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ENSO elicits opposing responses 
of semi-arid vegetation between 
Hemispheres
Anzhi Zhang1, Gensuo Jia1, Howard E. Epstein2 & Jiangjiang Xia1

Semi-arid ecosystems are key contributors to the global carbon cycle and may even dominate the 
inter-annual variability (IAV) and trends of the land carbon sink, driven largely by the El Niño–Southern 
Oscillation (ENSO). The linkages between dynamics of semi-arid ecosystems and climate at the 
hemispheric scale however are not well known. Here, we use satellite data and climate observations 
from 2000 to 2014 to explore the impacts of ENSO on variability of semi-arid ecosystems, using the 
Ensemble Empirical Mode Decomposition method. We show that the responses of semi-arid vegetation 
to ENSO occur in opposite directions, resulting from opposing controls of ENSO on precipitation 
between the Northern Hemisphere (positively correlated to ENSO) and the Southern Hemisphere 
(negatively correlated to ENSO). Also, the Southern Hemisphere, with a robust negative coupling 
of temperature and precipitation anomalies, exhibits stronger and faster responses of semi-arid 
ecosystems to ENSO than the Northern Hemisphere. Our findings suggest that natural coherent 
variability in semi-arid ecosystem productivity responded to ENSO in opposite ways between 
two hemispheres, which may imply potential prediction of global semi-arid ecosystem variability, 
particularly based on variability in tropical Pacific Sea Surface Temperatures.

The terrestrial ecosystem sink of anthropogenic carbon dioxide (CO2) emissions helps mitigate climate change 
by slowing the increase of atmospheric CO2 concentrations1. Its large year-to-year variability in responding to 
climate leads to major uncertainties in estimating the magnitude of this sink2. The linkages between terrestrial 
ecosystems and climate must be better explored to reduce the uncertainties in estimating the land carbon sink, 
to help fill the gaps in the global CO2 budget2, and to better understand the impacts of climate variability on 
inter-annual variations of the global carbon cycle3,4. Semi-arid ecosystems, with scarcity of water related to low 
precipitation and high evapotranspiration, are particularly susceptible and vulnerable to climate fluctuation and 
changes5–7, especially drought8–10. Meanwhile, global semi-arid areas are projected to expand in the future11. 
Semi-arid ecosystems have been shown to be key contributors to the inter-annual variability of the global (GL) 
carbon cycle3, and may even dominate the variability and trend of the global land carbon sink4, which could be 
attributed to increased ecosystem productivity of Southern Hemisphere (SH) semi-arid vegetation3,4,12; but a 
comprehensive analysis of the differential responses of the Northern Hemisphere (NH) and SH semi-arid eco-
systems is lacking.

Productivity of semi-arid vegetation is mainly constrained by precipitation (P), and further limited by tem-
perature (T) in middle latitudes6,13. Its inter-annual anomalies are clearly linked to water availability, and are 
therefore controlled by precipitation and temperature anomalies4,13,14. Global variabilities in precipitation and 
temperature are to a great extent driven by ENSO4,15, one of the most prominent year-to-year natural climate 
phenomena with a global influence that fluctuates between anomalously warm (El Niño) and cold (La Niña) 
conditions in the tropical Pacific16,17. However, the heterogeneity of relationships between variability of climate 
and semi-arid terrestrial ecosystem productivity is not well understood18. Here, we investigate the linkages among 
ENSO, precipitation and temperature anomalies, and vegetation activity of semi-arid areas in both the Northern 
and Southern Hemispheres (Supplementary Fig. 1), using monthly climate and satellite observations from 2000 to 
2014, to improve our understanding of the interactions between climate change and the terrestrial carbon cycle.
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To quantify the impacts of ENSO on semi-arid ecosystems, we examined the geographic patterns of trends 
in Precipitation Condition Index (PCI), Vegetation Condition Index (VCI), precipitation (P), temperature (T), 
and Normalized Difference Vegetation Index (NDVI) anomalies, as well as their correlations with the Niño3.4 
index (Fig.1, see also Supplementary Fig. 2). PCI and VCI are normalized so that they are spatially comparable 
and independent from absolute values. The climate variables exhibit interesting spatial patterns, i.e., an opposite 
hemispheric patterns for precipitation - a positive correlation with ENSO in the NH (wetting) and a negative 
correlation with ENSO in the SH (drying) (Fig. 1a,b,e,f); however, ENSO also has more positive correlation 
with temperature in both hemispheres (warming), although this is substantially stronger in the SH (Fig. 1c,d). 
Widespread areas of vegetation production (VCI: 41.5%; NDVI: 42.9%) in the SH show significant negative cor-
relations with ENSO, whereas the NH has larger extents of positive correlations (Fig. 1g,i and Table 1). The NH 
area with significant greening trends is almost twice as large as the area with significant browning trends for both 
vegetation indicators (VCI, NDVI); browning areas of the SH are only slightly greater in extent than greening 
areas (Fig. 1h,j and Table 1).

