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Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and 
neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. 
The intracellular functions of CgA include the initiation and regulation of dense-core 
granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein 
is co-stored and co-released with secreted hormones. The extracellular functions of 
CgA include the generation of bioactive peptides, such as pancreastatin (PST), vaso-
statin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) 
hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic 
insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual 
CgA-derived peptides may regulate different physiological functions. Indeed, additional 
studies have revealed that the pro-inflammatory PST influences insulin sensitivity and 
glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will 
focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and 
insulin-resistant models, and their potential use as therapeutic targets.
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inTRODUCTiOn

The human chromogranin A (gene, CHGA; protein, CgA) gene encodes a 439-amino-acid mature 
protein of approximately 48–52 kDa with a coiled-coil structure (1–6). Initially detected in chromaf-
fin granules of the adrenal medulla, this evolutionarily conserved protein is ubiquitously distributed 
in secretory vesicles of endocrine, neuroendocrine, and neuronal cells. CgA plays a pivotal role in the 
initiation and regulation of dense-core secretory granule biogenesis and hormone sequestration at 
the trans-Golgi network in neuroendocrine cells (4, 7–9). Increased levels of CgA have been identi-
fied in the blood of patients suffering from carcinoids or other neuroendocrine tumors (10–14), heart 
failure, renal failure, hypertension, rheumatoid arthritis, and inflammatory bowel disease (15–23), 
indicating an important role of CgA to influence human health and disease (24). Structurally, CgA 
has 8–10 dibasic sites and is proteolytically cleaved by prohormone convertases (25–27), cathepsin 
L (28), plasmin (29, 30), and kallikrein (31), generating biologically active peptides including the 
dysglycemic peptide pancreastatin (PST) (CgA250–301) (32, 33); WE14 (hCgA324–337) which acts as 
the antigen for highly diabetogenic CD4+ T cell clones (34–38); the vasodilating, antiadrenergic, 
and antiangiogenic peptide vasostatin 1 (CgA1–76) (39–43); the antiadrenergic, antihypertensive, 
antibacterial, proangiogenic, and antiobesigenic peptide catestatin (CST) (CgA352–372) (44–56); and 
the proadrenergic peptide serpinin (CgA402–439) (57, 58). Several of these CgA-derived peptides 
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FiGURe 1 | (A) Schematic depiction of the domains of the chromogranin A (CgA) protein. Relative locations of vasostatin (VS1), pancreastatin (PST), WE14, 
catestatin (CST), and serpinin domains in CgA have been illustrated along with the description of their basic functional properties. (B) PST homology in mammals. 
Clustal-W program of MacVector (version 9.0) was used for PST domain alignments across 26 mammalian species. PST amino acid domains were shown on the 
left and percentage homology as compared to human sequence (100%) was shown on the right. The following gene accession numbers were used for this 
analysis: human (J03483), chimpanzee (XM_510135), western lowland gorilla (XM_004055595), northern white-cheeked gibbon (XM_003260903), olive baboon 
(NC_018155.1), rhesus monkey (XM_001092629), crab-eating macaque (AB_169793), Bolivian squirrel monkey (XM_003939842), white-tufted-ear marmoset 
(XM_002754214), small-eared galago (XM_003786997), Norway rat (XM_346781), house mouse (NM_007693), Chinese hamster (NW_003614307), dog 
(XM_003639191), cat (XM_003987967), Pacific walrus (XM_004394490), horse (NM_001081814), southern white rhinoceros (XM_004434217), cow (NM_181005), 
pig (XM_001925714), sheep (XM_004017959), killer whale (XM_004262352), bottle-nosed dolphin (XM_004315772), Florida manatee (XM_004376681), 
nine-banded armadillo (XM_004475519), and Tasmanian devil (XM_003756143). -, gaps in the alignment.
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have opposing counter-regulatory effects. For example, cardiac 
contractility in rodents is controlled by vasostatin (hCgA1–76) and 
CST (hCgA352–372), which are antiadrenergic (51, 59) as well as 
serpinin (hCgA402–439), which is proadrenergic (58) (Figure 1A). 
Likewise, angiogenesis is controlled by vasostatin acting in an 
antiangiogenic manner (43, 56) and CST acting as in a proan-
giogenic manner (50, 56). These CgA-derived peptides, with 
diverse functions, emphasize the importance of the CgA pro-
protein in the regulation of physiological functions (Figure 1A). 
Accordingly, Chga whole-body knockout mice present a complex 
set of metabolic phenotypes and are obese, hyperadrenergic, and 
hypertensive (48, 60–63). Chga-KO mice have become an impor-
tant model to study the roles of individual CgA-derived peptides 

through analysis of phenotypes after supplementation (48, 55, 60, 
61, 64). Here, we will focus on how two of these peptides, PST 
and CST, act as important modulators of insulin sensitivity and 
glucose metabolism.

