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Obesity is a common complication after craniopharyngioma therapy, occurring in up to
75% of survivors. Its weight gain is unlike that of normal obesity, in that it occurs even
with caloric restriction, and attempts at lifestyle modification are useless to prevent or treat
the obesity. The pathogenesis of this condition involves the inability to transduce afferent
hormonal signals of adiposity, in effect mimicking a state of CNS starvation. Efferent sympa-
thetic activity drops, resulting in malaise and reduced energy expenditure, and vagal activity
increases, resulting in increased insulin secretion and adipogenesis. Lifestyle intervention
is essentially useless in this syndrome, termed “hypothalamic obesity.” Pharmacologic
treatment is also difficult, consisting of adrenergics to mimic sympathetic activity, or sup-
pression of insulin secretion with octreotide, or both. Recently, bariatric surgery (Roux-en-Y
gastric bypass, laparoscopic gastric banding, truncal vagotomy) have also been attempted
with variable results. Early and intensive management is required to mitigate the obesity
and its negative consequences.
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INTRODUCTION
When it comes to brain tumors, the three laws of New York
real estate prevail: “Location, location, location.” Craniopharyn-
giomas are problematic less for what they are than for where they
are. The hypothalamus, as is true for most hormonal systems,
is the anatomic seat of peripheral energy regulation. When the
hypothalamus is damaged, a syndrome of intractable weight gain
ensues. This syndrome, termed “hypothalamic obesity,” originally
described by Babinski (1900) and Frohlich (1901) at the turn of the
twentieth century, documents the “organicity” of obesity. Hypo-
thalamic obesity can occur due to the tumor itself, the surgery to
extirpate it, or due to subsequent radiation therapy (Bray, 1984;
Lustig, 2002). Although this co-morbidity usually manifests in
children due to their increased incidence of tumors localized to
the posterior fossa (Stahnke et al., 1984; Sorva, 1988; Pinto et al.,
2000), adults can also exhibit similar weight gain after completion
of therapy (Daousi et al., 2005). Craniopharyngioma accounts
for half of the reported cases, with other posterior fossa tumors
each contributing smaller numbers. However, the syndrome has
also been reported in cases of pseudotumor cerebri, trauma, and
infiltrative or inflammatory diseases of the hypothalamus (Bray,
1984).

INCIDENCE AND RISK FACTORS
Hypothalamic obesity can occur in response to any hypothal-
amic damage. Most studies have been performed in the acute
lymphoblastic leukemia (ALL) survivor population (Lustig, 2002;
Rogers et al., 2005), in which obesity may be due to several factors,
including glucocorticoids and alterations in activity. Nonetheless,
the majority of these studies document an abnormal increase in
weight for height long after tumor therapy has been discontinued,

and many of these studies demonstrate that cranial radiation is an
important risk factor (Lustig, 2002).

An extremely high frequency of hypothalamic obesity of 30–
77% has been documented after craniopharyngioma treatment
(Stahnke et al., 1984; Sorva, 1988; Pinto et al., 2000; Muller, 2008;
Vinchon et al., 2009). We analyzed the BMI curves of 148 children
with brain tumors who survived longer than 5 years post-therapy,
in order to determine risk factors for the development of obe-
sity (Lustig et al., 2003a). We identified four parameters as being
predictive. First, those with tumors localized to the hypothalamus
or thalamus, along with those originating in the temporal lobe
(due to stereoscopic position of the hypothalamus during radia-
tion for this area) gained weight much more rapidly as did those
with tumors in the posterior fossa or other hemispheric areas.
Secondly, those with tumor histologies prominent in the dien-
cephalon (craniopharyngioma, germinoma, optic glioma, pro-
lactinoma, hypothalamic astrocytoma) also gained weight more
rapidly. Third, those with quantitative direct radiation exposure
of the hypothalamus of greater than 51 Gy gained excessive weight
twice as rapidly after the completion of tumor therapy, even when
those with hypothalamic or thalamic locations were removed from
the analysis. Lastly, those with some other form of hypothalamic
endocrinopathy (i.e., GH deficiency, hypothyroidism, precocious
or delayed puberty,ACTH deficiency, diabetes insipidus) exhibited
a BMI curve with a steeper upward slope. Thus, each significant
risk factor was either linked to hypothalamic location, damage, or
dysfunction. Factors not associated with obesity after tumor ther-
apy included hydrocephalus, initial high-dose glucocorticoids, and
peripheral or intrathecal chemotherapy.