We find prevailing correspondences of the same sign between precipitation and vegetation productivity for 
both trends and inter-annual variability (red and blue area in Supplementary Fig. 3), with greater areal percent-
ages of correlation in the SH compared to the NH (Supplementary Table 1). We also see opposite signs in the 
correlation as well as trends between precipitation and temperature, especially in the SH (Supplementary Fig. 4). 

Figure 1.  Spatial patterns of correlations and linear trends over global semi-arid areas from 2000 to 
2014. (a,c,e,g,i) The correlations between monthly mean Niño3.4 index and Climate Research Unit (CRU 
TS3.23) precipitation anomaly (P anomaly, a), temperature anomaly (T anomaly, c), TRMM precipitation 
condition index (PCI, e), MODIS vegetation condition index (VCI, g) and NDVI anomaly (i). (b,d,f,h,j) The 
linear trends of P anomaly (b; mm yr−​1), T anomaly (d; °C yr−​1), TRMM PCI (f; yr−​1), MODIS VCI (h; yr−​1) 
and NDVI anomaly (j; yr−​1) are shown in the right panels. The PCI, VCI and NDVI anomaly are unitless. 
Statistically significant of trends and correlations (values lower or greater than 0.1484) at the 95% significance 
level (P <​ 0.05) are indicated in red or dark green color. Note that the values are classified into two categories as 
negative and positive. The maps were created by the ArcMap 10.1 (http://www.esri.com/software/arcgis/arcgis-
for-desktop).
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The heterogeneous correspondences reveal complex responses of vegetation to changes in climate variables (e.g. 
those related to ENSO). Also, there may not necessarily be direct causal relationships between the controls on 
inter-annual variability and those on longer-term trends (Supplementary Fig. 5); in other words, a strong rela-
tionship between a climatic variable and inter-annual variation in vegetation productivity does not necessar-
ily suggest that there will be an equally strong relationship between that variable and the trend in vegetation 
productivity. Whereas vegetation trends have been previously associated with temporal span19, numerous other 
factors can influence long term trends20, including the lagged responses of regional vegetation to precipitation 
and temperature6, extreme climate events (e.g. the record greening over the SH in 20113,15), human interventions 
and land cover changes21, and the CO2 fertilization effect18. The areal extent of the greening trend is larger than 
that of increased precipitation in the NH, but the extent of browning in the SH is equivalent to extent of drying. 
This could be due to intrinsic characteristics of semi-arid vegetation with regard to capitalization on increased 
precipitation yet being relatively resistant to drought18, in other words, abrupt greening and gradual browning in 
response to climate variability7.

