; Germany). Right ventricular (RV) and
left ventricular (LV) longitudinal strain (EllRV and EllLV) and LV long-axis radial strain (ErrLAX) were derived from a 4-
chamber view at rest. LV short-axis circumferential strain (EccSAX) and ErrSAX; LV ejection fraction (EF) and volumes
were analyzed at rest and during dobutamine stress (10 and 20 μg · kg-1· min-1).

Results: In all volunteers strain parameters could be derived from the SSFP images at rest and stress. EccSAX
values showed significantly increased contraction with DSMR (rest: -24.1 ± 6.7; 10 μg: -32.7 ± 11.4; 20 μg: -39.2
± 15.2; p < 0.05). ErrSAX increased significantly with dobutamine (rest: 19.6 ± 14.6; 10 μg: 31.8 ± 20.9; 20 μg:
42.4 ± 25.5; p < 0.05). In parallel with these changes; EF increased significantly with dobutamine (rest: 56.9 ±
4.4%; 10 μg: 70.7 ± 8.1; 20 μg: 76.8 ± 4.6; p < 0.05). Observer variability was best for LV circumferential strain
(EccSAX ) and worst for RV longitudinal strain (EllRV) as determined by 95% confidence intervals of the
difference.

Conclusions: CMR-FT reliably detects quantitative wall motion and strain derived from SSFP cine imaging that
corresponds to inotropic stimulation. The current implementation may need improvement to reduce observer-
induced variance. Within a given CMR lab; this novel technique holds promise of easy and fast quantification of
wall mechanics and strain.
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Background
Cardiovascular magnetic resonance (CMR) plays an
increasingly important role in the diagnosis and assess-
ment of coronary artery disease (CAD). It has evolved
into a comprehensive clinical tool with the unique cap-
ability of assessing myocardial function; viability and
perfusion in a single examination [1].
Wall motion analysis with CMR has a pivotal role in

clinical practice. It is considered the gold standard for
visualizing left ventricular (LV) endocardial wall motion
at rest; as well as during low and high dose dobutamine
stress to assess myocardial hibernation and ischemia. At
the present time; image analysis is most commonly per-
formed qualitatively. However diagnostic accuracy of
qualitative assessment has been shown to be consider-
ably operator dependant [2].
Deformation assessment of tagged lines within the

myocardium may overcome these limitations however
requires acquisition of additional tagging sequences and
post processing [3]. Recently CMR myocardial feature
tracking (FT); a technique analogous to echocardio-
graphic speckle tracking; has been introduced [4]. CMR-
FT allows tracking of tissue voxel motion of cine-CMR
images with a potential to assess longitudinal; circumfer-
ential and radial myocardial strain as well as velocity;
displacement and torsion independent of additional
sequences. A good agreement of CMR-FT versus myo-
cardial tagging with harmonic phase imaging (HARP) as
a reference standard has been demonstrated [5]. How-
ever it is unclear; whether this approach would allow
the response to dobutamine stress to be quantified [6].
The aim of the current study was to determine the abil-
ity of CMR-FT for quantitative wall motion assessment
at rest and during intermediate dose dobutamine stress
in healthy volunteers.

Methods
Ten healthy volunteers underwent CMR on a 1.5 Tesla
scanner (Intera R 12.6.1.3; Philips Medical Systems;
Best; The Netherlands). The study protocol was
approved by the Institutional Review Board at the Uni-
versity of Nebraska Medical Center. All participants
gave written informed consent.

Cardiovascular magnetic resonance
All CMR measurements were performed in the supine
position using a 5-channel cardiac surface coil. LV
dimensions and function were assessed with an ECG-
gated steady state free-precession cine sequence during
brief periods of breath-holding in the following planes:
ventricular 2-chamber; 4-chamber; and 12 to 14 equidi-
stant short-axis planes (slice thickness 6-8 mm; gap 0-2
mm) completely covering both ventricles. The field of

view was 360 × 480 mm and matrix size 196 × 172.
Dobutamine stress imaging was performed as previously
described [7]. Repeat short-axis stacks were acquired
with 10 and 20 μg · kg-1· min-1 of dobutamine;
respectively.

Ventricular volumes and function
End-diastolic (EDV) and end-systolic volumes (ESV);
stroke volume (SV); and ejection fraction (EF) were
measured as previously described using commercially
available software packages (View Forum; Philips) [8].
Ventricular volumes were adjusted to body surface area.
All parameters were analysed at rest; 10 and 20 μg · kg-
1· min-1 of dobutamine stress.