More recently, Müller et al. (2011) respectively evaluated the
long-term outcome data on the Kraniopharyngeom database in
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Germany. In this analysis, pre-operative hypothalamic involve-
ment was specifically implicated in the development of post-
operative hypothalamic obesity, suggesting again that tumor
location is the most important risk factor for obesity.

THE ENERGY BALANCE NEGATIVE FEEDBACK PATHWAY
Animal studies elaborating the negative feedback energy balance
pathway have predicted the pathogenesis and symptomatology of
hypothalamic obesity. This can best be described as“organic leptin
resistance”; that is, a failure in leptin signaling in the afferent arm,
due to hypothalamic damage; leading to autonomic dysfunction in
the efferent arm, promoting inadequate energy expenditure, and
excessive energy storage.

THE AFFERENT ARM
Circulating leptin (derived from peripheral adipocytes) crosses
the blood–brain barrier, and synapses on receptors located on
neurons within the ventromedial hypothalamus [VMH; which
consists of the ventromedial nucleus (VMN) and arcuate nucleus
(AN)]. In the energy replete state, both insulin and leptin levels are
increased, which acts on a set of “anorexigenic”neurons to increase
the synthesis and processing of proopiomelanocortin (POMC)
in the VMH to its component peptides, including α-melanocyte
stimulating hormone (α-MSH) and its co-localized neuromodu-
lator cocaine–amphetamine regulated transcript (CART), both of
which act at the lateral hypothalamic area (LHA) and paraven-
tricular nucleus (PVN) to alter melanocortin receptor-4 (MC4R)
occupancy, which decreases appetite and food intake (Elmquist
et al., 1999; Kalra et al., 1999; Schwartz et al., 2000; Balthasar et al.,
2005). The stomach hormone ghrelin stimulates, while insulin and
leptin inhibit a set of “orexigenic” neurons to inhibit the release of
neuropeptide Y (NPY) and agouti-related protein (AgRP), further
limiting feeding and providing for unantagonized MC4R occu-
pancy (Elmquist et al., 1998). Immediately after a meal, ghrelin
levels are low, which prevents orexigenic neuronal activation and
NPY neurotransmission (Kamegai et al., 2000), keeping hunger at
a minimum; furthermore, PYY levels increase after a meal; this
hormone binds to the Y2 receptor on orexigenic neurons, acti-
vating gamma-amino butyric acid (GABA), which inhibits signal
transduction of NPY to inhibit further food intake (Small and
Bloom, 2004).

Conversely, in the fasting state, gastric secretion of ghrelin is
increased (Kamegai et al., 2000; Tschöp et al., 2000), while leptin,
insulin, and PYY levels are low, which leads to stimulation of the
orexigenic pathway (NPY/AgRP), and antagonism of the anorexi-
genic pathway (α-MSH/CART). The resultant lack of anorexigenic
pressure on the MC4R results in increased feeding behavior and
energy efficiency (with reduced fat oxidation), in order to store
energy substrate as fat. This is accomplished through signal trans-
duction within the efferent pathway, consisting of the sympathetic
nervous system (SNS) and the vagus (see below).

THE EFFERENT ARM
From the PVN and LHA, efferent projections synapse in the locus
coeruleus (LC), which controls the SNS; and in the dorsal motor
nucleus of the vagus (DMV), which controls the vagus nerve, the
chief output of the parasympathetic nervous system.

