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Purpose: High heterogeneity of the response of cardiorespiratory fitness (CRF) to

standardized exercise doses has been reported in different training programs, but the

associated mechanisms are not widely known. This study investigated whether changes

in the metabolic profile and pathways in blood serum and the skeletal muscle are

associated with the inter-individual variability of CRF responses to 8-wk of continuous

endurance training (ET) or high-intensity interval training (HIIT).

Methods: Eighty men, young and sedentary, were randomized into three groups, of

which 70 completed 8 wk of intervention (> 90% of sessions): ET, HIIT, or control.

Blood and vastus lateralis muscle tissue samples, as well as the measurement of CRF

[maximal power output (MPO)] were obtained before and after the intervention. Blood

serum and skeletal muscle samples were analyzed by 600 MHz 1H-NMR spectroscopy

(metabolomics). Associations between the pretraining to post-training changes in the

metabolic profile and MPO gains were explored via three analytical approaches: (1)

correlation between pretraining to post-training changes in metabolites’ concentration

levels and MPO gains; (2) significant differences between low and high MPO responders;

and (3) metabolite contribution to significantly altered pathways related to MPO gains.

After, metabolites within these three levels of evidencewere analyzed bymultiple stepwise

linear regression. The significance level was set at 1%.

Results: The metabolomics profile panel yielded 43 serum and 70 muscle metabolites.

From the metabolites within the three levels of evidence (15 serum and 4 muscle

metabolites for ET; 5 serum and 1muscle metabolites for HIIT), the variance in MPO gains

was explained: 77.4% by the intervention effects, 6.9, 2.3, 3.2, and 2.2% by changes

in skeletal muscle pyruvate and valine, serum glutamine and creatine phosphate,

respectively, in ET; and 80.9% by the intervention effects; 7.2, 2.2, and 1.2% by changes

in skeletal muscle glycolate, serum creatine and creatine phosphate, respectively, in
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HIIT. The most changed and impacted pathways by these metabolites were: arginine

and proline metabolism, glycine, serine and threonine metabolism, and glyoxylate and

dicarboxylate metabolism for both ET and HIIT programs; and additional alanine,

aspartate and glutamate metabolism, arginine biosynthesis, glycolysis/gluconeogenesis,

and pyruvate metabolism for ET.

Conclusion: These results suggest that regulating the metabolism of amino acids

and carbohydrates may be a potential mechanism for understanding the inter-individual

variability of CRF in responses to ET and HIIT programs.

Keywords: trainability, cardiorespiratory fitness, metabolomics, metabolites, responsiveness

INTRODUCTION

Physical inactivity and low levels of cardiorespiratory fitness
(CRF) are currently considered a threat to public health.
As a consequence, international agencies recommend that
adults accumulate ≥150 min·wk−1 of moderate-intensity
cardiorespiratory exercise training, ≥75 min·wk−1 of vigorous-
intensity cardiorespiratory exercise training, or a combination
of moderate- and vigorous-intensity exercise to achieve a
total energy expenditure of ≥500–1000 MET·wk−1, in an
attempt to minimize the occurrence of non-communicable
diseases (Garber et al., 2011; Riebe et al., 2018). However,
several previous investigations demonstrate a wide variability
of individual responses to standardized doses of exercise.
There is a substantial number of individuals who do not show
clinically important increases in CRF after completing traditional
continuous endurance training (ET) or alternative high-intensity
interval training (HIIT) programs conducted under current
recommendations for physical activity practices (Bouchard and
Rankinen, 2001; Ross et al., 2015a; Williams et al., 2019, 2021;
Bonafiglia et al., 2021).

In the past decade, with the technological advance of the
comprehensive methods that make up the omic sciences (Tanaka
et al., 2016; Kelly et al., 2020) new opportunities to investigate
the integrative mechanisms of the variability of individual CRF
responses to exercise have emerged (Sanford et al., 2020). So far,
there are few genomic (Bouchard et al., 2011; Sarzynski et al.,
2017; Williams et al., 2021), proteomic (Robbins et al., 2021),
transcriptomic (Timmons et al., 2010; Keller et al., 2011; Dias
et al., 2015) and metabolomic (Lewis et al., 2010; Huffman et al.,
2014; Castro A., et al., 2019) studies involving the use of omic
methods to study the variability of responses to exercise.

Particularly, metabolomics is a powerful metabolic
phenotyping technology that allows to identify and quantify
metabolites that reflect the biochemical activity underlying
different physiological conditions and complex phenotypes
(Rinschen et al., 2019; Wishart, 2019a), such as CRF (Castro
A., et al., 2019; Castro et al., 2021). In this sense, nuclear
magnetic resonance (NMR) spectroscopy is known for its
reproducibility, nondestructive nature and minimal sample
preparation (Wishart, 2019b), being one of the most widely
employed metabolomics platforms for detecting and quantifying
metabolites and their metabolic pathways related to exercise,

physical activity, and health (Duft et al., 2017b; Kelly et al.,
2020). Based on a metabolomic approach, Huffman et al.
identified, in different training programs, that the improvement
in CRF is associated with changes in the concentrations
of acetyl-heavy chains and intermediates of the citric acid
cycle in the skeletal muscle, accompanied by changes in the
expression of genes related to the pathways of production
of these metabolites (Huffman et al., 2014). More recently,
Castro et al. showed a panel of baseline serum and skeletal
muscle metabolites associated with inter-individual response
variability of CRF (TIMES Study), suggesting involvement of
amino acid metabolism and translation processes in ET and
HIIT programs, and carbohydrate metabolism in ET program
(Castro A., et al., 2019).

Although the study of the variability of responses to training
has received some attention in the last 4 decades (Bouchard et al.,
1980, 2011; Lortie et al., 1984; Bouchard and Rankinen, 2001;
Kohrt et al., 2004; Ross et al., 2015a, 2019; Castro A., et al., 2019;
Williams et al., 2019; Bonafiglia et al., 2021; Meyler et al., 2021),
as we know, the metabolic determinants of inter-individual
variability of CRF in response to different aerobic training
programs, especially under an integrated view of the adaptations
in blood serum and skeletal muscle tissue, remain largely
unknown. Understanding through which metabolic pathways
individuals improve CRF in different aerobic training programs
may be useful to guide new studies on the mechanisms related
to the variability of CRF responses and pave the way for novel
CRF-enhancing strategies in exercise training routine. Therefore,
the aim of this study was to investigate whether changes in the
metabolic profile and metabolic pathways of blood serum and
skeletal muscle tissue are associated with the inter-individual
variability of CRF responses to ET and HIIT programs.

METHODS

The sample, study design, and exercise training protocol of the
TraInability and MEtabolomicS study (TIMES study) have been
described in details previously (Castro A., et al., 2019).

Participants
A total of eighty healthy and sedentary young Caucasian men,
which seventy were defined as completers [age: 23.7 ± 3.0 yr;
height: 1.74 ± 0.06m; body mass: 75.2 ± 8.8; body fat: 20.0 ±
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7.4%; body mass index (BMI): 24.8 ± 2.5 kg·m−2], from the
TIMES study, were used for analysis (Castro A., et al., 2019).
Briefly, participants were sedentary and did not engage in regular
exercise defined as 30min.wk−1 at an energy expenditure of 6
METS or more in the previous 4 months (Riebe et al., 2018;
Castro A., et al., 2019; Castro et al., 2021). All participants
were free from diabetes (fasting glucose > 7.0 mmol·L−1),
hypertension (blood pressure > 140/90 mmHg), dyslipidemia
(based on medication use), severe obesity (defined as body
mass index > 33 kg·m−2), smoking, metabolic disorders, heart
diseases, musculoskeletal problems interfering with exercise or
significant chronic respiratory conditions (Castro A., et al., 2019).

Written informed consent was obtained from each
participant. The study was approved by the University’s
Research Ethics Committee (Number: 2.717.688; CAAE:
52997216.8.0000.5404) and included in the Brazilian Clinical
Trials Registry (ensaiosclinicos.gov.br; RBR-3rh38g).