PST inHiBiTS GLUCOSe-STiMULATeD 
inSULin SeCReTiOn (GSiS)

PST, a C-terminally glycine-amidated 49-mer peptide, was iden-
tified in 1986 as a potent inhibitor of glucose-stimulated insulin 
secretion (GSIS) (32). Two molecular forms were detected in 
human plasma: a 52 amino acid form (CgA250–301) and a larger 
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FiGURe 2 | (A) Schematic representation of the role of pancreastatin (PST) in the regulation of insulin secretion from pancreatic beta cells. PST-induced nitric oxide 
(NO) production, following a guanylate cyclase–cGMP–NOS pathway, inhibits glucose-stimulated insulin secretion (GSIS). (B) Schematic diagram showing PST 
inhibition of gluconeogenesis in hepatocytes. PST initiates a GTP-binding protein linked signaling cascade leading to activation of diacylglycerol (DAG) and 
calcium-dependent conventional PKC (cPKC), which attenuates IRS–PI3K–PDK1–AKT signaling pathway. In addition, stimulation of the cGMP–NOS pathway also 
assaults this signaling pathway by nitrosylation of IRS. Thus, PST-mediated suppression of this pathway allows forkhead box protein O1 (FoxO1) and sterol 
regulatory element-binding transcription factor 1c (SREBP1c) to stimulate expression of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) (also 
known as Pepck) and glucose-6-phosphatase (G6pc) (also known as G6Pase), and thus prevent insulin action. Under control conditions, insulin would have 
activated this signaling pathway, causing phosphorylation of FoxO1 (promoting its exclusion from the nucleus) and preventing processing of SREBP1 proprotein to 
SREBP1c with consequent inhibition of expression of gluconeogenic genes and gluconeogenesis. (C) Catestatin (CST) stimulation of lipolysis in adipocytes. 
Activation of α2-adrenergic receptor (α2-AR) inhibits β1/2-AR-induced lipolysis in a dominant way in obesity. CST enhances lipolysis by inhibiting α2-AR, which 
promotes β1/2-AR action and the consequent downstream signaling. Hormone-sensitive lipase (HSL) is an intracellular, neutral lipase that has broad substrate 
specificity, catalyzing the hydrolysis of triacylglycerol (TAG), diacylglycerol (DAG), monoacylglycerol (MAG), and cholesteryl esters. Its activity against DAG is about 
10- and 5-fold higher than its activity against TAG and MAG, respectively, whereas its activity against cholesteryl esters is about twice its activity toward TAG. The 
hydrolytic activity of HSL against TAG and cholesteryl esters, but not against DAG, is stimulated by phosphorylation mediated primarily by PKA (84). AC, adenylyl 
cyclase; FFA, free fatty acids; MGL, monoacylglycerol lipase; PKA, protein kinase A. (D) Summary of PST and CST actions.
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form with a molecular weight of 15–21 kDa (65). Although the 
PST sequence is well conserved in mammals, showing 41.5% 
homology between humans and the Tasmanian devil, no homol-
ogy could be detected in submammalian vertebrates (Figure 1B) 
(66–68). PST inhibits GSIS in vivo in mice, rats, dogs, and pigs, 
as well as in  vitro from isolated rat islets (69). In the perfused 
rat pancreas, PST inhibits unstimulated and stimulated insulin 
secretion (70–73). In PST-deficient Chga-KO mice, GSIS 

was ~1.7-fold higher at 7 and 15  min after administration of 
glucose, confirming the inhibitory role of PST in GSIS (60). 
In addition, PST inhibits glucagon secretion induced by low 
glucose (74) but had no effect on somatostatin secretion (75).  
In addition to inhibition of GSIS, PST inhibits insulin-stimulated 
glucose transport in primary rat and mouse adipocytes (60, 
76, 77), differentiated 3T3-L1 adipocytes (68, 78), and primary 
hepatocytes (60). PST also increases nitric oxide (NO) levels in 
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HTC rat hepatoma cells (79), L6 myotubes (68), and in livers of 
Chga-KO mice (60), showing that PST inhibits insulin action. 
Since NO inhibits GSIS (80) and PST increases NO production 
(60, 68, 79), we believe that PST likely inhibits GSIS through 
activation of the NO pathway (Figure 2A).