We further investigated the temporal linkages between ENSO and hemispheric semi-arid ecosystem dynamics 
in terms of inter-annual variability (Supplementary Table 2, and Fig. 6–7), by applying the Ensemble Empirical 
Mode Decomposition (EEMD) approach22 on the regionally averaged time series. Semi-arid ecosystems show 
coherent variability (Fig. 2a–c) with regard to climate and vegetation. Greater precipitation and increased veg-
etation productivity were associated with warmer El Niño conditions for the NH, while the SH exhibits the 
opposite pattern – reduced precipitation and decreased vegetation productivity were linked to warm El Niño23. 
Precipitation and vegetation greenness had significantly positive correlations with ENSO in terms of variability 
for the NH. Both precipitation and vegetation productivity responded to ENSO with evident time lags; P, PCI, 
VCI, and NDVI anomalies were lagged by approximately 5, 3, 8, and 7 months in the NH, respectively (Fig. 3 and 
Supplementary Table 3). In contrast, significantly negative correlations are found between ENSO and these pre-
cipitation and vegetation indices in the SH, with lagged responses to ENSO by 2, 2, 3, and 3 months, respectively 
(Supplementary Fig. 8b). Vegetation variability in semiarid regions are controlled by drought, and generally tend 
to respond to drought with lagged effects24, while vegetation in the mid-latitude NH shows longer responses to 
drought than in low latitudes where most of the SH occupied25. The quicker responses of SH precipitation to 
ENSO than NH precipitation, indicates differential lagged effects of ENSO impacts on semi-arid ecosystems. 
The significantly positive correlations between ENSO and temperature found in the SH, occur with maximum 
correlations of ENSO leading temperature by 2 months (Fig. 3).

Vegetation responded in similar ways to precipitation in both hemispheres, however temperature exhibited 
the opposite effect on semi-arid vegetation, showing strong, negative controls in the SH, but weaker, positive 
controls in the NH (Supplementary Fig. 9). Clearly, precipitation plays the dominant role in controlling veg-
etation variability for semi-arid ecosystems globally6,10,13. Furthermore, ENSO likely resulted in greater water 
deficit in SH semi-arid ecosystems due to the combined effects of low precipitation and increased heat stress 
(Supplementary Fig. 10), and further intensified fluctuations of vegetation productivity than in the NH (Fig. 3).

We performed cross correlation analyses between original time series of Nino 3.4 index and land surface 
variables (P/T anomalies, PCI, VCI and NDVI anomalies) at the pixel scale. We further performed the EEMD 
analyses for P/T anomalies and PCI in space; however, VCI and NDVI anomalies were excluded as a result of 
missing data during winter time, especially over mid-latitudes in the NH (see more details in methods and 
Supplementary Fig. 11).

The NH had greater areas with significant positive correlations for all variables in both original and varia-
bility, whereas the SH had areas dominated by significant negative correlations except for temperature (Fig. 4). 
We find higher percentages of regions with significant correlations (both negative and positive) for EEMD 
extracted variability than for the original time series for all variables (Fig. 4), as a result of increased correlations 

(a) Correlation 
(R) GL NH SH

variable R < 0 R > 0 R < 0 R > 0 R < 0 R > 0

P anomaly 10.3 11.5 2.3 16.5 27.2 1

T anomaly 7.4 31.2 10.1 16.4 1.8 62.6

PCI 12.6 15.4 1.6 71.3 35.1 0.7

VCI 23.8 16.1 15.2 19.7 41.5 8.7

NDVI anomaly 22.4 15.7 12.4 19.2 42.9 8.4

(b) Trend (S) GL NH SH

variable S < 0 S < 0 S < 0 S < 0 S < 0 S < 0

P anomaly 5.2 7.4 3.4 10.5 8.2 1.1

T anomaly 7.9 23.8 8 22 7.5 25.4

PCI 10.0 8.0 8.9 9.7 12.3 4.5

VCI 21.0 31.7 17.3 33.8 28.6 24.2

NDVI anomaly 20.9 31.4 17.4 34.5 27.9 25.0

Table 1.   Statistic summary of correlations between monthly Niño3.4 index and variables (a), and linear 
trends (b) for semi-arid areas. The percentages (%) of pixels with statistically significant (p <​ 0.05) negative and 
positive correlations/trends are listed.
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in absolute values for the variability, showing a clear spatial pattern of semi-arid ecosystem responses to ENSO 
(Supplementary Fig. 12–15). Areas with significant cross correlations showed similar characteristics of lag times, 
generally with the greatest proportions within lag time of 6 months. Furthermore, the areas with significant corre-
lation in the SH were greater than that in the NH, supporting previous findings that indicated more heterogeneous 
responses of the NH semi-arid ecosystems to ENSO. The PCI had higher correlation and more significant areas 
compared to the CRU TS3.23 precipitation (positive in the NH, negative in the SH) (Supplementary Fig. 12–13).