In the energy replete state, elevated leptin and insulin lev-
els cause the anorexigenic arm to activate the SNS (Muntzel
et al., 1994; Vollenweider et al., 1995; Rahmouni et al., 2003).
Stimulation of β2-adrenergic receptors by the SNS (Blaak et al.,
1993) increase the expression of numerous genes in skeletal mus-
cle (Viguerie et al., 2004), which promote mitochondrial bio-
genesis, glycogenolysis, thermogenesis, and increased movement
(Boss et al., 1999; Lowell and Spiegelman, 2000), all associ-
ated with increased energy expenditure (Collins et al., 1996).
The SNS also activates α2a- and α2c-adrenoreceptors on the β-
cell, which stimulate Gi and inhibit adenyl cyclase, lower cAMP,
and maintain potassium channels in an open configuration with
a negative resting membrane potential (Sharp, 1996), in order
to reduce pancreatic insulin secretion, and thus reduce energy
deposition into adipose tissue. Lastly, SNS activation stimulates
the β3-adrenergic receptor on the adipocyte to promote lipol-
ysis (Susulic et al., 1995). These coordinate sympathetic events
serve to reduce adipose tissue leptin expression and secretion;
thus this forms a negative feedback loop with the afferent system
(Figure 1).

Conversely, in the fasting state, leptin and insulin are low, lead-
ing to reduced SNS tone, and reduced skeletal muscle thermogen-
esis, and reduced adipose tissue lipolysis. In addition, the LHA and
PVN send efferent projections residing in the medial longitudinal
fasciculus to the DMV nerve (Powley and Laughton, 1981). By
slowing the heart rate, the vagus reduces myocardial oxygen con-
sumption. Through its effects on the alimentary tract, the vagus
promotes peristalsis, and energy substrate absorption. Through its
effects on the adipocyte, the vagus promotes increased lipoprotein
lipase activity to increase the clearance of energy substrate into adi-
pose tissue (Boden and Hoeldtke, 2003). Lastly, through effects on
the β-cell (D’Alessio et al., 2001), the vagus accentuates postpran-
dial insulin hypersecretion in response to a meal, which promotes
energy deposition into the adipocyte (Rohner-Jeanrenaud and
Jeanrenaud, 1985; Marin et al., 1988; Peles et al., 1995; Lustig,
2003). Overactive vagal neurotransmission increases insulin secre-
tion through three distinct but overlapping mechanisms (Gilon
and Henquin, 2001; Figure 2):

1. Vagal firing increases acetylcholine availability and binding to
the M3 muscarinic receptor on the β-cell, which is coupled to a
sodium channel within the pancreatic β-cell membrane (Miura
et al., 1996). As glucose enters the β-cell after ingestion of a
meal, the enzyme glucokinase phosphorylates glucose to form
glucose-6-phosphate. This increases the generation of intracel-
lular ATP, which induces closure of the β-cell’s ATP-dependent
potassium channel. Upon channel closure, the β-cell experi-
ences an ATP concentration-dependent β-cell depolarization
(Nishi et al., 1987; Zawalich et al., 1989), and the opening of a
separate voltage-gated calcium channel within the membrane.
Intracellular calcium influx increases acutely, which results in
rapid insulin vesicular exocytosis. Concomitant opening of the
sodium channel by vagally derived acetylcholine augments the
β-cell depolarization, which augments the intracellular calcium
influx, and results in insulin hypersecretion (Berthoud and
Jeanrenaud, 1979; Komeda et al., 1980; Rohner-Jeanrenaud and
Jeanrenaud, 1980).
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FIGURE 1 | Neuroendocrine regulation of energy balance. The afferent
system: neural (e.g., vagal) and hormonal (ghrelin, insulin, leptin) signals
are generated from the liver, gut, pancreas, and adipose. In addition,
norepinephrine from the locus cœruleus and serotonin (5-HT) from the
median raphe are elaborated. These signals of satiety vs. hunger, and
thinness vs. fatness are interpreted in the ventromedial hypothalamus
(VMH). These signals are then integrated in the paraventricular nucleus
(PVN) and lateral hypothalamus (LHA). The efferent system: efferent

signals from these areas in turn stimulate the sympathetic nervous
system (SNS) to expend energy by activating β3-adrenergic receptors and
uncoupling proteins in the adipocyte, to release energy the form of
lipolysis, heat, or physical activity. Conversely, the parasympathetic
nervous system (efferent vagal) increases insulin secretion, with resultant
adipogenesis and energy storage, and also increases insulin sensitivity
through direct effects on the adipose tissue (Lustig, 2006). From Nature
Publishing Group, with permission.