PST ReGULATeS HePATiC GLUCOSe 
MeTABOLiSM

PST treatment inhibits insulin-stimulated glycogen synthesis 
in primary hepatocytes (81) and activates glycogenolysis in 
the rat liver, implicating a direct anti-insulin effect on liver 
metabolism (82, 83). PST-deficient Chga-KO mice show 
greater suppression of hepatic glucose production (HGP) com-
pared to wild-type (WT) mice during insulin clamp studies 
(60). Decreased glucose production in Chga-KO mice was also 
supported by decreased glucose production during pyruvate 
tolerance tests and decreased mRNA transcript levels of the 
gluconeogenic genes, such as the phosphoenolpyruvate car-
boxykinase 1 and glucose-6-phosphatase (G6pc), compared to 
WT mice that were restored to WT levels after supplementation 
of PST to Chga-KO mice (60). PST activates gluconeogenesis 
by decreasing phosphorylation of insulin receptor substrate 2 
at tyrosine residues through activation of conventional PKC 
and increases production of NO with subsequent attenuated 
phosphorylation of protein kinase B (AKT), forkhead box 
protein O1, and reduced matured sterol regulatory element-
binding transcription factor 1c (SREBP1c) (Figure  2B) (60). 
These findings are consistent with the anti-insulin action  
of PST.

PST inFLUenCeS LiPiD MeTABOLiSM

In addition to glucose metabolism, PST also modulates lipid 
metabolism. PST decreases insulin-stimulated synthesis of lipids 
in rat adipocytes (85), which is consistent with the PST-dependent 
increased expression of hepatic lipogenic genes in Chga-KO mice, 
including Srebp1c, peroxisome proliferator-activated receptor-
gamma, and glycerol-3-phosphate acyltransferase (Gpat) (60). 
PST also stimulates release of glycerol and free fatty acids from 
rat adipocytes, which is completely inhibited by insulin (85). In 
humans, PST augments free fatty acid efflux into the circulation, 
resulting in an overall spillover of ~4.5-fold, which is consistent 
with the reported lipolytic action of PST (85), confirming the 
anti-insulin effects of PST.

PST PROMOTeS inFLAMMATiOn AnD 
inSULin ReSiSTAnCe

Since PST inhibits the action of insulin on glucose and lipid 
metabolism, one would expect improved insulin sensitivity in 
PST-deficient mice. Indeed, Chga-KO mice show improved 
hepatic insulin sensitivity as assessed by insulin tolerance tests 
(ITTs) showing increased hypoglycemia, and insulin clamp stud-
ies showing increased suppression of HGP. Improved hepatic 

insulin sensitivity was abolished when Chga-KO mice were 
treated with PST, implicating a positive correlation between PST 
and the development of insulin resistance (60). Similarly, type 2 
diabetes mellitus (T2DM) patients show a substantial increase in 
plasma PST levels (~3.7-fold) (77). Gestational diabetic subjects 
and patients with non-insulin-dependent diabetes mellitus also 
show increased plasma PST levels (86, 87).

Feeding mice a high fat diet (HFD) creates obesity, leading 
to hyperinsulinemia and inflammation (88–92). ITT studies 
revealed that HFD-fed Chga-KO mice displayed improved 
insulin sensitivity compared to WT mice, demonstrating the 
importance of PST in the development of IR (64). This was rein-
forced by hyperinsulinemic–euglycemic clamp studies, where 
Chga-KO-HFD mice displayed increased glucose infusion rates, 
higher insulin-stimulated glucose disposal rates (IS-GDRs), and 
suppressed HGP. Recent studies implicate dissociation between 
obesity and insulin resistance as long as the inflammation is 
suppressed (64). The presence of supraphysiological levels of 
PST can reconnect obesity with insulin resistance by introduc-
ing inflammation. In the absence of PST, animals are insulin 
sensitive despite obesity. This is reminiscent of rosiglitazone-
treated WT-HFD mice, which are insulin sensitive but obese 
(93–95).