Semi-arid regions over most of Australia, Central Asia, and the northwestern USA had quick responses to 
ENSO in precipitation (time-lag effect is within 1–2 months), while Southern Africa responded to ENSO with the 
longest time lag of 5–6 months (Fig. 5 and Supplementary Fig. 16). However, variability in temperature showed 
6-month delayed responses to ENSO in large areas in Central Asia and North Africa (Fig. 5). The vegetation 
responses to ENSO with longer lags than precipitation or temperature did (Supplementary Fig. 16), while precip-
itation and vegetation responded to ENSO faster and more strongly in the SH (Fig. 4), suggesting a chain of ENSO 
effects on semi-arid ecosystems.

Apparently, ENSO shows key and reverse controls over precipitation and vegetation greenness for hemispheric 
semi-arid ecosystems, with faster responses over SH (Fig. 3), largely driven by strong and quick atmospheric tel-
econnections with ENSO in the tropical Pacific bordering areas; while the teleconnections decreased and lagged 
in areas remote from the Pacific16,26,27, related to different responses of atmospheric circulation and sea surface 
temperature (SST) to ENSO28,29. Interestingly, ENSO exhibits the greatest tropical Pacific SST anomalies usually 
in boreal winter, and has its strongest impacts on semi-arid ecosystems during the local summer time for both 
hemispheres, suggesting the potential for predicting semi-arid ecosystem productivity using tropical Pacific SST 
anomalies16.

SH semi-arid ecosystems, with strong coupling between precipitation and temperature anomalies, exhibit 
robust negative and rapid responses to ENSO, however, greening occurred in response to La Niña conditions in 
recent years. Combined with more heterogeneous connections between ENSO and the NH semi-arid ecosystems, 
this results in the dominant contribution of SH semi-arid ecosystems to the global carbon cycle3,4,15. However, the 
contributions of NH semi-arid ecosystems to global carbon cycling may not be ignored. As semi-arid ecosystem 

Figure 2.  Variability extracted using the Ensemble Empirical Mode Decomposition (EEMD) method 
across semi-arid areas from 2000 to 2014. (a), Temporal evolution of variability for monthly mean Niño3.4 
index (olive shading), Climate Research Unit (CRU TS3.23) precipitation anomaly (P anomaly, green line), 
temperature anomaly (T anomaly, red line), TRMM precipitation condition index (PCI, cyan line), MODIS 
vegetation condition index (VCI, orange line) and NDVI anomaly (blue line) over Global (GL) semi-arid areas. 
(b,c), As in a, but for the Northern Hemisphere (NH) and Southern Hemisphere (SH) semi-arid areas. The PCI, 
VCI and NDVI anomaly are unitless.
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productivity is greater during El Niño events and reduced during La Niña for the NH, and the reverse for the SH, 
the dominant carbon sink will move from one hemisphere to the other as ENSO shifts between warm and cold 
events. This would lead to substantial hemispheric variability, but potentially more sustained variability of global 
semi-arid ecosystem. Within the ENSO cycle, SST usually peaks during boreal winter, and sometimes declines 
rapidly to cold conditions, as what happened between 2009 and 2011. Following high productivity conditions for 
both hemispheres, the immediate response in the SH to La Niña and the delayed response of the NH to El Niño, 
combined to yield the extraordinary 2011 land carbon sink (Fig. 3)3,15.

Our analysis, based on climate data and satellite observations, reveals a natural hemispheric dichotomy for the 
control of ENSO on the variability of semi-arid vegetation productivity. The stronger and more rapid response to 
ENSO in the SH, along with robust coupling of precipitation and temperature anomalies, as well as the lagged and 
contrasting NH responses, combined contribute to the global carbon sink for semi-arid ecosystems. Our findings 
together with previous studies3,4,15, indicate that semi-arid ecosystems play an important role in estimating and 
predicting the variability in the global carbon cycle, with robust response to ENSO. Results from this and previous 
studies may suggest the potential for prediction of semi-arid ecosystem variability, especially based on variability 
in tropical Pacific SSTs. ENSO is a rather predictable climate phenomenon12, and it will likely continue to be 
the dominant climate signal for inter-annual variability with more extreme El Niño and La Niña events under 
global warming in the future 17,27,30. More research is needed to investigate the regional differentiation in connec-
tions between ENSO characteristics (El Niño or La Niña; frequency or intensity; asymmetry and extremes) and 
semi-arid ecosystem vegetation productivity, as well as interactions and feedbacks under greenhouse warming 
scenarios.