Study Design
Prior to the intervention, blood and vastus lateralis muscle tissue
samples were obtained. These evaluations were preceded by
12 h of fasting following a standardized meal. After 72 h, the
body composition was evaluated (full body plethysmography),
followed by cardiorespiratory assessment and retest 48 h later
(Skinner et al., 1999). Seventy-two h after the last pre-training
evaluation, 80 participants were randomized into three groups,
with a 3:3:1 allocation ratio, and of the total sample, 70 completed
the eight wk of intervention (exercise adherence > 90%): ET (n
= 30), HIIT (n = 30) and Control (CO, n = 10). This unequal
randomization strategy was used to ensure adequate sample size
for correlation analysis and subsequent analysis of high and
low responders in the intervention groups. After the 4th wk
of intervention, cardiorespiratory assessment was performed to
adjust the training’s intensity. In the end, after 48 h of the last
training session, the assessments referred to in the pre-training
moment were repeated (Castro A., et al., 2019).

Standardization of Meals Prior to Data
Collection
The night before the blood collections and muscle biopsies (12 h
before), the participants consumed a standardized and balanced
meal (60% carbohydrate, 25% lipid and 15% protein), with
an energy value corresponding to 30% of the total individual
energy expenditure estimated in order to avoid effects of
dietary variations on the metabolic profile of the blood and
muscle tissue samples (Peake et al., 2014; Shrestha et al., 2015;
Castro et al., 2020).

Blood and Muscle Tissue Samples
The venous blood and muscle tissue samples were collected
between 7 am and 10 am. After the blood samples’ collection,
they were kept at rest in a serological tube for 30min, and
then centrifuged at 5000 rpm for 10min. Afterwards, the serum
aliquots were obtained and stored in a freezer at −80◦C.
Following the blood collections, tissue biopsies of the dominant
lower limb’s vastus lateralis muscle were performed according to
the procedure described above (Shanely et al., 2014). Prior to

the tissue’s extraction, the area was shaved and cleaned with an
antiseptic. A small area over the selected region was anesthetized
with 2% xylocaine, injected subcutaneously. After anesthesia,
a small incision (∼5mm) was made up to the muscle fascia
using a surgical scalpel. The biopsy needle was then inserted
into the muscle (∼3 cm) to obtain the sample. After the tissues’
removal, the incision was closed and covered with bandages.
After extraction, all samples were cleaned (free of blood and
excess connective tissue), aliquoted, immediately frozen in liquid
nitrogen, and stored at−80◦C for further analysis.

Body Composition Assessment
The participants were instructed to drink only water and not
to consume food or exercise 2 h prior to the assessment. For
plethysmography measurements, the participants were asked
to wear only trunks and a shower cap, without shoes and
metallic accessories. Body mass and height were measured using
a digital scale and stadiometer (BOD POD, Cosmed, Chicago,
USA), respectively. Body density was then assessed using a full-
body plethysmograph calibrated according to the manufacturer’s
recommendations (BOD POD R©; Body Composition System;
Life Measurement Instruments; Concord, CA) (McCrory et al.,
1995). In all evaluations, the ambient temperature and the
humidity conditions were maintained between 20–22◦C and
∼60%, respectively, without significant variations in atmospheric
pressure. Based on these data, body density was converted to fat
percentage using the Siri equation (Siri, 1993).

Cardiorespiratory Assessment
Cardiorespiratory assessment was performed during an
incremental test until exhaustion using a cycle ergometer with
electromagnetic braking (Corival 400, Quinton R© Instrument
Co., Groningen, Holland). Heart rate (HR) was continuously
monitored by a cardio-frequency monitor (S810, Polar, Keple,
Finland). The subjective perception of effort was recorded at
the final 15 s, using the 6–20 Borg scale (Borg and Linderho,
1967). Before and after each test, the cycle ergometer was
calibrated according to the manufacturer’s recommendations.
After 5min of rest on the ergometer cycle, the incremental test
started, with a 3-min warmup at 50W, followed by 25W.min−1

increments (Buchfuhrer et al., 1983). The pedaling cadence was
maintained between 70−80 rpm. The test was interrupted when
the participant was unable to continue and/or did not maintain
a minimum cadence of 70 rpm despite verbal encouragement
(Thompson et al., 2013).

The resting HR values were estimated from the average of
the values recorded during the 5-min rest (Swain and Leutholtz,
1997). The maximum HR (HRMAX) was defined as the mean
value in the test’s final 10 s. The reserve HR (HRR) was
estimated by subtracting the values at rest from the respective
maximum values achieved in the incremental test (Swain and
Leutholtz, 1997; Lounana et al., 2007). MPO was estimated as
W+[25·(t/60)], where W is the last load reached and t is the
number of seconds in the test’s final load (Kuipers et al., 1985).
The highest MPO value recorded between tests was considered
for the analyses and defined as the measure of CRF (Castro A.,
et al., 2019; Castro et al., 2021). The within-test coefficient of

Frontiers in Physiology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 756618

https://ensaiosclinicos.gov.br
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Castro et al. Trainability and Metabolomics Study

variations (CV) and intraclass correlation coefficient (ICC) were
2.8% and 0.98, respectively.

Additionally, an incremental validation step was conducted
based on theHRMAX achieved in relation to theHRMAX expected,
considering all the tests performed by the participants. As
previously reported, the intra-participant standard deviation for
HRMAX derived from repeated measures is expected to be around
4 bpm (Skinner et al., 1999). Thus, the cutoff value corresponding
to twice the intra-participant standard deviation, or 8 bpm, was
used as a validation criterion. In the case of the pre-training
tests, the highest MPO was retained as reference. In the post-
training moment, for the tests to be validated and the participant
considered for further analysis, the HRMAX achieved could not
have been 8 bpm higher than the HRMAX obtained in the pre-
training test.When this criterion was not met, the participant was
excluded from the study (Castro A., et al., 2019).

Training Protocol
Throughout the training program, the exercise intensity was
individualized and customized for each participant based upon
HRR. Both ET and HIIT programs were designed to obtain
the same exercise volume in total and by session. A complete
and detailed description of training volume balancing between
groups can be found elsewhere (Castro A., et al., 2019).

The training program was carried out on an ergometer cycle
(U1x, Matrix, Brazil), with 40min per session, for eight wk,
divided into Stage 1 (first four wk) and Stage 2 (last four wk). At
the end of Stage 1, a cardiorespiratory assessment was performed
to adjust the training intensity to be prescribed in Stage 2. For ET,
the participants exercised for 40min at 70% of HRR, three times
a wk, in Stage 1; and for 40min at 75% of HRR, four times a wk,
in Stage 2. For HIIT, the participants exercised for 40min, with
5min at 50% of HRR, followed by five 4-min intervals at 90% of
HRR (effort phase) interspersed with 3-min intervals at 50% of
HRR (recovery phase), three times a week, in Stage 1; and 5min
at 60% of HRR, followed by five 4-min intervals at 90% of HRR
interspersed with 3-min intervals at 60% of HRR, four times a
week, in Stage 2. For the control, the participants were instructed
not to perform physical exercises for eight wk. After four wk, the
control participants were contacted again to remind them about
the importance of remaining sedentary and to schedule the tests
for the end of the eight-wk period.

All training sessions were supervised by an experienced
professional to ensure that the target HR and pedaling cadence
(70–80 rpm) were maintained. All training sessions were carried
out in a reserved environment, with temperature controlled
between 21–23◦C.

Preparation of Blood Samples for
Metabolomics
Prior to the analysis of the blood samples, 3 kDa filters (Amicon
Ultra) were washed with 500 µl of Milli-Q H2O, followed by
centrifugation at 14,000 rpm and 4◦C for 10min. After the fifth
wash, spin was performed (inversion of the filter and rotation at
8,000 rpm for 5 s) to eliminate any remnants of Milli-Q H2O.
Subsequently, 500 µl of blood serum were added to the filter
and centrifuged at 14,000 rpm and 4◦C for 45min. After this

period, the filtered serum (250 µl) were diluted in an deuterium
oxide solution (290 µl D2O, 99.9 %; Cambridge Isotope
Laboratories Inc., Massachusetts, USA) containing a phosphate
buffer (60 µl, Monobasic Sodium Phosphate, NaH2PO4 – H2O-
137.99 g/mol; Dibasic Sodium Phosphate, Na2HPO3 – 141.96
g/mol; 0.1M, pH 7.4), 0.5 TMSP-d4 (3-(trimethylsilyl)-2,2′,3,3′-
tetradeuteropropionic acid from Sigma-Aldrich), and added to
a 5mm NMR tube (Wilmad Standard Series 5mm, Sigma-
Aldrich R©) for immediate acquisition of the spectra on the
spectrometer (Duft et al., 2017a; Castro A., et al., 2019).