Feature tracking
CMR-FT analysis of strain was performed using a dedi-
cated software prototype (Diogenes MRI; Tomtec; Ger-
many). The 4-chamber view was used to calculate right
ventricular (RV) and LV longitudinal strain and LV
radial strain (EllRV and EllLV and ErrLAX) at rest. LV
short axis circumferential (EccSAX) and radial strains
(ErrSAX) were derived from a mid-ventricular short-axis
view containing both papillary muscles. The RV upper
septal insertion point of the LV was manually detected
to allow accurate segmentation according to a recog-
nized standard model [9]. Endocardial contours were
manually drawn in all analyzed slices by one skilled
observer (AS; 7 years of experience). EccSAX and ErrSAX
were analysed at rest; 10 and 20 μg · kg-1· min-1 of
dobutamine stress. A second observer (SK; 4 years of
experience) re-analysed the images to assess inter-obser-
ver variability. The mid-ventricular short axis images
analyzed by the second observer were at exactly the
same slice position as for the first observer. The first
observer repeated the measurements after a period of 4
weeks to assess intra-observer variability. Figure 1 shows
a representative example of the tracking of LV and RV
in the respective views.

Comparison with natural radial strain
Natural radial strain values were obtained as an exter-
nal reference standard and compared to the respective
CMR-FT ErrSAX values [10]. In brief end-diastolic and
end-systolic wall-thickness (EDWT and ESWT) were
quantified in identical segments as analysed for ErrSAX
using commercially available software (Philips View
Forum; The Netherlands) [11]. Natural radial strain
values were calculated according to the following equa-
tion: loge (ESWT/EDWT) as previously validated [10].
95% confidence intervalls of the difference and p-
values were calculated to compare the 2 techniques
[11].
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Statistics
We have applied a paired t-test followed by a Bonferroni-
Holm correction as a multiple test procedure to compare
measurements at rest and with dobutamine stress after
proving a normal distribution of the sample. Intra- and
inter-observer variability analysis were performed using

the method proposed by Bland and Altman [12]. A p-
value of <0.05 was considered statistically significant. All
data analysis was performed with PASW statistics for
Mac 18.0.0 (SPSS Inc.; Chicago; Illinois; USA).

Results
The image quality was sufficient to perform strain analy-
sis in all segments for all subjects. Gender was equally
distributed and LV and RV volumes were within normal
limits [13]. Participant demographics are shown in table
1. There were no side effects to dobutamine exposure.
There was significant (p < 0.05) increase of heart rate;
mean blood pressure and cardiac output between rest
and both levels of dobutamine as well as between 10
and 20 μg · kg-1· min-1 of dobutamine

Strain parameters at rest
Results at rest are displayed in table 1.

Dobutamine stress cardiovascular magnetic resonance
Changes in EccSAX and ErrSAX were significant between
rest and both levels of dobutamine as well as between
10 and 20 μg · kg-1· min-1 of dobutamine (table 2; table
3; figure 2). In parallel with these changes LV-EF
increased significantly with 10 and 20 μg · kg-1· min-1 of
dobutamine (table 2; figure 2).

Intra- and inter-observer variability
All parameters were reproducible on an intra- and
inter-observer level. Bland Altman plots are displayed

Figure 1 Tracking in Short-Axis and Long-Axis Orientation. The figure shows a representative example of the tracking in Short-Axis and
Long-Axis Orientation of the left ventricle (LV) and the right ventricle (RV).

Table 1 Subject Characteristics

Demographics “Normal” Healthy Volunteers

Study population N = 10

Gender Male 50%, Female 50%

Age (y) 40.6 (23.9-51.8)