The hallmarks of insulin resistance in HFD mice are obe-
sity, hyperinsulinemia, and increased inflammation (88–92). 
Suppression of inflammation in HFD mice can improve insulin 
sensitivity (93–95). Therefore, the resistance to diet-induced 
insulin resistance in Chga-KO mice may reflect less inflamma-
tion in Chga-KO mice even after HFD feeding. PST treatment 
caused increased expression of the pro-inflammatory genes 
interleukin 1-beta, tumor necrosis factor alpha (Tnfa), inter-
leukin 6 (IL6), chemokine C–C motif ligand 2 (Ccl2), and nitric 
oxide synthase 2a. Whereas expression of anti-inflammatory 
genes such as arginase 1 (Arg1), interleukin 10 (IL10), and 
C-type lectin domain family member 10a (Clec10a) in adipose 
tissues was higher in Chga-KO-HFD mice than WT controls, 
PST treatment significantly reduced the expression of Arg1 and 
IL10. Consistent with gene expression data, the plasma levels 
of IL12p70, Ifng, and chemokine C–C motif ligand 3-like 1 
(Ccl3l1), IL6, and chemokine C–X–C motif ligand 1 (Cxcl1) 
showed significantly decreased levels in Chga-KO-HFD versus 
WT-HFD plasma. PST treatment of Chga-KO-HFD mice raised 
plasma levels of IL12p70 and Ccl2, but had no effect on other 
proteins measured. PST also exerted direct effects on peritoneal 
macrophage cultures obtained from WT and Chga-KO mice. 
CgA-deficient peritoneal macrophages demonstrated attenuated 
response to LPS in the expression of pro-inflammatory cytokines 
as well as decreased chemotaxis in response to cytokines (64). 
PST treatment increased the expression of Tnfa and Ccl2 in 
Chga-KO macrophages (64). Thus, it appears that PST acts as 
a pro-inflammatory peptide but its loss is likely only partially 
responsible for the improved inflammation seen in Chga-KO 
mice (Figure 2D).

Although clamp studies with Chga-KO mice fed normal 
chow diet (NCD) indicated decreased glucose disposal, mean-
ing muscle insulin resistance (60), surprisingly, reduced muscle 
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insulin sensitivity in lean Chga-KO mice was reversed by HFD 
feeding as demonstrated by improved IS-GDR in muscle of 
HFD-fed Chga-KO mice. Can feeding a high amount of lipids to 
CgA-deficient mice regenerate cells and repair muscle dysfunc-
tion? What kind of lipid could that be? These unorthodox results 
on the regulation of muscle insulin sensitivity by a CgA-derived 
protein need further investigation. In this regard, one provoca-
tive speculation may deserve some investigation. HFD-induced 
ceramide and sphingolipids were implicated in the mobilization 
and differentiation of bone marrow-derived stem/progenitor 
cells, which are involved in the repair of tissues in ischemic heart 
disease (96). More specifically, sphingosine-1-phosphate (S1P) 
acts as a trophic factor for skeletal muscle cell regeneration (97). 
Sphingolipids are important structural components of cell mem-
branes and are derived from ceramide. Ceramide production is 
increased in obesity and after HFD feeding (98, 99). Ceramide 
can be deacylated to sphingosine, which is then phosphorylated 
by sphingosine kinases to yield S1P. Since this improvement in 
muscle insulin sensitivity by HFD happened in Chga-KO mice, not 
in WT-DIO mice, absence of CgA protein or peptides triggered 
this unusual phenomenon. Therefore, it will be very important to 
investigate the roles of these dietary lipids in muscle repair and 
the functional relationship of these lipids with the CgA protein 
and CgA-derived peptides. Alternatively, it is also possible that 
the absence of CgA protein and its derivatives stimulated release 
of some myokines in response to dietary lipids, which would 
otherwise remain suppressed in WT-DIO mice. This response to 
HFD in Chga-KO mice could be muscle specific because muscle 
expresses CgA (100), and liver and adipose tissue do not (3, 46). 
Effects of CgA deficiency on liver and adipose tissue may be more 
systemic in nature, a part of which is carried out by CgA-deficient 
macrophages (64).

PST PROMOTeS enDOPLASMiC 
ReTiCULUM (eR) STReSS BY 
ATTenUATinG eXPReSSiOn OF Grp78

The accumulation of unfolded and misfolded proteins in the ER 
lumen, termed ER stress, leads to activation of signaling pathways 
to counteract defects in protein folding (101–106). This unfolded 
protein response (UPR) increases repair activities, reduces global 
protein synthesis, and activates ER-associated protein degrada-
tion. However, if ER stress becomes chronic and UPR cannot 
cope with the repair demands, protein-folding homeostasis 
breaks down, leading to activation of apoptotic pathways (103, 
107, 108). Thus, ER stress and the UPR play important roles in 
the pathogenesis of multiple human metabolic diseases includ-
ing insulin resistance, diabetes, obesity, non-alcoholic fatty liver 
disease, and atherosclerosis (109, 110). The immunoglobulin 
binding protein (BiP) [also called glucose-regulated protein 78 
(Grp78)], is an ER chaperone that is required for protein folding. 
BiP/Grp78 is a peptide-stimulated ATPase of the Hsp70 family 
that prevents protein aggregation by stabilizing intermediates in 
the protein-folding process.