Preparation of Muscle Tissue Samples for
Metabolomics
The muscle tissue samples were processed following the Le Belle
protocol (Belle et al., 2002) adapted by Castro et al. (Castro A.,
et al., 2019). Firstly, the samples (∼40mg) were weighed and
added to a cold methanol/chloroform solution (2:1 v/v, total
of 2.5ml), after which they were homogenized on ice (3×30-
s repetitions, interspersed with 10-s pauses) and sonicated for
3min, with 10-s pauses between minutes. Subsequently, a cold
chloroform/Milli-Q water solution (1:1 v/v, total of 2.5ml) was
added to the samples, which were then briefly stirred (to form
an emulsion) and centrifuged at 4◦C for 30min (2000 g). The top
phase of themixture (methanol, water and polar metabolites) was
collected and completely dried in a vacuum concentrator (miVac
Duo Concentrator, Genevac, UK). The remaining solid phase
was rehydrated in 0.6ml deuterium oxide containing phosphate
buffer (0.1M, 7.4 pH) and 0.5mM of TMSP-d4. Finally, the
samples were added to a 5mm NMR tube (Wilmad Standard
Series 5mm, Sigma-Aldrich R©) for immediate acquisition of the
spectra on the spectrometer.

Acquisition of Spectra and Quantification
of Metabolites
To obtain and quantify the metabolites via metabolomics, the
spectra were acquired from the serum and skeletal muscle
tissue samples at the National Biosciences Laboratory (LNbio –
http://lnbio.cnpem.br/) using the VnmrJ software (Varian NMR
Systems) and an Inova Agilent NMR spectrometer (Agilent
Technologies Inc., Santa Clara, CA, USA), operating at a
resonance frequency of 1H 600 MHz and a constant temperature
of 298K (25◦C). A total of 256 free induction decays (FID) with
32-k data points over a spectral width of 8,000Hz were used,
with an acquisition time of 4 s and 1.5-s intervals between scans
(relaxation delay). The spectral phase and baseline corrections,
as well as the identification and quantification of the metabolites
present in the samples, were performed using the Suite 7.6
Chenomx NMR software (Chenomx Inc., Edmonton, AB,
Canada), with TMSP-d4 (concentration known) as a reference
for quantifying the concentrations of other metabolites. All
NMR spectra were processed with 0.5Hz line broadening (lb)
to smooth out the noise in the spectral signals. To inhibit
any bias, the samples were randomly profiled by a blinded
evaluator. Metabolites (methanol and ethanol) involved in the
reagents used in the samples’ collection and preparation were
not considered for analysis. In addition, in relation to serum
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metabolites included in the study (Castro A., et al., 2019), the
median within-test CV and ICC were 8.5% (range: 3–23%) and
0.98 (range: 0.79–1.00), respectively.

Statistical Analysis
For all variables, the data distributions were checked for
major deviation from normality. Logarithmic transformations
(log2) were used to improve normality of distributions when
appropriate (skewness values > 3.0). All transformed data were
presented in their original scale for easier interpretation.

Pearson’s correlation test was used to analyze the association
of the changes (1, post-training values - pretraining values) in
the metabolites’ concentration levels and participant’s physical
characteristics with MPO gains. Afterwards, the ET and HIIT
groups were fragmented, separately, into new subgroups, based
on the first tercile (low responders, LRE) and third tercile
(high responders, HRE) of the distribution of MPO gains in
response to training (Castro A., et al., 2019). Comparisons at
the pretraining and of the pre- to post-training changes between
the LRE and HRE groups were performed using Student’s t-test
for independent samples. These analyses were performed using
the PASW statistics software version 18.0 (SPSS, Chicago, IL),
and the significance level adopted was 1% for these hypothesis-
generating analyses, assuming that a Bonferroni correctionwould
be too conservative, leading to a high rate of false-negative results.
In addition, this approach was supplemented by estimating the
effect size and 95% confidence interval for each comparison
between LRE and HRE. Thus, when the confidence intervals
did not cross zero, the differences were considered significant
(Nakagawa and Cuthill, 2007). This approach helped to minimize
the occurrence of type II error in the study.

For the identification of metabolic pathways altered by
training associated with MPO gains, based on all correlational
analyses performed, the metabolites that showed a nominal
correlation of r ≥ |0.2| were retained for pathway over-
representation and pathway topology analyses (Castro A., et al.,
2019; Castro et al., 2021). Pathway analyses were based on the
“Homo sapiens” library using Hypergeometric Test for Over
Representation Analysis and Relative-Betweenness Centrality
for Test Pathway Topology Analysis, as previously described
(Xia and Wishart, 2010). The significance level was adjusted
considering a false discovery rate of 0.1 (Benjamini and Ochberg,
1995) for the purpose of corrections due to multiple tests (van
den Oord and Sullivan, 2003).

Finally, to determine the main altered metabolites associated
with the MPO gains, only those supported by three levels of
evidence were selected: (1) correlation with MPO gains (r ≥

|0.2|); (2) significant difference between HRE and LRE; and
(3) contributing to significant metabolic pathways associated
with MPO gains. Afterwards, multiple linear regression models
with stepwise selection were used to determine the variance in
MPO gains explained by the changes observed in each serum
and/or skeletal muscle metabolites retained by the three levels
of evidence and to point out the key metabolites. To validate
the models, the assumption of multicollinearity of measures
between the independent variables was assessed by the variance

TABLE 1 | Pearson’s correlation coefficients (r) for the association between MPO

gains and the pretraining to post–training changes in serum metabolites’

concentration levels metabolic levels in the TIMES study.

Serum metabolites# ET (n = 30) HIIT (n = 29)

1 MPO 1 MPO

Amino acids

Alanine −0.04 −0.06

Asparagine −0.39* −0.10

Glutamine −0.51** −0.26

Glycine −0.41* −0.14

Histidine −0.33 0.02

Isoleucine −0.16 −0.31

Lysine −0.01 0.13

Methionine −0.48** 0.16

Phenylalanine −0.20 0.23

Proline −0.03 −0.19

Threonine −0.41* −0.04

Tyrosine −0.05 0.11

Valine −0.23 −0.31

Carboxylic Acids

Betaine −0.35 −0.20

Creatinine −0.32 0.05

Guanidinoacetate −0.34 −0.45*

N,N–Dimethylglycine −0.18 −0.03

Ornithine −0.50** −0.22

Succinate −0.39* −0.31

Creatine −0.09 −0.54**

Creatine phosphate −0.48** −0.48*

Formate 0.11 0.29

Fatty acids

2–hydroxy–isocaproate −0.18 −0.24

2–hydroxy–isovalerate −0.05 −0.14

Methylsuccinate −0.08 −0.07

O–Acetylcarnitine −0.64** −0.20

Hydroxy Acids

3–hydroxybutyrate −0.41* −0.31

Lactate 0.04 0.05

Glycolate −0.32 −0.02

Imidazopyrimidines

Hypoxanthine −0.16 −0.05

Xanthine −0.41* −0.24

Organic Carbonic Acids

N–methylhydantoin −0.07 −0.17LT

Urea −0.08 −0.23

Organic Oxygen Compounds

Glycerol −0.31 −0.15

Carnitine −0.42* −0.29

Choline −0.30 −0.01

Citrate −0.29 0.03

Dimethyl sulfone −0.05 −0.02

Trimethylamine −0.25 0.24

Propylene glycol −0.45* −0.21

(Continued)
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TABLE 1 | Continued

Serum metabolites# ET (n = 30) HIIT (n = 29)

1 MPO 1 MPO

Unclustered

Dimethylamine −0.12 0.05

Inosine −0.13 −0.14

Pyruvate −0.12 −0.15

ET, Endurance training; HIIT, High–intensity interval training; MPO, Maximal power

output; 1, post–training values – pretraining values. *P < 0.05. **P < 0.01. LTData log

transformed before analysis. Values in bold are correlation coefficients (r) ≥ |0.2|. #The

metabolites’ chemical taxonomy was based on the classes and subclasses of the Human

Metabolome Database.

inflation factor (VIF 1); the normality of residue distribution
was determined by inspecting the frequency histograms; and
the global influence of each case in the model was analyzed
by inspecting the standardized residues and Cook’s distance
(Field, 2009).