RV-EDV (ml/m2) 76.6 ± 14.3

RV-ESV(ml/m2) 32.1 ± 8.6

RV-CI (l/min/m2) 3.0 ± 0.6

RV-EF (%) 58.5 ± 4.1

EllRV -19.7 ± 14.1

LV-EDV (ml/m2) 76.9 ± 12.5

LV-ESV (ml/m2) 33.4 ± 7.5

LV-CI (l/min/m2) 3.0 ± 0.6

LV-EF (%) 56.9 ± 4.4

EllLV -15.9 ± 10.5

ErrLAX 15.3 ± 10.1

ErrSAX 19.6 ± 14.6

EccSAX -24.1 ± 6.7

Continuous variable are expressed as mean ± standard deviation, age is
expressed as median with range. RV: right ventricle, LV left ventricle, EDV:
enddiastolic volume, ESV: endsystolic volume, EllRV = right ventricular longitudinal
strain, EllLV = left ventricular longitudinal strain, ErrLAX = left ventricular long-axis
radial strain, ErrSAX = left ventricular short-axis radial strain, EccSAX = left
ventricular short-axis circumferential strain, EF = ejection fraction
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in figure 3 and table 4 shows the 95% confidence
intervals of the difference between the repeated mea-
surements. Observer variability at rest was best for
EccSAX and worst for EllRV as determined by 95% con-
fidence intervals of the difference. Observer variability
did not significantly increase with dobutamine stress
(table 5).

Comparison with natural radial strain
There was reasonable agreement between mean ErrSAX
and natural radial strain as demonstrated in figure 4.

Discussion
The current study includes a unique population of
healthy volunteers studied at rest and with DS-CMR
and demonstrates several important findings.
Firstly; CMR-FT can quantify wall motion changes

between rest and dobutamine stress. Secondly; we noted
considerable intra- and inter-observer variability for all
parameters; which was most pronounced for RV longi-
tudinal strain and smallest for LV circumferential strain.
Thirdly; normal values of CMR-FT cover a large range
with considerable overlap between rest and stress

Table 2 The hemodynamic response and the response in strain parameters to 10 and 20 μg · kg-1· min-1 of
dobutamine

Parameter Level of Dobutamine (μg/kg-1/min-1) Significance: Paired t-test

Rest 10 20 Rest-10 Rest-20 10-20

Heart Rate (bpm) 68.6 ± 11.9 87.1 ± 15.5 115.7 ± 11.1 <0.05 <0.05 <0.05

Mean BP (mmHg) 91.5 ± 10.2 98.6 ± 10.4 102.9 ± 10.7 <0.05 <0.05 <0.05

LV-CI (l/min/m2) 3.0 ± 0.6 4.8 ± 0.8 5.7 ± 0.8 <0.05 <0.05 <0.05

RV-CI (l/min/m2) 3.0 ± 0.6 4.7 ± 0.8 5.8 ± 4.0 <0.05 <0.05 <0.05

LV-EDV (ml/m2) 76.9 ± 12.5 75.0 ± 12.5 64.5 ± 11.5 0.25 <0.05 <0.05

LV-ESV (ml/m2) 33.4 ± 7.5 22.1 ± 7.3 15.2 ± 5.0 <0.05 <0.05 <0.05

LV-SV (ml/m2) 43.5 ± 6.5 52.9 ± 10.6 49.3 ± 8.0 <0.05 <0.05 0.06

LV-EF (%) 56.9 ± 4.4 70.7 ± 8.1 76.8 ± 4.6 <0.05 <0.05 <0.05

ErrSAX 19.6 ± 14.6 31.8 ± 20.9 42.4 ± 25.5 <0.05 <0.05 <0.05

EccSAX -24.1 ± 6.7 -32.7 ± 11.4 -39.2 ± 15.2 <0.05 <0.05 <0.05

The table shows the hemodynamic response and the response in strain parameters to 10 and 20 μg · kg-1· min-1 of dobutamine. Volumetric values were indexed
for body surface area and expressed as mean ± standard deviation. Paired t-test was used to determine the significance of change from one level of dobutamine
to next (p < 0.05). LV = left ventricle SV = stroke volume ESV = end-systolic volume EDV = end-diastolic volume, EF = ventricular ejection fraction, ErrSAX = left
ventricular short-axis radial strain; EccSAX = left ventricular short-axis circumferential strain

Table 3 The response in strain parameters to 10 and 20 μg · kg-1· min-1 of dobutamine on a segmental basis