Methods
Study area.  The Global (GL) semi-arid areas investigated in this study are confined as areas with the 
Humidity Index between 0.2 and 0.5, based on ratio of annual precipitation and potential evapotranspiration 

Figure 3.  The Ensemble Empirical Mode Decomposition (EEMD) extracted variability of the NH and SH 
semi-arid areas’ CRU TS3.23 P anomaly, T anomaly, TRMM PCI, MODIS VCI and NDVI anomaly (a), and 
their cross correlations with Niño3.4 index (b). Positive lags mean variables lagging of NH to Niño3.4 (red 
lines), SH to Niño3.4 (green lines), and SH to NH (blue lines), respectively. Significance levels (p >​ 0.05) are 
shown in grey shading.
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within latitude band 50°N–S (http://geodata.grid.unep.ch/)5. The semi-arid area covers 13,320,200 km2 in NH, 
approximately 1.86 times as in SH.

Climate data.  The 0.5° resolution monthly mean temperature (TMP) and precipitation total (PRE) data-
sets from the Climate Research Unit (CRU TS3.23; 1950-2014) are used in this study (http://badc.nerc.ac.uk/
browse/badc/cru/data/cru_ts/cru_ts_3.23)31. The monthly precipitation (P) and temperature (T) anomalies were 
obtained relative to the 1961–1990 climatology. The monthly area average of Sea Surface Temperature (SST) over 
the Niño3.4 region (the eastern equatorial Pacific of 5°N–5°S and 170°W–120°W) were got from the Climate 
Prediction Center (CPC: http://www.esrl.noaa.gov/psd/data/correlation/nina34.data) based on the Extended 
Reconstructed Sea Surface Temperature (ERSST) v3b. The Niño3.4 index of SST anomalies relative to monthly 
mean of February 2000–August 2014 was used to donate the ENSO properties.

Figure 4.  Statistic summary for percentages (%) of pixels with statistically significant (p < 0.05) cross 
correlations (R) between Niño3.4 index and variables for Original time-series and EEMD extracted 
Variability over NH and SH semi-arid areas. (a,c,e,g,h) The areal percentages between original monthly mean 
Niño3.4 index and Climate Research Unit (CRU TS3.23) precipitation anomaly (P anomaly, a), temperature 
anomaly (T anomaly, c), TRMM precipitation condition index (PCI, e), MODIS vegetation condition index 
(VCI, g) and NDVI anomaly (h). (b,d,f) The statistics between EEMD extracted Variability of monthly mean 
Niño3.4 index and Climate Research Unit (CRU TS3.23) precipitation anomaly (P anomaly EEMD, b), 
temperature anomaly (T anomaly EEMD, d), TRMM precipitation condition index (PCI EEMD, f). Positive lags 
mean that the Niño3.4 SST anomaly is leading.

http://geodata.grid.unep.ch/
http://badc.nerc.ac.uk/browse/badc/cru/data/cru_ts/cru_ts_3.23
http://badc.nerc.ac.uk/browse/badc/cru/data/cru_ts/cru_ts_3.23
http://www.esrl.noaa.gov/psd/data/correlation/nina34.data
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Remote sensing data and process.  We use the globally validated Moderate Resolution Imaging 
Spectroradiometer (MODIS) products of Normalized Difference Vegetation Index32 (NDVI; MOD13C2: 
monthly, February 2000–August 2014) and land cover classification33 with scheme defined by the International 
Geosphere Biosphere Programme (IGBP) for 2012 (MCD12C1 V051) at 0.05° spatial resolution. Both of the data 
were obtained from https://lpdaac.usgs.gov/. The MODIS NDVI product has been corrected against atmosphere, 
clouds and aerosols (more details in the product description of MOD13C2). The NDVI has been extensively used 
to quantify vegetation productivity and changes over global13,34,35, especially over semi-arid areas, where perform 
the best based on quality assessment34. The anomalies were obtained relative to monthly mean of February 2000–
August 2014. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 
3B43 dataset (version 7) provides validated and high quality quasi-global (50°N–S) monthly precipitation esti-
mates from multiple satellites as well as gauge analyses where feasible at 0.25° spatial resolution36, limiting our 
study area from 50°N to 50°S. The dataset were downloaded from http://mirador.gsfc.nasa.gov/.