RESULTS

Participants
The information regarding the correlations between the
pretraining participant’s characteristics and MPO gains
were described in a previous publication (Castro A., et al.,
2019). Briefly, there were no significant correlations between
pretraining age, body mass, body fat percentage, BMI, and MPO
with MPO gains for ET or HIIT programs (P > 0.01 for all).

Association Between Changes in
Metabolites Concentration Levels and
MPO Gains
There were no significant correlations between MPO gains and
pretraining to post-training changes in: body mass (ET: r = 0.26,
P = 0.165, n = 30; HIIT: r = 0.22, P = 0.258, n = 30); body fat
(ET: r = −0.17, P= 0.380, n= 30; HIIT: r =−0.04, P= 0.849, n
= 29); and fat-free mass (ET: r = 0.29, P= 0.119, n= 30; HIIT: r
= 0.36, P= 0.054, n= 29).

Of the 43 metabolites quantified in blood serum, 24 and 19
showed correlation coefficients (r) ≥ |0.2| for the association
between MPO gains and the pretraining to post-training changes
in metabolites’ concentration levels of ET and HIIT programs,
respectively (Table 1). For ET, the most correlated metabolites
were glutamine, methionine, ornithine, creatine phosphate,
and o-acetylcarnitine (P < 0.01 for all), asparagine, glycine,
threonine, succinate, 3-hydroxybutyrate, xanthine, carnitine,
and propylene glycol (P < 0.05 for all), while for HIIT, the
most correlated were creatine (P < 0.01), guanidinoacetate and
creatine phosphate (P < 0.05 for both). These correlations were
moderate (ET: 0.39 ≤ r ≤ 0.64; HIIT: 0.45 ≤ r ≤ 0.54) and
negative for all serum metabolites.

Of the 70 metabolites quantified in the skeletal muscle, 42 and
18 showed correlation coefficients (r) ≥ |0.2| for the association
between MPO gains and the pretraining to post-training changes

TABLE 2 | Pearson’s correlation coefficients (r) for the association between MPO

gains and the pretraining to post–training changes in skeletal muscle metabolites’

concentration levels in the TIMES study.

Skeletal muscle metabolites# ET (n = 29) HIIT (n = 28)

1 MPO 1 MPO

Alcohols and Polyols

Ethylene glycol −0.01 0.09

Myo–inositol −0.15 −0.06

Amino acids

Alanine −0.41* 0.03

Anserine −0.43* 0.09

Beta–Alanine −0.24LT 0.17

Glutamate −0.31LT 0.06

Glutamine −0.19LT 0.09

Glycine −0.42* LT 0.05

Histidine −0.50** LT 0.16

Isoleucine −0.29 −0.07

Leucine −0.21 −0.17

Phenylalanine −0.35 0.21

Proline −0.32LT −0.16

Threonine −0.45* LT 0.11

Tyrosine −0.47* LT −0.12

Valine 0.34 0.19

Carboxylic Acids

Acetate −0.34 −0.18

Betaine 0.05 0.19

Citrate 0.09 0.36

Creatine −0.26LT −0.18

Creatine phosphate 0.08LT 0.22

Creatinine −0.28 −0.11

Formate −0.18 LT −0.09

Fumarate −0.33 −0.14

Glutathione −0.17 0.25

Isobutyrate −0.61** LT
−0.36

Isocitrate −0.21 0.23

Maleate 0.08 0.11

Malonate −0.26LT 0.03

N,N–Dimethylglycine −0.18 0.12

N–Acetylaspartate −0.10 0.21

N–Acetylglutamine −0.04 0.08

Nicotinate 0.32 0.53**

Ornithine −0.48** −0.16

Succinate −0.17 LT 0.09

π-Methyl–histidine −0.13 0.02

τ -Methyl–histidine 0.06 −0.35LT

Fatty acids

2–Hydroxy–isocaproate −0.35LT 0.12

3–Hydroxy–isovalerate −0.12LT 0.36

O–Acetylcarnitine −0.22LT −0.26

Hydroxy Acids

Glycolate 0.42* 0.68**

Lactate −0.39* −0.08

Imidazopyrimidines

(Continued)
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TABLE 2 | Continued

Skeletal muscle metabolites# ET (n = 29) HIIT (n = 28)

1 MPO 1 MPO

3–Methylxanthine −0.48** 0.11

Oxipurinol −0.08LT 0.11

Theophylline −0.33 0.03

Nucleosides and Nucleotides

ADP −0.05 0.22

AMP −0.52** −0.19

ATP −0.27LT 0.05

NAD+ −0.04 0.27

NADP+ −0.22LT 0.11

Organic Oxygen Compounds

2–Phosphoglycerate −0.44* −0.42*

Glucose −0.50** −0.14

Glycerol −0.01 −0.11

Organic Nitrogen Compounds

Carnitine −0.37* −0.06

Choline 0.19 0.16

Dimethylamine −0.32LT 0.13

Histamine −0.56** LT
−0.43*

Methylamine −0.34LT −0.34

N–Nitrosodimethylamine −0.42* −0.15

Trimethylamine −0.31LT 0.07

Trimethylamine N–oxide −0.40* LT 0.18

Tartrate 0.19 0.12

Unclustered

2–Hydroxyphenylacetate −0.31 −0.10

Acetamide −0.07 0.38

Carnosine −0.14 −0.01

Dimethyl sulfone −0.02 0.05

Niacinamide −0.47** −0.16

Pyrimidine −0.20 −0.04

Pyruvate −0.55** 0.00

Taurine −0.03LT 0.02

ET, Endurance training; HIIT, High–intensity interval training; MPO, Maximal power

output; 1, post–training values – pretraining values. *P < 0.05. **P < 0.01. LTData log

transformed before analysis. Values in bold are correlation coefficients (r) ≥|0.2|. #The

metabolites’ chemical taxonomy was based on the classes and subclasses of the Human

Metabolome Database.

in metabolites’ concentration levels of ET and HIIT programs,
respectively (Table 2). For ET, the most correlated metabolites
were isobutyrate, histamine, pyruvate, AMP, glucose, histidine,
3-methylxanthine, ornithine, niacinamide (P < 0.01 for all),
tyrosine, threonine, 2-phosphoglycerate, anserine, glycolate,
glycine, N-nitrosodimethylamine, alanine, trimethylamine N-
oxide, lactate and carnitine (P < 0.05 for all), while for
HIIT, the most correlated were glycolate, nicotinate (P <

0.01 for both), histamine and 2-phosphoglycerate (P < 0.05
for both). These correlations were moderate (ET: 0.37 ≤

|r| ≤ 0.61; HIIT: 0.42 ≤ |r| ≤ 0.68) and negative for
all these skeletal muscle metabolites, except for glycolate

in both training programs and nicotinate in HIIT, which
were positive.

Differences Between Low and High
Responders (LRE and HRE)
As demonstrated in previous study (Castro A., et al., 2019), there
were no baseline differences between LRE and HRE for age,
height, body mass, body fat, BMI, HRMAX and MPO in the ET
and HIIT programs (P > 0.01).

After ET, the pretraining to post-training changes for HRE
showed a reduction in the serum levels of 3-hydroxybutyrate,
asparagine, betaine, carnitine, citrate, creatine phosphate,
creatinine, glutamine, glycine, glycolate, guanidinoacetate,
histidine, methionine, O-acetylcarnitine, ornithine, propylene
glycol, succinate, threonine, trimethylamine and xanthine, as
well as lower increase in choline and glycerol levels compared
to pretraining to post-training changes of LRE. The effect size
(Cohen’s d) for these comparisons was classified as wide, ranging
from 0.99 to 1.98 (Table 3). In the skeletal muscle, the pretraining
to post-training changes for HRE showed a higher reduction in
the levels of histamine and isobutyrate, increase of glycolate and
valine, and a reduction of 3-methylxanthine and pyruvate (effect
size: 1.14 to 1.29) compared to LRE (Table 4).