Parameter Level of Dobutamine (μg/kg-1/min-1) Significance: Paired t-test

Rest 10 20 Rest-10 Rest-20 10-20

ErrSAX Average 19.6 ± 14.6 31.8 ± 20.9 42.4 ± 25.5 <0.05 <0.05 <0.05

ErrSAX Segment 7 27.3 ± 16 33.1 ± 20 50.2 ± 29 0.4 <0.05 0.1

ErrSAX Segment 8 13 ± 9.5 22.6 ± 11.5 28.2 ± 15.2 <0.05 <0.05 0.2

ErrSAX Segment 9 11.1 ± 9.9 17.6 ± 13.4 22 ± 17 0.08 <0.05 0.3

ErrSAX Segment 10 16.8 ± 12 31.7 ± 20.3 37.2 ± 19.2 <0.05 <0.05 0.22

ErrSAX Segment 11 21.6 ± 15.9 42.7 ± 20 55.8 ± 19.1 <0.05 <0.05 <0.05

ErrSAX Segment 12 27.7 ± 16.1 43.4 ± 26.6 60.7 ± 28.1 0.1 <0.05 0.18

EccSAX Average -24.1 ± 6.7 -32.7 ± 11.4 -39.2 ± 15.2 <0.05 <0.05 <0.05

EccSAX Segment 7 -21.7 ± 6.9 -24.2 ± 6.3 -28.9 ± 16 0.29 0.2 0.2

EccSAX Segment 8 -20.2 ± 8.2 -25.9 ± 12.4 -33.9 ± 18 0.06 <0.05 0.09

EccSAX Segment 9 -22.8 ± 6.9 -35.7 ± 9 -42.1 ± 9.8 <0.05 <0.05 0.1

EccSAX Segment 10 -26.7 ± 5.5 -36.6 ± 8.8 -38.8 ± 16.3 0.09 0.06 0.55

EccSAX Segment 11 -29.1 ± 4.7 -38.1 ± 13.2 -47 ± 9.5 <0.05 <0.05 0.09

EccSAX Segment 12 -23.8 ± 4.3 -35.9 ± 10.9 -44.2 ± 14.9 0.09 <0.05 0.06

The table shows the response in strain parameters to 10 and 20 μg · kg-1· min-1 of dobutamine on a segmental basis derived from mid-ventricular short-axis view
containing both papillary muscles. Values are expressed as mean ± standard deviation. Paired t-test was used to determine the significance of change from one
level of dobutamine to the next one (p < 0.05). ErrSAX = left ventricular short-axis radial strain; EccSAX = left ventricular short-axis circumferential strain
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between different subjects (Figure 2) and closely corre-
late with hemodynamic changes secondary to changed
LV function.
In essence; our data demonstrate that CMR-FT strain

parameters can be derived from routine SFFP cine
sequences at varying levels of DS-CMR. The current
reference standard for quantitative wall motion assess-
ment with CMR is myocardial tagging [11,14,15]. Myo-
cardial tagging based strain assessment has been
demonstrated to improve diagnostic accuracy of DS-
CMR in patients with suspected CAD as well as in
patients with myocardial hibernation [16]. Adding quan-
titative analysis to DS-CMR in CAD may not only
increase diagnostic accuracy as compared to visual analy-
sis for the detection of ischemia during high-dose dobu-
tamine stress [17] but may also detect quantitative
changes in myocardial strain already detectable at lower
stress levels; thereby increasing feasibility of the test [18].

There is evidence that CMR-FT may also be of clinical
utility. Hor et al have recently shown that CMR-FT pro-
vides similar results compared to HARP myocardial tag-
ging in a patient population with Duchenne muscular
dystrophy [5]. Maret et al demonstrated that CMR-FT
can be used in CAD patients to accurately detect strain
in the radial and longitudinal direction correlating with
the presence of myocardial scarring [4]. CMR-FT is also
useful for the assessment of myocardial viability [19].
Detection of quantitative contractile reserve in patients
with myocardial hibernation using low dose dobutamine
has the potential to predict functional recovery after
revascularisation with higher accuracy in the future [20].
In this context; CMR-FT may serve as an additional tool
alongside conventional visual analysis; thus facilitating
the detection of subtle wall motion abnormalities and
the identification of contractile reserve; particularly for
the less experienced observer.

Figure 2 Circumferential and radial strain in respect to changes of left ventricular ejection fraction. The figure shows changes in
circumferential and radial strain in respect to changes of left ventricular ejection fraction (EF) at rest and with dobutamine stress (10 and 20 μg/
kg-1/min-1). Values expressed as mean with standard deviation. LV = left ventricle, EF = ejection fraction.