2. Vagally mediated acetylcholine increases phospholipases A2, C,
and D, within the β-cell, which hydrolyze intracellular phos-
phatidylinositol to diacylglycerol (DAG) and inositol triphos-
phate (IP3; Gilon and Henquin, 2001). DAG is a potent stim-
ulator of protein kinase C (PKC; Tian et al., 1996) which
phosphorylates myristoylated alanine-rich Protein Kinase C
substrate (MARCKS), which then binds actin and calcium–
calmodulin, and induces insulin vesicular exocytosis (Arbuzova
et al., 1998). IP3 potentiates release of calcium within β-cells

from intracellular stores, which also promotes insulin secretion
(Blondel et al., 1994).

3. The vagus also stimulates the release of glucagon-like peptide-1
(GLP-1) from intestinal L-cells, which circulates and binds to
the β-cell GLP-1 receptor. Activation of this receptor induces a
calcium–calmodulin-sensitive adenyl cyclase, with generation
of cAMP, which activates protein kinase A (PKA), stimulating
phosphorylation of vesicular proteins, with resultant insulin
exocytosis (Kiefer and Habener, 1999).
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FIGURE 2 | Central regulation of leptin signaling, autonomic

innervation of the adipocyte and β-cell, and the starvation response.

(A) The arcuate nucleus transduces the peripheral leptin signal as one of
sufficiency or deficiency. In leptin sufficiency, efferents from the
hypothalamus synapse in the locus coeruleus, which stimulates the
sympathetic nervous system. In leptin deficiency, efferents from the
hypothalamus stimulate the dorsal motor nucleus of the vagus. (B)

Autonomic innervation and hormonal stimulation of white adipose tissue. In
leptin sufficiency, norepinephrine binds to the β3-adrenergic receptor, which
stimulates hormone-sensitive lipase, promoting lipolysis of stored
triglyceride into free fatty acids. In leptin deficiency, vagal acetylcholine
increases adipose tissue insulin sensitivity (documented only in rats to
date), promotes uptake of glucose and free fatty acids for lipogenesis, and
promotes triglyceride uptake through activation of lipoprotein lipase. (C)

Autonomic innervation and hormonal stimulation of the β-cell. Glucose
entering the cell is converted to glucose-6-phosphate by the enzyme
glucokinase, generating ATP, which closes an ATP-dependent potassium
channel, resulting in cell depolarization. A voltage-gated calcium channel
opens, allowing for intracellular calcium influx, which activates
neurosecretory mechanisms leading to insulin vesicular exocytosis. In
leptin sufficiency, norepinephrine binds to α2-adrenoceptors on the β-cell
membrane to stimulate inhibitory G proteins, decrease adenyl cyclase and
its product cAMP, and thereby reduce protein kinase A levels and insulin
release. In leptin deficiency, the vagus stimulates insulin secretion through
three mechanisms. First, acetylcholine binds to a M3 muscarinic receptor,
opening a sodium channel, which augments the ATP-dependent cell
depolarization, increasing the calcium influx, and insulin exocytosis.
Secondly, acetylcholine activates a pathway that increases protein kinase C,
which also promotes insulin secretion. Thirdly, the vagus innervates L-cells
of the small intestine, which secrete glucagon-like peptide-1, which
activates protein kinase A, contributing to insulin exocytosis. Octreotide
binds to a somatostatin receptor on the β-cell, which is coupled to the
voltage-gated calcium channel, limiting calcium influx and the amount of
insulin released in response to glucose. (Lustig, 2007; reprinted with kind
permission of Humana, Totowa, NJ, USA). α2-AR, α2-adrenergic receptor;
β3-AR, β3-adrenergic receptor; AC, adenyl cyclase; ACh, acetylcholine; DAG,
diacylglycerol; DMV, dorsal motor nucleus of the vagus; FFA, free fatty
acids; Gi, inhibitory G protein; GK, glucokinase; GLP-1, glucagon-like