After HIIT, the pretraining to post-training changes for
HRE showed a reduction in the serum levels of carnitine,
creatine, creatine phosphate, guanidinoacetate, propylene glycol
and succinate, and a lower increase in valine levels compared
to LRE. The effect size for these comparisons was classified as
wide, ranging from 1.09 to 1.63 (Table 3). In the skeletal muscle,
HRE showed an increase in the levels of acetamide, glycolate
and nicotinate (effect size: −1.17 to −2.27) and a reduction of
isobutyrate levels (effect size: 1.37) compared to LRE (Table 4).

Metabolic Pathways
For pathway analysis, pretraining to post-training changed
metabolites that were correlated at r ≥ |0.2|with MPO gains
were used, separately for serum (ET: 24 metabolites; HIIT: 19
metabolites) and skeletal muscle (ET: 42 metabolites; HIIT:
18 metabolites) in each exercise program. A total of 18
distinct and significantly changed pathways were identified
and related to MPO gains, at a false discovery rate of
0.1. From these pathways, only 6 in serum (aminoacyl-
tRNA biosynthesis, arginine and proline metabolism, arginine
biosynthesis, butanoate metabolism, glycine serine and threonine
metabolism, and valine leucine and isoleucine biosynthesis) and 4
in skeletal muscle (alanine aspartate and glutamate metabolism,
citrate cycle, glyoxylate and dicarboxylate metabolism, histidine
metabolism) were similar between ET and HIIT programs.
The complete list of significant pathways and their related
metabolites for each training program are summarized in detail
in Supplementary Table 1 and Figure 1.

Summary of Key Altered Metabolites
Associated With MPO Gains
The altered metabolites associated with gains in MPO were
identified based on three levels of evidence, previously described:
(1) correlation with MPO gains (r ≥ |0.2|); (2) significant
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TABLE 3 | Comparison of the pretraining to post–training changes in serum metabolites’ concentration levels between low responders (LRE) and high responders (HRE) to the ET and HIIT programs in the TIMES study.

Metabolites (mM)# ET Metabolites (mM)# HIIT

LRE (n = 10) HRE (n = 10) ES 95% CI LRE (n = 9) HRE (n = 10) ES 95% CI

3-Hydroxybutyrate 0.1124 ± 0.1501 −0.0393 ± 0.0889* 1.23 0.22 2.24 2-Hydroxy-isocaproate 0.0210 ± 0.0341 −0.0002 ± 0.0171 0.80 −0.19 1.79

Asparagine 0.0212 ± 0.0210 −0.0030 ± 0.0163** 1.29 0.27 2.31 3-Hydroxybutyrate 0.1011 ± 0.2216 −0.0228 ± 0.1942 0.60 −0.38 1.57

Betaine 0.0239 ± 0.0293 −0.0076 ± 0.0117** 1.41 0.37 2.45 Betaine 0.0197 ± 0.0414 0.0039 ± 0.0133 0.53 −0.44 1.50

Carnitine 0.0256 ± 0.0280 −0.0051 ± 0.0127** 1.41 0.37 2.45 Carnitine 0.0139 ± 0.0211 −0.0037 ± 0.0092* 1.10 0.08 2.13

Choline 0.0045 ± 0.0027 0.0004 ± 0.0033** 1.35 0.33 2.38 Creatine 0.0057 ± 0.0102 −0.0118 ± 0.0112** 1.63 0.53 2.73

Citrate 0.0504 ± 0.0741 −0.0127 ± 0.0256* 1.14 0.14 2.14 Creatine phosphate 0.0041 ± 0.0059 −0.0022 ± 0.0032** 1.34 0.29 2.40

Creatine phosphate 0.0023 ± 0.0058 −0.0020 ± 0.0020* 1.00 0.01 1.98 Formate −0.0117 ± 0.0112 0.0018 ± 0.0155* −0.98 −1.99 0.03

Creatinine 0.0563 ± 0.0682 −0.0080 ± 0.0262 1.24 0.23 2.26 Glutamine 0.1092 ± 0.1504 0.0020 ± 0.0804 0.90 −0.10 1.91

Glutamine 0.1128 ± 0.1875 −0.1211 ± 0.1757** 1.29 0.27 2.31 Guanidinoacetate 0.0138 ± 0.0295 −0.0189 ± 0.0209* 1.29 0.24 2.34

Glycerol 0.1507 ± 0.1081 0.0012 ± 0.0484** 1.78 0.69 2.88 Isoleucine 0.0242 ± 0.0212 0.0047 ± 0.0235 0.87 −0.13 1.87

Glycine 0.1584 ± 0.1875 −0.0356 ± 0.0988** 1.29 0.28 2.31 O–Acetylcarnitine 0.0043 ± 0.0065 0.0011 ± 0.0059 0.53 −0.44 1.50

Glycolate 0.0145 ± 0.0175 −0.0021 ± 0.0062* 1.26 0.25 2.28 Ornithine 0.0140 ± 0.0241 0.0000 ± 0.0198 0.64 −0.34 1.62

Guanidinoacetate 0.0304 ± 0.0376 −0.0078 ± 0.0205* 1.26 0.25 2.28 Phenylalanine −0.0002 ± 0.0143 0.0068 ± 0.0146 −0.48 −1.45 0.48

Histidine 0.0344 ± 0.0382 −0.0074 ± 0.0268* 1.27 0.25 2.28 Propylene glycol 0.0041 ± 0.0053 −0.0012 ± 0.0043* 1.09 0.07 2.12

Methionine 0.0091 ± 0.0099 −0.0039 ± 0.0087** 1.40 0.36 2.43 Succinate 0.0057 ± 0.0081 −0.0010 ± 0.0027* 1.13 0.11 2.16

O–Acetylcarnitine 0.0029 ± 0.0022 −0.0013 ± 0.0020** 1.98 0.85 3.11 Trimethylamine 0.0001 ± 0.0017 0.0006 ± 0.0007 −0.45 −1.42 0.51

Ornithine 0.0267 ± 0.0199 −0.0073 ± 0.0213** 1.65 0.58 2.73 Urea 0.1478 ± 0.2013 −0.0014 ± 0.3778 0.49 −0.48 1.45

Phenylalanine 0.0136 ± 0.0157 −0.0025 ± 0.0179* 0.96 −0.02 1.93 Valine 0.1111 ± 0.1066 0.0148 ± 0.0557* 1.15 0.12 2.18

Propylene glycol 0.0051 ± 0.0071 −0.0015 ± 0.0042* 1.14 0.14 2.14 Xanthine 0.0030 ± 0.0105 −0.0034 ± 0.0097 0.63 −0.34 1.61

Succinate 0.0045 ± 0.0077 −0.0037 ± 0.0053* 1.23 0.22 2.24

Threonine 0.0566 ± 0.0664 −0.0214 ± 0.0519** 1.31 0.29 2.33

Trimethylamine 0.0015 ± 0.0024 −0.0003 ± 0.0011* 0.99 0.01 1.98

Valine 0.1089 ± 0.1515 0.0039 ± 0.1110 0.79 −0.17 1.75

Xanthine 0.0171 ± 0.0128 −0.0033 ± 0.0110** 1.71 0.63 2.79

The data are presented as mean ± standard deviation.

ET, Endurance training; HIIT, High–intensity interval training; LRE and HRE were stratified from the 1st and 3rd terciles, respectively, of the gains in maximal power output (MPO) in response to the ET and HIIT programs. ES, effect size

(Cohen’s d); #Metabolites with correlation coefficient (r) ≥ |0.2|for the association between MPO gains and pretraining to post–training changes in serum metabolites’ concentration levels.

**P < 0.01 for independent t–test. *P < 0.05 for independent t–test. Values in bold are ES and 95% CI that did not cross zero.
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TABLE 4 | Comparison of the pretraining to post–training changes in skeletal muscle metabolites’ concentration levels between low responders (LRE) and high responders (HRE) to the ET and HIIT programs in the

TIMES study.