Figure 3 Bland Altman Plots for intra- and inter-observer variability. Bland Altman Plots for intra- and inter-observer variability obtained for
all strain parameters at rest on a segmental basis
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The importance of the intra- and interobserver varia-
bility documented in the current study needs to be
taken into consideration. This has also been reported by
echocardiography based speckle tracking studies and our
results are similar [21]. The parameter with highest
variability at rest in the current study was longitudinal
strain of the RV indicating that the analysis of the thin-
walled RV with CMR-FT is not yet adequately accurate.
This might also be explained by difficulties in endocar-
dial tracking due to difficulty in accurately following the
tricuspid valve annulus motion with the CMR-FT soft-
ware; and RV trabeculations that also lead to greater
variability in RV volumetric assessment [22]. The most
robust parameter in our study was circumferential strain
of the LV; which might be clinically valuable. CMR- FT
algorithm allows reliable and easy border tracking; the
frame-to-frame displacement of features tracked is
equivalent to evaluating the local velocity (ratio between
displacement and time interval); allowing automatic eva-
luation of tissue motion during the cardiac cycle. The
tracking results from this algorithm may be more reli-
able due to the inherently high image quality with CMR.
However echocardiographic speckle tracking has better
temporal resolution than CMR-FT. In addition our

Table 4 Intra- and inter-observer variability of different
strain parameters

Parameter Ventricle Variability Mean CI (95%) p-value

EccSAX LV Intra-observer 24.1 22.3-25.8 0.06

22.7 20.8-24.6

Inter-observer 24.1 22.3-25.8 0.61

24.6 22.6-26.6

ErrSAX LV Intra-observer 19.6 15.8-23.4 0.86

19.9 16.5-23.2

Inter-observer 19.6 15.8-23.4 0.06

25.4 22.3-28.4

ErrLAX LV Intra-observer 15.3 12.7-18 1

15.3 13-17.7

Inter-observer 15.3 12.7-18 0.32

16.6 14.4-18.7

EllLV LV Intra-observer 15.9 13.2-18.6 0.57

15.2 12.4-18.1

Inter-observer 15.9 13.2-18.6 0.82

16.2 13.2-19.1

EllRV RV Intra-observer 19.6 16-23.3 0.13

16.8 13.4-20.1

Inter-observer 19.6 16-23.3 0.32

21.4 17.8-25

The table shows intra- and inter-observer variability of different strain
parameters. 95% Confidence Intervalls of the difference and p-values are
given to accurately determine individual variabilities [12]. EccSAX = left
ventricular short-axis circumferential strain, ErrSAX = left ventricular short-axis
radial strain, ErrLAX = left ventricular long-axis radial strain, EllLV = left ventricular
longitudinal strain, EllRV = right ventricular longitudinal strain, LV = left ventricle,
RV = right ventricle.

Table 5 Intra- and inter-observer variability of
circumferential and radial strain parameters of the LV at
rest and with dobutamine stress

Parameter Ventricle Variability Mean CI (95%) p-value

EccSAX LV Intra-observer 24.1 22.3-25.8 0.06

22.7 20.8-24.6

Inter-observer 24.1 22.3-25.8 0.61

24.6 22.6-26.6

EccSAX10 LV Intra-observer 32.7 29.8-35.8 0.09

31.1 28.3-34.9

Inter-observer 32.7 29.8-35.8 0.66

33.4 29.9-37

EccSAX20 LV Intra-observer 39.2 35.2-43.1 0.25

41 37.9-43.9

Inter-observer 39.2 35.2-43.1 0.17

41.2 37.8-44.6

ErrSAX LV Intra-observer 19.6 15.8-23.4 0.86

19.9 16.5-23.2

Inter-observer 19.6 15.8-23.4 0.06

25.4 22.3-28.4

ErrSAX10 LV Intra-observer 31.8 26.9-37.9 0.2

34.9 29.9-39.8

Inter-observer 31.8 26.9-37.9 0.14

35.5 30.7-40.3

ErrSAX20 LV Intra-observer 42.4 35.8-48.9 0.31

44.9 36.2-49.1

Inter-observer 42.4 35.8-48.9 0.59

43.5 38.4-48.5

The table shows intra- and inter-observer variability of circumferential and
radial strain parameters of the LV derived from a short-axis view at rest and
with dobutamine stress (10 and 20 μg · kg-1· min-1). 95% Confidence Intervalls
of the difference and p-values are given to accurately determine individual
variabilities [12]. EccSAX = left ventricular short-axis circumferential strain, ErrSAX
= left ventricular short-axis radial strain,