(Continued)

FIGURE 2 | Continued

peptide-1; GLP-1R, GLP-1 receptor; Glu-6-PO4, glucose-6-phosphate; Glut4,
glucose transporter-4; HSL, hormone-sensitive lipase; IML,
intermediolateral cell column; IP3, inositol triphosphate; LC, locus
coeruleus; LHA, lateral hypothalamic area; LPL, lipoprotein lipase;
MARCKS, myristoylated alanine-rich protein kinase C substrate; NE,
norepinephrine; PIP2, phosphatidylinositol; PKA, protein kinase A; PKC,
protein kinase C; PLC, phospholipase C; PVN, paraventricular nucleus;
SSTR5, somatostatin-5 receptor; TG, triglyceride; VCa, voltage-gated calcium
channel; VMH, ventromedial hypothalamus; SUR, sufonylurea receptor
(Lustig, 2006). From Nature Publishing Group, with permission.

In this way, the afferent system is entrained with the efferent
system by an intricate servo-mechanism to coordinate central and
peripheral signals either for appetite and energy storage, or satiety
and energy expenditure.

PATHOGENESIS OF HYPOTHALAMIC OBESITY
Rat models of hypothalamic damage, either due to bilateral elec-
trolytic lesions or deafferentation of the VMH, lead to intractable
weight gain (Berthoud and Jeanrenaud, 1979; Rohner-Jeanrenaud
and Jeanrenaud, 1980; Bray et al., 1981; Jeanrenaud, 1985; Satoh
et al., 1997), even upon food restriction (Bray and Nishizawa,
1978). Similarly, children with hypothalamic obesity exhibit
weight gain, even in response to forced caloric restriction (Bray
and Gallagher, 1975). This seems paradoxical, as one would expect
that if hyperphagia were the reason for the obesity, then caloric
restriction would be effective in preventing further weight gain. In
fact, analysis of energy intake in children with hypothalamic obe-
sity demonstrates no difference vs. control patients with simple
obesity (Harz et al., 2003). Instead, both resting energy expendi-
ture (Shaikh et al., 2008) and voluntary energy expenditure (Harz
et al., 2003) is severely compromised in these patients. Indeed,
the most prominent and concerning complaint in patients with
hypothalamic obesity is the persistent fatigue, lack of energy,
and lack of physical activity. This generalized malaise is not
due to hypopituitarism, as it persists even after full hormonal
replacement.

The decrease in energy expenditure is mediated through sup-
pression of SNS activity by the hypothalamic damage. Recent
reports demonstrate an impaired ability of such patients to mount
an epinephrine response to insulin-induced hypoglycemia (Schofl
et al., 2002; Coutant et al., 2003), and document decreased 24-h
epinephrine excretion (Coutant et al., 2003), along with decreased
urinary homovanillic acid and vanillylmandelic acid (Roth et al.,
2007); all pointing to decreased sympathetic tone. It is thought
that this malaise and decrease in sympathetic tone may account
for decreased rates of lipolysis through the adipocyte β3-adrenergic
receptor (al-Adsani et al., 1997), which results in decreased resting
and voluntary energy expenditure.

In addition to “organic leptin resistance,” it is possible that such
patients also manifest “organic ghrelin resistance,” in that ghre-
lin’s suppression of hunger may be attenuated in children with
hypothalamic obesity (O’Gorman et al., 2911). This may increase
total food intake; although alterations in total food intake in these
patients is not different from otherwise healthy obese controls
(Harz et al., 2003).
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DIAGNOSIS
A retrospective analysis of growth records of children with cranio-
pharyngioma (Muller et al., 2004) indicates that increased weight
and BMI gain is evident even before the diagnosis of the tumor.
However, after surgery or radiotherapy, the weight gain is imme-
diate, rapid, and highly exaggerated. Evidence of aberrant energy
deposition is obvious within the first month. Physicians sometimes
confuse this weight gain with glucocorticoid effect, and reduce
the dose of maintenance hydrocortisone, which does not impact
the obesity, and renders the patient with even more fatigue and
malaise.