Metabolites

(mM.g−1)

ET ES Metabolites

(mM.g−1)

HIIT ES

LRE (n = 10) HRE (n = 10) 95% CI LRE (n = 9) HRE (n = 8) 95% CI

2–Hydroxy–isocaproateLT −0.9767 ±0.0490 −1.1171±0.2971 0.66 −0.29 1.61 2–Phosphoglycerate −0.1949 ± 1.3958 −1.4458 ± 1.6225 0.83 −0.23 1.89

2–Hydroxyphenylacetate −0.0044±0.0217 −0.0291±0.0634 0.52 −0.42 1.46 3–Hydroxy–isovalerate 0.0018 ± 0.0641 0.0530 ± 0.1377 −0.49 −1.52 0.54

2–Phosphoglycerate 0.2978±1.4179 −2.1872±3.4615 0.94 −0.04 1.92 ADP −0.0067 ± 0.0154 0.0003 ± 0.0100 −0.53 −1.57 0.50

3–Methylxanthine 0.0045±0.0525 −0.0701±0.0756* 1.15 0.15 2.15 Acetamide −0.0257 ± 0.0277 0.0049 ± 0.0240* −1.17 −2.27 −0.07

Acetate −0.0936±0.1599 −0.3411±0.4866 0.68 −0.27 1.64 Citrate −0.0579 ± 0.1036 0.0472 ± 0.2108 −0.65 −1.69 0.40

Alanine −0.1011±0.6762 −1.3267±2.3226 0.72 −0.24 1.67 Creatine phosphate −4.9562 ± 4.9418 0.3420 ± 7.8008 −0.82 −1.88 0.24

AMP 0.0167±0.0914 −0.0665±0.0875 0.93 −0.05 1.91 Glutathione −0.0468 ± 0.0691 0.0246 ± 0.1175 −0.75 −1.81 0.30

Anserine 0.0266±0.0771 −0.0894±0.2401 0.65 −0.30 1.60 Glycolate −0.3983 ± 0.5146 0.5652 ± 0.7211** −1.56 −2.71 −0.40

ATPLT −1.0135±0.0398 −1.0593±0.1739 0.36 −0.57 1.30 Histamine 0.0045 ± 0.1524 −0.0952 ± 0.1977 0.57 −0.47 1.61

Beta–AlanineLT −1.0054±0.1144 −1.1512±0.5371 0.38 −0.56 1.31 Isobutyrate 0.0591 ± 0.0677 −0.0264 ± 0.0557* 1.37 0.24 2.50

Carnitine −0.3709±0.9981 −1.2760±1.4129 0.74 −0.22 1.70 Isocitrate −0.0574 ± 0.2519 0.0590 ± 0.1322 −0.57 −1.60 0.47

CreatineLT −0.0487±3.0419 −1.4351±4.0936 0.38 −0.55 1.32 Methylamine 0.0248 ± 0.0724 −0.0192 ± 0.0636 0.64 −0.40 1.69

Creatinine −0.0081±0.0789 −0.1002±0.1285 0.86 −0.10 1.83 N–Acetylaspartate −0.0224 ± 0.0273 −0.0070 ± 0.0236 −0.60 −1.64 0.44

DimethylamineLT −0.9836±0.0227 −1.0350±0.1187 0.60 −0.35 1.55 NAD+ 0.0019 ± 0.0596 0.0666 ± 0.1037 −0.78 −1.83 0.28

Fumarate 0.0157±0.0310 −0.0046±0.0503 0.49 −0.45 1.43 Nicotinate −0.0251 ± 0.0156 0.0081 ± 0.0157* −2.13 −3.40 −0.86

Glucose 0.0424±0.3745 −0.4060±0.7525 0.75 −0.20 1.71 O–Acetylcarnitine 0.1582 ± 0.4713 −0.0505 ± 0.4058 0.47 −0.56 1.50

GlutamateLT −0.4999±0.7289 −1.0001±1.3018 0.47 −0.47 1.41 Phenylalanine −0.0310 ± 0.0225 −0.0151 ± 0.0561 −0.38 −1.41 0.64

GlycineLT −1.1648±0.4299 −1.7293±0.9048 0.80 −0.17 1.76 τ–MethylhistidineLT −1.1472 ± 0.6479 −1.7065 ± 1.0033 0.67 −0.37 1.72

Glycolate −0.7410±1.1241 0.5077±0.8685* −1.24 −2.26 −0.23

HistamineLT −0.7948±0.2054 −1.2963±0.5869 1.14 0.14 2.14

HistidineLT −0.9803±0.1740 −1.3268±0.6772 0.70 −0.25 1.66

IsobutyrateLT −0.8888±0.0540 −1.2206±0.3610 1.29 0.27 2.30

Isocitrate 0.0247±0.2148 −0.0472±0.3212 0.26 −0.67 1.19

Isoleucine −0.0011±0.0804 −0.1332±0.2648 0.67 −0.28 1.63

Lactate 0.2268±2.4944 −1.8445±3.5699 0.67 −0.28 1.63

Leucine −0.0388±0.1024 −0.1232±0.3741 0.31 −0.62 1.24

MalonateLT −1.2491±0.4161 −1.5383±0.7521 0.48 −0.46 1.42

MethylamineLT −0.9867±0.0690 −1.0720±0.2065 0.55 −0.39 1.50

NADP+LT −1.0010±0.0193 −1.0132±0.0625 0.26 −0.67 1.19

Niacinamide 0.0049±0.0600 −0.1276±0.2090 0.86 −0.11 1.83

Nicotinate −0.0240±0.0269 0.0090±0.0472 −0.86 −1.83 0.11

N–Nitrosodimethylamine −0.0007±0.0346 −0.0263±0.0662 0.48 −0.46 1.42

O–AcetylcarnitineLT −1.0525±0.6012 −1.2634±1.1183 0.23 −0.70 1.16

Ornithine 0.0163±0.0762 −0.1099±0.2270 0.74 −0.21 1.70

(Continued)
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differences between LRE and HRE; and (3) contribution in
significant altered pathways related to MPO gains.

The metabolites supported by the three levels of evidence
in the ET program were: asparagine, glutamine, succinate,
glycine, histidine, methionine, threonine, creatine phosphate,
guanidinoacetate, ornithine, citrate, 3-hydroxybutyrate, betaine,
choline and glycolate in blood serum; and pyruvate, glycolate,
valine and histamine in the skeletal muscle. On the other hand, in
the HIIT program, they were: succinate, valine, creatine, creatine
phosphate, and guanidinoacetate in blood serum; and glycolate
in the skeletal muscle (Table 5).

From these metabolites, multiple linear regression models
were conducted in order to determine the true interindividual
response variance of the MPO gains (changes free from the
effects caused by the intervention and the changes that would
have occurred in the absence of intervention) explained by each
metabolite supported by the three levels of evidence (Table 6).
For ET, the variance in MPO gains was explained: 77.4% by
the intervention effects; 6.9, 2.3, 3.2, and 2.2% by changes
in skeletal muscle pyruvate and valine, serum glutamine and
creatine phosphate, respectively. For HIIT, the variance in MPO
gains was explained: 80.9% by the intervention effects; 7.2, 2.2,
and 1.2% by changes in skeletal muscle glycolate, serum creatine
and creatine phosphate, respectively.

DISCUSSION

This study investigated whether changes in the metabolic profile
and metabolic pathways of blood serum and the skeletal muscle
are associated with the trainability of CRF, based on MPO, in
response to ET and HIIT programs. The results were based
on the commonality of three levels of evidence and the main
findings were: (i) differences in the metabolic changes associated
with the MPO gains between training programs, as well as
between LRE and HRE; (ii) associations between changes in
the metabolic profile and MPO gains, which were: negative
for serum asparagine, glutamine, succinate, glycine, histidine,
methionine, threonine, creatine phosphate, guanidinoacetate,
ornithine, citrate, 3-hydroxybutyrate, betaine, choline, glycolate,
and skeletal muscle pyruvate and histamine in the ET program;
negative for serum succinate, valine, creatine, creatine phosphate,
and guanidinoacetate in the HIIT program; and positive for
skeletal muscle valine in ET and glycolate in both ET and
HIIT programs; (iii) identification of key altered metabolites
that were able to explain the interindividual response variance
of the MPO gains, adjusted by random errors and intervention
effects: 14.7%, based on changes of skeletal muscle pyruvate
and valine, serum glutamine and creatine phosphate in the
ET program; 10.5%, based on changes of skeletal muscle
glycolate, serum creatine and creatine phosphate in the HIIT
program (Table 6); (iv) the most impacted pathways (impact
> 0) by these key altered metabolites were: arginine and
proline metabolism, glycine, serine and threonine metabolism,
and glyoxylate and dicarboxylate metabolism for both ET and
HIIT programs; alanine, aspartate and glutamate metabolism,
arginine biosynthesis, glycolysis/gluconeogenesis, and pyruvate
metabolism for ET (Table 5).
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FIGURE 1 | Summary of altered metabolic pathways and their metabolites associated with maximal power output gains after endurance training (ET) and high