Figure 4 Bland Altman Plot showing the relationship between
ErrSAX and natural radial strain. Bland Altman Plot showing the
relationship between ErrSAX (Mean 19.6; 15.8-23.4 95% confidence
interval) and natural radial strain (Mean 24; 21.7-26.4 95%
confidence interval). ErrSAX = left ventricular short-axis radial strain
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collective consisted of good breath holders and as a con-
sequence we obtained good image quality at an inter-
mediate stress level. It is therefore not surprising that
observer-induced variance did not significantly increase
with stress. Whether potentially degraded image quality
at higher stress levels in patients who are not able to
hold their breath would substantially obscure CMR-FT
results needs to be prospectively assessed. Interestingly
results in radial strain from matching segments from
the short-axis and long-axis orientation were not equal.
Whether this could be explained by more extensive
through-plane motion in the short-axis orientation or
increased susceptibility of the 4-chamber view to the
breath-holding position of the diaphragm needs to be
investigated in healthy volunteers and in patients with
scarred areas and segments with wall motion abnormal-
ities. In particular future studies need to investigate
whether DS-CMR accuracy could be improved with
CMR-FT information that is available with any DS-
CMR stress study. There is evidence to suggest that
these quantitative parameters have prognostic implica-
tions. Stanton and colleagues demonstrated that auto-
mated echocardiography speckle-tracking derived global
EllLV is a superior predictor of outcome compared to
either EF or wall motion score index; and suggested that
EllLV may even become the optimal method to assess
global left ventricular systolic function [23]. As CMR-FT
is a relatively new method such evidence is not yet
available and future studies need to investigate whether
CMR-FT could also provide such assessment.

Limitations
The sample size of the current study was relatively
small. Future studies will need to reassess these para-
meters in a larger cohort of volunteers and patients.
Global Ell; which has been previously shown to be an
important; prognostic echocardiographic parameter was
only assessed at rest. This was due to time constraints
as a whole stack of short axis images had been acquired
at each stage of dobutamine for volumetry. Also we did
not perform any echocardiographic measurements to
compare with CMR-FT data; which needs to be
addressed in future studies. Finally the current work
aimed to determine the feasibility of CMR-FT during
dobutamine stress in a collective of healthy volunteers.
Future research needs to prospectively validate this
novel technique in pathologies such as coronary artery
disease; valvular disease or congenital disorders.

Conclusions
CMR-FT allows derivation of strain mechanics from
SSFP cine images at rest and during dobutamine stress
CMR corresponding to global hemodynamic changes.
The current analysis algorithm requires improvement to

reduce observer-induced variance; which at present is
comparable to data reported from 2D strain by echocar-
diography. Within a given CMR lab; this novel CMR-FT
technique holds promise for easy and fast quantification
of wall mechanics and strain.

Abbreviations
AMI: acute myocardial infarction; CMR: cardiovascular magnetic resonance;
DS-CMR: dobutamine stress cardiovascular magnetic resonance; EccSAX: left
ventricular short-axis circumferential strain; EDV: enddiastolic volume; EF:
ejection fraction; EllLV: left ventricular longitudinal strain; EllRV: right
ventricular longitudinal strain; EDWT: end-diastolic wall thickness; ESWT: end-
systolic wall-thickness; ErrLAX: left ventricular long-axis radial strain; ErrSAX: left
ventricular short-axis radial strain; ESV: endsystolic volume; FT: myocardial
feature tracking; LV: left ventricle; RV: right ventricle; SV: stroke volume.

Acknowledgements
AS receives grant support from the British Heart Foundation (BHF) (RE/08/
003 and FS/10/029/28253) and the Biomedical Research Centre (BRC-CTF
196). SK receives grant support from the American College of Cardiology
Foundation; the Edna Ittner Pediatric Foundation; and the Children’s Hospital
and Medical Center Foundation.