Children with hypothalamic obesity frequently have normal
fasting insulin levels, especially during the rapid weight gain phase.
It is important that such metabolic testing be dynamic, as the
phenomenon that distinguishes hypothalamic obesity is insulin
hypersecretion, not insulin resistance, and so may not be obvious
with a fasting insulin level. In addition, stimulation of the alimen-
tary tract so as to activate the vagal efferent component of insulin
secretion is required to document the effect. Two sets of studies
on insulin dynamics demonstrate insulin hypersecretion (as mea-
sured by an increased Corrected Insulin Response, or CIR; Sluiter
et al., 1976) on oral glucose tolerance testing (OGTT); and surpris-
ingly these patients also have insulin sensitivity (as measured by
an increased Composite Insulin Sensitivity Index (Matsuda and
DeFronzo, 1999) within the normal range, and certainly better
than BMI-matched healthy obese children (Preeyasombat et al.,
2005; Simoneau-Roy et al., 2010; Figure 3). However, other studies
suggest that some hypothalamic obesity patients may also mani-
fest signs of metabolic syndrome (Tiosano et al., 2003; Srinivasan
et al., 2004). These patients may also have an increased incidence
of obstructive sleep apnea, which may predispose them to the co-
morbidities of the metabolic syndrome (O’Gorman et al., 2010).
It is not clear whether those patients with both hypothalamic obe-
sity and metabolic syndrome represent a subgroup, or a different
pathogenetic phenomenon entirely, or just the late evolution of
their morbid obesity. A retrospective evaluation suggests that the
degree of hypothalamic involvement of the tumor at its presen-
tation predicts the degree of metabolic disturbance (Müller et al.,
2011), though mechanisms for the metabolic alteration are still
unclear.

TREATMENT
The best treatment is prevention. The hypothalamus is extremely
sensitive to both surgical intervention and/or external beam radi-
ation (Lustig et al., 2003a). Rather than employing gross total
or subtotal resection as a primary therapy for some posterior
fossa tumors, newer strategies have been developed which treat
them more conservatively, using stereotactic biopsy and confor-
mal irradiation (Karavitaki et al., 2006; Spoudeas et al., 2006). A
retrospective single-institutional followup of craniopharyngioma
subjected either to gross total resection or stereotactic surgery
and conformal radiation demonstrates equal survival and residual
rates of hypopituitarism; however those treated with gross total
resection exhibit higher incidences of obesity and neurological
complications (Merchant et al., 2002).

Bray demonstrated the futility of lifestyle intervention by not-
ing weight gain even with severe caloric restriction (Bray and

FIGURE 3 | Scatterplot of insulin secretion (Corrected Insulin

Response, or CIRgp) vs. sensitivity (Composite Insulin Sensitivity

Index, or CISI) plotted logarithmically in 113 obese non-diabetic

children. A negative linear correlation was noted (r = −0.54, p < 0.001).
Different racial and etiopathogenic groups tended to plot in different areas.
Arbitrary cutoffs (dashed lines) for CIRgp (1.5) and CISI (1.7) divide the plot
into four quadrants. The majority of Caucasian children (open squares)
plotted in the lower right quadrant, with a CIRgp less than 1.5 and a CISI
greater than 1.7, indicating lower insulin secretion and better insulin
sensitivity. The preponderance of children with hypothalamic obesity (gray
squares) plotted in the upper right quadrant, with a CIRgp of greater than
1.5, and with a CISI of greater than 1.7, indicating insulin hypersecretion with
better insulin sensitivity. Finally the majority of African American children
(filled squares) plotted in the upper left quadrant, with a CIRgp of greater
than 1.5 and a CISI of less than 1.7, indicating both insulin hypersecretion
and resistance (Preeyasombat et al., 2005). From Elsevier, with permission.