intensity interval training (HIIT). The numbers and labels in the figures represent the most enriched and impacted pathways. All numbered pathways have significance

for a false discovery rate of 0.1 (vertical axis). The pathway’s impact on the horizontal axis represents the relative contribution of all identified metabolites in relation to

those that compose it. (1) Alanine, aspartate and glutamate metabolism (A: asparagine, glutamine, citrate and succinate; B: alanine, pyruvate, glutamine and

fumarate; C: glutamine and succinate; D: N-acetylaspartate and citrate); (2) Aminocyl-tRNA biosynthesis (A: asparagine, histidine, phenylalanine, glutamine, glycine,

methionine, valine and threonine; B: histidine, phenylalanine, glycine, alanine, isoleucine, leucine, threonine, tyrosine, proline, valine and glutamate; C: phenylalanine,

glutamine, valine and isoleucine); (3) Arginine and proline metabolism (A: ornithine, guanidinoacetate, creatine phosphate; B: ornithine, glutamate, proline, creatine,

and pyruvate; C: ornithine, guanidinoacetate, creatine, and creatine phosphate); (4) Arginine biosynthesis (A: ornithine and glutamine; B: glutamate, ornithine, and

fumarate; C: ornithine, glutamine, and urea); (5) Beta-alanine metabolism (B: beta-alanine, anserine and histidine); (6) Butanoate metabolism (B, C: 3-hydroxybutyrate

and succinate); (7) Citric acid cycle (A: succinate and citrate; B: isocitrate, pyruvate and fumarate; D: isocitrate and citrate); (8) Glutathione metabolism (B: glycine,

glutamate, NADP+ and ornithine); (9) Glycine, serine and threonine metabolism (A: choline, betaine, guanidinoacetate, glycine and threonine; B: glycine, threonine,

creatine and pyruvate; C: betaine, guanidinoacetate and creatine); (10) Glycolysis or gluconeogenesis (B: pyruvate, lactate, glucose and acetate); (11) Glyoxalate and

dicarboxylate metabolism (A: glycolate, citrate, glycine, and glutamine; B: glycolate, glycine, glutamate, acetate, isocitrate, and pyruvate; C: isocitrate, glycolate and

citrate); (12) Histidine metabolism (B: glutamine, histidine, anserine and histamine; D: anserine and histamine); (13) Nicotinate and nicotinamide metabolism (B:

nicotinamide, NADP+, and nicotinate); (14) Phenylalanine metabolism (B: phenylalanine, 2-hydroxyphenylacetate and tyrosine); (15) Phenylalanine tyrosine and

tryptophan biosynthesis (B: phenylalanine and tyrosine); (16) Purine metabolism (C: xanthine and glutamine); (17) Pyruvate metabolism (B: pyruvate, lactate, fumarate

and acetate); (18) Valine, leucine and isoleucine biosynthesis (A: threonine and valine; B: threonine, leucine, isoleucine, and valine; C: valine and isoleucine).
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TABLE 5 | Summary of altered metabolites and their metabolic pathways associated with MPO gains in response to ET and HIIT, supported by the three levels of

evidence in the TIMES study.

Metabolic pathways# ET HIIT Reference Metabolism

Serum Muscle Serum Muscle

Alanine, aspartate and glutamate

metabolism

Asparagine, glutamine, citrate,

and succinate

Pyruvate Succinate Amino acid metabolism

Aminoacyl–tRNA biosynthesis Asparagine, histidine, glutamine,

glycine, methionine, threonine,

and valine

Valine Valine Translational process

Arginine and proline metabolism Guanidinoacetate, ornithine, and

creatine phosphate

Pyruvate Guanidinoacetate, creatine

phosphate and creatine

Amino acid metabolism

Arginine biosynthesis Ornithine and glutamine Amino acid metabolism

Butanoate metabolism 3–hydroxybutyrate and succinate Succinate Carbohydrate metabolism

Citrate cycle Succinate and citrate Pyruvate Carbohydrate metabolism

Glycine, serine and threonine

metabolism

Choline, betaine,

guanidinoacetate, glycine, and

threonine

Pyruvate Guanidinoacetate and creatine Amino acid metabolism

Glycolysis/Gluconeogenesis Pyruvate Carbohydrate metabolism

Glyoxylate and dicarboxylate

metabolism

Glycolate, citrate, glycine, and

glutamine

Glycolate and

pyruvate

Glycolate Carbohydrate metabolism

Histidine metabolism Histamine Amino acid metabolism

Pyruvate metabolism Pyruvate Carbohydrate metabolism

Valine, leucine and isoleucine

biosynthesis

Threonine Valine Valine Amino acid metabolism

MPO, Maximal power output; ET, Endurance training; HIIT, High–intensity interval training. #Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database.

TABLE 6 | Results of the multivariate linear regression model with stepwise selection for the MPO gains in response to training in the TIMES Study.

Models β B (95% CL) F–value Probability > F r2 Change r2 Model VIF

Model 1

Control Reference ———- ———- ———- ———- ———-

ET 0.89 59.6 (52.4; 66.8) 126.5 < 0.001 0.774 0.774 1.17

Skeletal muscle pyruvate −0.19 −30.9 (−48.8; −13.1) 96.2 < 0.001 0.069 0.842 1.22

Serum glutamine −0.16 −26.1 (−43.4; −8.7) 81.5 < 0.001 0.032 0.875 1.08

Serum creatine phosphate −0.17 −1,132.1 (−1,851.3; −412.9) 74.1 < 0.001 0.022 0.897 1.10

Skeletal muscle valine 0.16 16.3 (5.7; 27.0) 76.3 < 0.001 0.023 0.920 1.09

Model 2

Control Reference ———- ———- ———- ———- ———-

HIIT 0.83 60.3 (52.1; 68.5) 144.3 < 0.001 0.809 0.809 1.12

Skeletal muscle glycolate 0.21 10.0 (4.4; 15.6) 122.1 < 0.001 0.072 0.881 1.25

Serum creatine −0.12 −217.4 (−414.4; −20.3) 98.8 < 0.001 0.022 0.903 1.10

Serum creatine phosphate −0.12 −870.7 (−1720.3; −21.2) 83.0 < 0.001 0.012 0.915 1.19

MPO, Maximum power output; ET, Endurance training; HIIT, High–intensity interval training; β, Standardized coefficient; B, Unstandardized coefficient; VIF, Variance inflation fator.

In order to summarize the results, only the key metabolites,
supported by the three levels of evidence, will be discussed. In the
case of ET, these metabolites were serum glutamine and creatine
phosphate, skeletal muscle pyruvate and valine. Glutamine is
produced from the reaction of ammonia with glutamate, being
responsible for the transfer of nitrogen between organs or for
the synthesis of nucleotides, detoxification of ammonia and
maintenance of the acid-base balance in the kidneys, in addition
to serving as fuel for immune cells and signaling the regulation of

protein synthesis and degradation (Pérez-Sala et al., 1987; Hood
and Terjung, 1990; Newsholme et al., 2003). Previous studies
have shown higher circulating levels of glutamine in athletes
compared to sedentary people and after endurance training
(Kargotich et al., 2007), which were however lower in athletes
with overtraining (Rowbottom et al., 1995), pointing to glutamine
reduction as an indicator of training overload (Rowbottom et al.,
1995, 1996). Conversely, in the present study, there was a negative
association of changes in serum glutamine with MPO gains. This
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can be attributed to the greater degradation of amino acids during
prolonged fasting in LRE individuals, increasing the supply of
amine groups and the production of ammonia, precursors of
glutamine production. This hypothesis can be supported in part
by the inverse relationship observed also for essential amino acids
such as valine, threonine and histidine, and for the enrichment of
the metabolic pathway of alanine, glutamate and aspartate.