Using ligand affinity chromatography with biotinylated 
human PST (hCgA273–301-amide) as “bait” on a murine liver 

homogenate (as “prey”), we found that PST interacts in a 
pH-dependent fashion with Grp78 (78). Whereas NCD-fed 
Chga-KO livers show increased expression of Grp78, PST caused 
dose-dependent inhibition of Grp78 ATPase activity and inhib-
ited increased expression of Grp78 during UPR activation (by 
tunicamycin) in hepatocytes (78). In hepatocytes, PST increased 
expression of G6pc. These results indicate that a major hepatic 
target of PST is the adaptive UPR chaperone Grp78 and that 
ATPase activity associated with Grp78 is involved in the sup-
pression of glucose production by attenuating G6pc expression 
(78). Grp78s ATPase activity is required to suppress expression 
of G6pc; ER stress and suppression of glucose utilization appear 
to augment Grp78 expression (111). Although it is not clear how 
circulating PST might contact the ER luminal protein Grp78 
to modulate ER and insulin action, it has been reported that 
Grp78 translocates to the cell surface under some pathological 
conditions (112, 113).

MODULATiOn OF MeTABOLiSM BY 
nATURALLY OCCURRinG vARiAnTS 
OF PST

Single-nucleotide polymorphism analysis of PST, both in vivo 
and in  vitro, showed greater inhibition of insulin-stimulated 
glucose uptake by Gly297Ser variants followed by the 
Glu287Arg variants compared to WT-PST (77). The in  vitro 
studies also revealed increased expression of gluconeogenic 
genes by PST variants as compared to WT-PST, with compa-
rable potencies by Glu287Arg and Gly297Ser variants (68). 
The Gly297Ser subjects displayed markedly elevated plasma 
glucose and cholesterol compared to the Gly297Gly individu-
als. Interestingly, whereas the variants of PST in the C-terminal 
half of the molecule at 287 (Glu287Arg) and at 297 (Gly297Ser) 
enhance anti-insulin effects and elevate plasma glucose by 
inhibition of glucose uptake and stimulation of gluconeogenic 
effects, experimental deletion of the three N-terminal amino 
acids Pro–Glu–Gly on human WT-PST demonstrated the 
opposite effects by reducing plasma glucose level and hepatic 
gluconeogenesis in a rodent model of obesity (64). Therefore, 
finding variants in the N-terminal end of PST among the 
human population may lead to discovery of an allele which 
would confer protection against insulin resistance and can be 
used as an insulin-sensitizing peptide such as a N-terminal 
variant of PST (lacking three amino acids from the N-terminal 
end) called PSTv1 (64).

ReGULATiOn OF inSULin SenSiTiviTY 
BY THe PST AnTAGOniST PSTv1

The elevated levels of plasma PST observed in T2DM patients 
(77) implied that preventing PST action might serve a therapeutic 
purpose of controlling insulin resistance and diabetes. To dem-
onstrate a direct in vivo role of PST in the regulation of insulin 
sensitivity, WT-HFD mice were injected with the PST variant, 
PSTv1, which is a competitive antagonist of native PST. PSTv1 
lacks the first three N-terminal residues of native PST and blocks 
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PST-mediated inhibition of glucose uptake and leptin secretion 
in 3T3-L1 preadipocytes. As predicted, chronic PSTv1 treatment 
lowered fasting plasma glucose levels in WT-HFD mice and 
improved glucose tolerance and insulin sensitivity (64). These 
results suggested that in WT-HFD mice, where the level of PST 
is high, PSTv1 administration competes with the native PST and 
phenocopies Chga-KO mice. This demonstrates the potential of 
PST as a therapeutic target for treatment of insulin resistance and 
diabetes.