Author details
1King’s College London British Heart Foundation (BHF) Centre of Excellence;
National Institute of Health Research (NIHR) Biomedical Research Centre at
Guy’s and St. Thomas’ NHS Foundation Trust; Wellcome Trust and
Engineering and Physical Sciences Research Council (EPSRC) Medical
Engineering Centre; Division of Imaging Sciences and Biomedical
Engineering; The Rayne Institute, St. Thomas’ Hospital, London, UK. 2Joint
Division of Pediatric Cardiology, University of Nebraska/Creighton University,
Children’s Hospital and Medical Center, Omaha, USA. 3Evelina Children’s
Hospital, Department of Paediatric Cardiology, Guy’s and St. Thomas’ NHS
Foundation Trust, London, UK. 4Department of Radiology, Charite,
Universitätsmedizin, Berlin, Germany. 5Medizinische Klinik III, Kardiologie und
Kreislauferkrankungen, Eberhard-Karls-Universitt Tbingen, Tbingen, Germany.

Authors’ contributions
AS and SK designed the study protocol; analyzed the data and drafted the
manuscript. AP; PG and DAD performed the CMR studies and helped to
draft the manuscript. VP and MRM participated in the study design and
helped to draft the manuscript. BB participated in the study design and
helped with the statistical analysis. PB and EN designed the study protocol
and drafted the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 6 May 2011 Accepted: 12 October 2011
Published: 12 October 2011

References
1. Morton G, Schuster A, Perera D, Nagel E: Cardiac magnetic resonance

imaging to guide complex revascularization in stable coronary artery
disease. European heart journal 2010, 31:2209-2215.

2. Paetsch I, Jahnke C, Ferrari VA, Rademakers FE, Pellikka PA, Hundley WG,
Poldermans D, Bax JJ, Wegscheider K, Fleck E, Nagel E: Determination of
interobserver variability for identifying inducible left ventricular wall
motion abnormalities during dobutamine stress magnetic resonance
imaging. Eur Heart J 2006, 27:1459-1464.

3. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP: Human heart:
tagging with MR imaging–a method for noninvasive assessment of
myocardial motion. Radiology 1988, 169:59-63.

4. Maret E, Todt T, Brudin L, Nylander E, Swahn E, Ohlsson JL, Engvall JE:
Functional measurements based on feature tracking of cine magnetic
resonance images identify left ventricular segments with myocardial
scar. Cardiovasc Ultrasound 2009, 7:53.

Schuster et al. Journal of Cardiovascular Magnetic Resonance 2011, 13:58
http://www.jcmr-online.com/content/13/1/58

Page 7 of 8

http://www.ncbi.nlm.nih.gov/pubmed/20705696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20705696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20705696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16613929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16613929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16613929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16613929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3420283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3420283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3420283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19917130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19917130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19917130?dopt=Abstract


5. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J,
Klimeczek P, Al-Khalidi HR, Chung ES, et al: Comparison of magnetic
resonance feature tracking for strain calculation with harmonic phase
imaging analysis. JACC Cardiovasc Imaging 2010, 3:144-151.

6. Schuster A, Nagel E: Toward Full Quantification of Wall Motion with MRI.
curr cardiovasc imaging rep 2011, 85-86.

7. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A,
Dreysse S, Fleck E: Noninvasive diagnosis of ischemia-induced wall
motion abnormalities with the use of high-dose dobutamine stress MRI:
comparison with dobutamine stress echocardiography. Circulation 1999,
99:763-770.

8. Thiele H, Paetsch I, Schnackenburg B, Bornstedt A, Grebe O, Wellnhofer E,
Schuler G, Fleck E, Nagel E: Improved accuracy of quantitative assessment
of left ventricular volume and ejection fraction by geometric models
with steady-state free precession. Journal of cardiovascular magnetic
resonance: official journal of the Society for Cardiovascular Magnetic
Resonance 2002, 4:327-339.

9. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK,
Pennell DJ, Rumberger JA, Ryan T, Verani MS, Imaging AHAWGoMSaRfC:
Standardized myocardial segmentation and nomenclature for
tomographic imaging of the heart: a statement for healthcare
professionals from the Cardiac Imaging Committee of the Council on
Clinical Cardiology of the American Heart Association. Circulation 2002,
105:539-542.

10. Mirsky I, Parmley WW: Assessment of passive elastic stiffness for isolated
heart muscle and the intact heart. Circulation Research 1973, 33:233-243.

11. Attili AK, Schuster A, Nagel E, Reiber JHC, van der Geest RJ: Quantification
in cardiac MRI: advances in image acquisition and processing. The
international journal of cardiovascular imaging 2010, 26(Suppl 1):27-40.

12. Bland JM, Altman DG: Statistical methods for assessing agreement
between two methods of clinical measurement. Lancet 1986, 1:307-310.

13. Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S: Normal
human left and right ventricular and left atrial dimensions using steady
state free precession magnetic resonance imaging. Journal of
cardiovascular magnetic resonance: official journal of the Society for
Cardiovascular Magnetic Resonance 2005, 7:775-782.

14. Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JAC: Myocardial tissue
tagging with cardiovascular magnetic resonance. Journal of cardiovascular
magnetic resonance: official journal of the Society for Cardiovascular Magnetic
Resonance 2009, 11:55.

15. Ibrahim E-SH: Myocardial tagging by Cardiovascular Magnetic Resonance:
evolution of techniques–pulse sequences, analysis algorithms, and
applications. Journal of cardiovascular magnetic resonance: official journal of
the Society for Cardiovascular Magnetic Resonance 2011, 13:36.

16. Nagel E, Schuster A: Shortening without contraction: new insights into
hibernating myocardium. JACC Cardiovasc Imaging 2010, 3:731-733.

17. Kuijpers D, Ho KY, van Dijkman PR, Vliegenthart R, Oudkerk M: Dobutamine
cardiovascular magnetic resonance for the detection of myocardial
ischemia with the use of myocardial tagging. Circulation 2003,
107:1592-1597.

18. Korosoglou G, Lehrke S, Wochele A, Hoerig B, Lossnitzer D, Steen H,
Giannitsis E, Osman NF, Katus HA: Strain-encoded CMR for the detection
of inducible ischemia during intermediate stress. JACC Cardiovasc
Imaging 2010, 3:361-371.

19. Schuster A, Paul M, Bettencourt N, Morton G, Chiribiri A, Ishida M,
Hussain S, Jogiya R, Kutty S, Bigalke B, et al: Cardiovascular magnetic
resonance myocardial feature tracking for quantitative viability
assessment in ischemic cardiomyopathy. International Journal of
Cardiology 2011, [E-pub ahead of print], doi:10.1016/j.ijcard.2011.10.137.

20. Bree D, Wollmuth JR, Cupps BP, Krock MD, Howells A, Rogers J, Moazami N,
Pasque MK: Low-dose dobutamine tissue-tagged magnetic resonance
imaging with 3-dimensional strain analysis allows assessment of
myocardial viability in patients with ischemic cardiomyopathy. Circulation
2006, 114:I33-36.

21. Bansal M, Jeffriess L, Leano R, Mundy J, Marwick TH: Assessment of
myocardial viability at dobutamine echocardiography by deformation
analysis using tissue velocity and speckle-tracking. JACC Cardiovasc
Imaging 2010, 3:121-131.

22. Beerbaum P, Barth P, Kropf S, Sarikouch S, Kelter-Kloepping A, Franke D,
Gutberlet M, Kuehne T: Cardiac function by MRI in congenital heart

disease: impact of consensus training on interinstitutional variance. J
Magn Reson Imaging 2009, 30:956-966.

23. Stanton T, Leano R, Marwick TH: Prediction of all-cause mortality from
global longitudinal speckle strain: comparison with ejection fraction and
wall motion scoring. Circ Cardiovasc Imaging 2009, 2:356-364.

doi:10.1186/1532-429X-13-58
Cite this article as: Schuster et al.: Cardiovascular magnetic resonance
myocardial feature tracking detects quantitative wall motion during
dobutamine stress. Journal of Cardiovascular Magnetic Resonance 2011
13:58.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Schuster et al. Journal of Cardiovascular Magnetic Resonance 2011, 13:58
http://www.jcmr-online.com/content/13/1/58

Page 8 of 8

http://www.ncbi.nlm.nih.gov/pubmed/20159640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20159640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20159640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9989961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9989961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9989961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11815441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11815441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11815441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11815441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4269516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4269516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20058082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20058082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2868172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2868172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20633851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20633851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12668491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12668491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12668491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20394897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20394897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16820595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16820595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16820595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20159637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20159637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20159637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19856409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19856409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19808623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19808623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19808623?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cardiovascular magnetic resonance
	Ventricular volumes and function
	Feature tracking
	Comparison with natural radial strain
	Statistics

	Results
	Strain parameters at rest
	Dobutamine stress cardiovascular magnetic resonance
	Intra- and inter-observer variability
	Comparison with natural radial strain

	Discussion
	Limitations

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