Gallagher, 1975). Thus, treatment needs to be early and inten-
sive to have any chance at success. A recent report suggests that
intensive lifestyle can reduce the rate of BMI gain by half (from
8.4 kg/m2/year to 4.5 kg/m2/day), but the rate of increase is still
quite unacceptable to rely on (Rakhshani et al., 2010).

PHARMACOTHERAPY
Since the hypothalamus is not amenable to therapy, and aberrant
afferent hormonal signal transduction cannot be corrected, phar-
macotherapy must instead address the alterations in the efferent
pathways. Several attempts to use serotonin or norepinephrine
reuptake inhibitors (e.g., phen–fen, fluoxetine, sibutramine) have
been met with only salutary efficacy (Molloy et al., 1998). One
study assessed the effects of sibutramine 10–15 mg PO qd, with
a small but reproducible effect in BMI (Danielsson et al., 2007);
however, sibutramine has been withdrawn from the market. These
medications work centrally to reduce food intake, but do not
work peripherally to stimulate skeletal muscle to increase energy
expenditure, and thus have limited value. Mason et al. (2002)
used dextroamphetamine 5 mg PO bid, which acts both centrally
and peripherally, and achieved weight stability for an interval of
6 months. We have also seen improvement in affect and alertness,
which is a major benefit of dextroamphetamine.

In an attempt to reduce hyperinsulinemia, Hamilton have
attempted to treat patients with a combination of diazoxide and
metformin (Hamilton et al., 2011). Weight gain over 6 months was
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reduced as compared to pre-treatment; however, side-effects were
significant, including edema, and there were some discontinua-
tions.

In an attempt to reduce hyperinsulinemia and simultaneously
enhancing insulin action, we examined the effects of the somato-
statin analog octreotide (an agonist of the somatostatin-5 receptor
on the β-cell, which inhibits the voltage-gated calcium channel;
Figure 2). A pilot, open-label trial of octreotide 15 μg/kg/day sub-
cutaneously for 6 months in eight subjects (Lustig et al., 1999)
demonstrated BMI loss commensurate with the degree of insulin
suppression, along with decrease in caloric intake, and subjec-
tive improvements in spontaneous physical activity and quality
of life. A double-blind, placebo-controlled trial of 20 subjects
(Lustig et al., 2003b) resulted in insulin suppression and stabiliza-
tion of BMI, decreased leptin, decreased caloric intake, increased
spontaneous physical activity, and improvement in quality of life
commensurate with the degree of insulin suppression. A retro-
spective analysis demonstrated that octreotide was most effective
in those patients who exhibited both insulin hypersecretion with
continued insulin sensitivity (Preeyasombat et al., 2005).

SURGERY
The severity and morbidity of obesity in these patients, and the rel-
ative lack of alternatives, have led to attempts at bariatric surgery.
Inge et al. (2007) reported a 25-kg weight loss after Roux-en-Y

gastric bypass in one subject, but whose weight stabilized at
an unacceptable level. Recently, Müller et al. (2007) reported in
abstract form his experience with four subjects who underwent
laparoscopic adjustable gastric banding, with reductions in food
intake and slow reductions in BMI. Lastly, vagotomy may be
effective in this syndrome (Smith et al., 1983), by reducing the
efferent output to both beta-cells and adipocytes. We have recently
performed laparoscopic truncal vagotomy in four subjects with
hypothalamic obesity, with early results being supportive of this
procedure, and with relatively few complications or side-effects
(Lustig et al., 2009).

SUMMARY
The hypothalamus interprets afferent signals for energy balance,
and transduces them into autonomic efferent signals to either
expend or store energy. When this negative feedback system breaks
down, as after craniopharyngioma therapy, the phenomenon of
hypothalamic obesity ensues. While this disorder is a defect in the
afferent pathway, treatment focuses on the efferent pathway, as it
is modulable with drugs and surgical techniques that are currently
available. Physicians need to explain the risks of this disorder to
patients prior to tumor therapy, and must be willing to act quickly
and decisively once the intractable weight gain begins, in order
to provide intensive management so that the obesity will not get
worse.
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