CST DeCReASeS HYPeRTenSiOn AnD 
OBeSiTY

Hypertensive patients show elevated levels of plasma CgA but 
decreased plasma CST (114, 115). Low plasma CST predicts 
augmented pressor responses to environmental stimuli (114). In 
rats, CST reduces blood pressure responses to activation of sym-
pathetic outflow by electrical stimulation (116). This vasodepres-
sor effect of CST was mediated by massive release of histamine 
with subsequent vasodilation by histamine-induced production 
of NO. CST is a potent endogenous inhibitor of catecholamine 
secretion (44–47, 117–120) and catecholamine-mediated hyper-
tension (48, 121). Chga-KO mice showed hyperadrenergic and 
hypertensive phenotypes that were normalized by intraperitoneal 
administration of CST (48). CSTs hypotensive effect was also 
documented in a polygenic model of high blood pressure mice 
(121). Other studies showed that CST also provides cardioprotec-
tion by inhibiting the opening of the mitochondrial permeability 
transition pore and stimulating the reperfusion injury salvage 
kinase pathway (122–127).

Catestatin-deficient Chga-KO mice are obese on an NCD 
(48). Chronic CST administration to Chga-KO mice reduced 
epididymal fat pad size to WT level (~25% reduction with 
respect to body weight of Chga-KO mice) (55). CST decreased 
plasma triglyceride levels in Chga-KO mice by increasing 
lipolysis (increased plasma glycerol and non-esterified fatty 
acids) through inhibition of α2-adrenergic receptor (α2-AR) 
(Figure 2C) (55). While inhibition of α2-AR by CST indirectly 
facilitates β-AR mediated lipolysis, CST can also have direct 
effect on ATGL (adipose triacylglycerol lipase) and HSL (hor-
mone sensitive lipase) via activation of AMPK (128) as it has 
been demonstrated that activation of AMPK promote lipolysis 
in adipose tissue through ATGL and HSL. CST-treated Chga-KO 
mice show increased palmitate oxidation but decreased incorpo-
ration into lipids, which indicates that CST inhibits expansion 
of adipose tissue but promotes fatty acid uptake in the liver 
for oxidation. CST induced expression of several fatty acid 
oxidation genes including carnitine palmitoyltransferase 1a, 
peroxisome proliferator-activated receptor-a, acyl-CoA oxidase 
1, and uncoupling protein 2, supporting increased fatty acid 
oxidation in the liver. In addition, CST increased expression 
of the fatty acid transporter gene Cd36 and the lipogenic gene 
glycerol-3-phosphate acyltransferase 4 (Gpat4), indicating that 
CST stimulates fatty acid incorporation into triglycerides but 
not de novo lipogenesis. Overall, CST promoted lipid flux from 

the adipose tissue toward the liver for beta-oxidation (55). These 
obesity-reducing effects of CST are mediated by inhibition of 
α2-AR signaling and enhancement of leptin receptor signaling. 
In contrast to the negative metabolic effects of PST, CST has 
beneficial effects that could be utilized in therapeutic treatment 
of hypertension and obesity.

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

Chromogranin A is one of the few protein molecules, which can 
be processed into both negative and positive regulators such 
as PST and CST for fine-tuning and maintaining metabolic 
homeostasis. With respect to the pathway of lipid disposal, 
studies on the direct effect of CST, through activation of AMPK, 
on lipolytic activities of ATGL and HSL may generate exciting 
information. Although the metabolic effects of PST and CST 
have been well investigated, how they transmit signals into 
cells remains to be determined. Are there specific receptors for 
these peptides? Alternatively, can they opportunistically bind to 
some non-specific BiPs on the cell surface and get endocytosed? 
In some cells such as neutrophils, CST has been shown to be 
permeable (53). With respect to PST, its binding to Grp78 may 
occur opportunistically on the cell surface when Grp78, usually 
a luminal protein, translocates to the cell surface, which occurs 
under some pathological conditions (112, 113). Whether such 
interaction happens or not should be a matter of future inves-
tigation. If that happens, Grp78 would be able to carry PST to 
the luminal compartment and initiate a reaction with a small 
G-protein binding molecule leading to a cascade described in 
Figure 2B. In addition, although PST has been established as an 
anti-insulin peptide, the mechanisms underlying PST-dependent 
regulation of insulin secretion are poorly understood. Other 
CgA-derived pro-insulin peptides may also exist and need to be 
further investigated. These efforts, as well as generation of PST 
antagonists, may lead to development of powerful therapeutic 
treatments for insulin resistance and diabetes. Beyond PST and 
CST, additional studies should shed light on the role of other 
CgA-derived peptides in metabolism, with implications for 
treatment of metabolic disease.
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