Creatine phosphate, on the other hand, is a molecule that
stores energy within the muscle and promotes the immediate
replenishment of ATP during intense exercise. Although
circulating creatine phosphate levels have rarely been reported
(Harris et al., 2004; Kalim et al., 2015), the present study identified
low concentrations (4–5µM) of thismetabolite in the circulation,
which, when changed by training, were negatively associated
with the trainability of CRF in both ET and HIIT programs.
Although the reasons for this result are not clear, it is possible to
speculate on the occurrence of cell damage promoted by the sum
of consecutive sessions performed in the last week of training
(Baird et al., 2012; Sureda et al., 2015) as a mechanism related
to the extravasation of the circulating creatine phosphate. This
hypothesis is based on previous studies demonstrating evidence
of cell damage due to the increase in creatine kinase observed
after up to eight wk of aerobic training (De Araujo et al., 2013), as
well as 24–48 h after successive sessions of acute aerobic exercise
(Baird et al., 2012), which corroborate with the adopted timing of
blood collection in the present study. Unfortunately, the creatine
kinase or creatine phosphate levels (quantified by other methods)
were not measured in this study, otherwise it would be possible
to confirm or refute this hypothesis.

Similarly, in the skeletal muscle, changes in pyruvate were
negatively associated with MPO gains. This result corroborates
findings from other studies that demonstrated a reduction in
pyruvate levels concomitantly with an increase in CRF after
moderate to vigorous aerobic training (Henderson et al., 2004;
LeBlanc et al., 2004; Huffman et al., 2014). The attenuated
production of pyruvate at rest after training has been attributed
to the improvement in the cellular energy supply (availability of
free ADP and AMP, and inorganic phosphate) and decrease in
the glycogenolysis rate, mediated by the decrease in the activity
of the pyruvate dehydrogenase complex, which is responsible for
decarboxylating pyruvate and supplying the citric acid cycle with
Acetyl-CoA (LeBlanc et al., 2004; Han et al., 2020). Additionally,
it is likely that the reduction in the amount of Acetyl-CoA
supplied by pyruvate and via glycogenolysis is being offset by
the amount derived from the oxidation of fatty acids (Nelson
and Cox, 2013). In accordance with these results, there was
also a positive association with changes in valine levels, an
essential branched-chain amino acid (BCAA) which is required
for protein synthesis in the skeletal muscle (Harper et al., 1984)
and MPO gains. The results found for both pyruvate and valine
in the skeletal muscle suggest that HRE individuals may benefit
from a more efficient mechanism of fatty acid oxidation and
muscle protein synthesis with aerobic training (Overmyer et al.,
2015; Li et al., 2018).

For HIIT, the key metabolites were serum creatine and
creatine phosphate, and skeletal muscle glycolate. Creatine is
synthesized in the liver and kidneys from guanidinoacetate,

derived from glycine and arginine, then it is then released into
the circulation and transported to the skeletal muscle, where it
will be stored as creatine phosphate serve as a source of rapid
ATP production during high-intensity exercise (Walker, 1979).
In this sense, there is evidence that the increased availability of
circulating creatine is associated with an improvement in CRF
indicators after HIIT programs (Graef et al., 2009; Kendall et al.,
2009). However, in the present study, the increase in creatine
levels was demonstrated concomitantly with the increase in its
guanidinoacetate precursor, suggesting an imbalance in creatine
metabolism (Walker, 1979) and possibly partially explaining
the negative association with changes in CRF shown by both.
Another point that should be highlighted is that high-intensity
exercise can promote changes in renal functions (Bellinghieri
et al., 2008). Thus, given that the kidneys are the main producers
of guanidinoacetate (Edison et al., 2007), monitoring renal
function markers may prove to be useful for understanding the
trainability of CRF in future studies.

Additionally, changes in the skeletal muscle glycolate,
involved in glyoxalate and dicarboxylate metabolism, were
positively associated with MPO gains. Glycolate is a glyoxalate
precursor that produces oxaloacetate, an intermediate in the
citric acid cycle (Miao et al., 2018). Although the relationship
betweenmuscle glycolate and the adaptations induced by exercise
or aerobic training in humans is not widely known (Castro
A., et al., 2019; Danaher et al., 2020), previous studies with
animal models corroborate the results obtained here, showing
greater activation of glyoxalate and dicarboxylate metabolism
in trained rats compared to sedentary ones (Starnes et al.,
2017), as well as in rats with high CRF compared to those
with low CRF (Falegan et al., 2017), in addition to a positive
association with increased fatigue resistance in rats submitted to
exhaustive aerobic exercise (Miao et al., 2018). It is tempting to
speculate that increased levels of glycolate may be associated with
an improved citrate cycle activity, via oxaloacetate production
derived from glyoxalate and dicarboxylate metabolism, perhaps
contributing to MPO gains regulation. In this sense, recently
studies have shown associations between baseline glyoxalate and
dicarboxylate metabolism activity with intrinsic (Castro et al.,
2021) and acquired MPO levels (Castro A., et al., 2019).

In summary, our results demonstrated that the inter-
individual variability of CRF in responses to ET and HIIT
programs seems to be primarily associated with the individual’s
potential to regulate fasting energy supply through amino acid
and carbohydrate metabolism. As we observed, there was a
decrease in metabolites indicatives of pyruvate metabolism and
glycolysis metabolism pretraining to post-training, as well as
of amino acid metabolism (arginine and proline metabolism,
glycine, serine and threonine metabolism, alanine, aspartate
and glutamate metabolism, and arginine biosynthesis), while
an increase in metabolites precursor of intermediates of the
citric acid cycle via glyoxylate and dicarboxylate metabolism
was found.

Some important limitations to present study should be
highlighted. Both training programs tested consisted of eight
wk of training, which is generally not sufficient to achieve the
maximum response to a given dose of exercise (Ross et al.,
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2015b). Thus, it is possible that the specific time needed to
achieve the physiological adaptations in each training program
(Astorino et al., 2013; Ross et al., 2015b; MacInnis and Gibala,
2017; O’Connor andMalone, 2019) contributed to the differences
observed in the association between mechanisms related to the
trainability of CRF between ET andHIIT. Diet was not controlled
during the entire experimental period. Since the participants
were not hospitalized, this type of control would be almost
impossible; however, all participants were constantly asked to
avoid major changes in nutritional habits, such as, changes that
would lead to substantial fluctuations in body weight. Despite
this, it is important to highlight that the variability of the
interindividual response of CRF or other biochemical health
markers is expected to happen regardless of diet (Bouchard
et al., 2012; Ross et al., 2015a,b). In addition, the results of
the present study are limited to two types of aerobic training,
so generalizations to other programs or different intensities
should be avoided, since variations in individual responses can
be protocol or dose-dependent (Huffman et al., 2014; Bonafiglia
et al., 2016; Joyner and Lundby, 2018; Williams et al., 2019). It
is important to consider that the moment of biopsy and blood
collection, 48 h after the last training session, may not represent
the optimal moment to investigate the chronic changes induced
by training in all identified metabolites. We also recognize that
our tertile-based classification of exercise responders will by
default result in 33% low and 33% high responders. In this
sense, these classification terminologies must be taken with
caution when comparing studies, as they reflect the distribution
of MPO gains values and context in the population of the TIMES
study. Most of previous studies have investigated the integrative
mechanisms of variability of individual CRF responses measured
by maximal oxygen uptake, but not necessarily referencing
MPO, which makes it difficult to compare with our findings.
However, MPO as a surrogate of CRF is known to present
low technical error and high test-retest reproducibility (Skinner
et al., 1999; Montero and Lundby, 2017). The TIMES study
cohort consists of healthy and sedentary young Caucasian men
which potentially limiting the generalizability of our results.
Replication studies are warranted. Lastly, some strengths of the
present study are that the results were based essentially on the
commonality among three levels of evidence minimizing the
occurrence of metabolites occasionally associated to the MPO
gains. Blood and muscle tissue were collected at fasting state
after a prior 12 h diet control. The explained variance of the
MPO gains was interpreted under the changes in key metabolites
adjusted by the effects caused by the intervention and absence of
intervention (random error) as previously recommended (Ross
et al., 2019).

CONCLUSION

This study has demonstrated distinct serum and skeletal
muscle metabolites between ET and HIIT programs, who’s
pretraining to post-training changes associated with the inter-
individual variability of CRF responses. Additionally, the panel of
pretraining to post-training changed metabolites also indicated
some similar pathways between ET and HIIT associated with

variability of CRF responses, suggesting the involvement of
amino acid and carbohydrate metabolism. These results provide
new insights to investigate the underlying changes in metabolism
that are determinant for inter-individual variability of CRF in
responses to ET and HIIT programs.
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