The dry and wet spell are inferred by the Precipitation Condition Index (PCI)37 and Vegetation Condition Index 
(VCI)38, derived from the following equations based on monthly MODIS NDVI and TRMM precipitation data.

=
−
−

PCI TRMM TRMM
TRMM TRMM (1)

i min

max min

=
−
−

VCI NDVI NDVI
NDVI NDVI (2)

i min

max min

The variables were linearly scaled from 0 to 1 (corresponding to the precipitation/vegetation changes from 
extremely low to high) for each pixel based on monthly value (TRMM precipitation/NDVIi), absolute minimum 
(TRMM precipitation/NDVImin) and maximum values (TRMM precipitation/NDVImax) for the same month from 
February 2000 to August 2014.

The Ensemble Empirical Mode Decomposition.  The variability was extracted using the Ensemble 
Empirical Mode Decomposition (EEMD) approach22, a method based on the original EMD algorithm39. The 
EEMD is a noise-assisted, adaptive, and temporal local data analysis method for analysing any nonlinear and 
nonstationary time series. In EEMD, time series of regional averaged variables are decomposed into meaningful 
components on different timescales, while the last component is the nonlinear trend. According to the time scales 
of each components (Supplementary Table 2; calculated as in reference40), we summed the components of time 

Figure 5.  Spatial patterns of maximum cross correlations (R) and time lags between EEMD extracted 
variability of Niño3.4 index and variables over global semi-arid areas from 2000 to 2014. (a,c,e) The 
maximum correlations between monthly mean Niño3.4 index and Climate Research Unit (CRU TS3.23) 
precipitation anomaly (P anomaly, a), temperature anomaly (T anomaly, c), TRMM precipitation condition 
index (PCI, e). (b,d,f) The corresponding time lags of P anomaly (b), T anomaly (d), TRMM PCI (f) are shown 
in the right panels. Significance levels (p >​ 0.05) are shown in grey shading. Note that the values are calculated 
from lag times from 0 to 6 months. Time lags mean variables lagging of Niño3.4. The maps were created by the 
ArcMap 10.1 (http://www.esri.com/software/arcgis/arcgis-for-desktop).

https://lpdaac.usgs.gov/
http://mirador.gsfc.nasa.gov/
http://www.esri.com/software/arcgis/arcgis-for-desktop
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period longer than one year to represent inter-annual variability (IAV). In EEMD calculation, the noise added 
to data has amplitude of 0.2 standard deviations of the corresponding data and the ensemble number is 1000 as 
suggested22. To better understand the spatial connections between ENSO and variables of semi-arid ecosystems, 
the EEMD approaches were also performed pixel-by-pixel over global semi-arid regions for CRU TS3.23 monthly 
precipitation (P) and temperature (T) anomalies, and TRMM PCI. EEMD decompositions were not applied to 
MODIS VCI and NDVI anomaly in space, due to large percentage of missing data during winter time especially 
over NH mid-latitudes (Supplementary Fig. 11). The details of EEMD approach and process can be found in the 
references. The first and last 6 months of the variability and trends results are excluded to eliminate the minor 
influence of end effect by EEMD.

Correlation and trend analysis.  This study focuses on changes of semi-arid ecosystems and their rela-
tionship with ENSO. The spatial patterns of the Pearson’s correlation coefficient were calculated between Niño3.4 
index and land surface variables (P/T anomalies, PCI, VCI and NDVI anomalies); and the linear trend was esti-
mated using ordinary least squares method for the same time period. Furthermore, lagged correlations were 
calculated between variables for original and EEMD extracted variability at pixel scale and regional averaged time 
series. The time period of correlation was February 2000–August 2014 for all variables. The significance levels 
of linear correlation and trend (p value) were calculated using a two-tailed Student’s t-test and a non-parametric 
Mann-Kendall test, respectively. Finally, the statistics of linear correlation and trend for the spatial distributions 
and regional averages were summarized to qualify their concurrent and lagged association.
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