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Hypothalamic KLF4 mediates leptin’s effects
on food intake via AgRP
Monica Imbernon 1,2, Estrella Sanchez-Rebordelo 1,2, Rosalia Gallego 3, Marina Gandara 3, Pamela Lear 1,
Miguel Lopez 1,2, Carlos Dieguez 1,2,*, Ruben Nogueiras 1,2,*
ABSTRACT

Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that
hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic
KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate
nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in
lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean
and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats.

� 2014 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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1. INTRODUCTION

Krüppel-like factor 4 (KLF4) is a zinc-finger-containing transcription
factor that binds to GC-rich DNA with a consensus binding sequence of
CACCC [1,2]. KLF4 contains both transcriptional activation and
repression domains, and thereby activates and represses gene
expression [3]. KLF4 regulates multiple biological functions, including
cell proliferation and differentiation. Its importance is highlighted by the
fact that its germ-line deletion leads to postnatal lethality due to severe
dehydration [4]. KLF4 is expressed predominantly in the gastrointes-
tinal tract (especially the colon and small intestine), but also in a wide
range of cell types [5]. In the brain, KLF4 is expressed in neural stem
cells [6] and is critical to neuronal differentiation [7]. Recent evidence
suggests that KLF4 also plays an important role in the central regu-
lation of energy balance. In vitro studies show that KLF4 is a tran-
scriptional regulator of agouti-related protein (AgRP) and that
pharmacological activation of AgRP is abrogated when KLF4 is down-
regulated [8]. Accordingly, GT1-7 cells transfected with a mouse KLF4
construct show a significant increase in AgRP message expression [9].
AgRP neurons are located within the hypothalamic arcuate nucleus
(ARC), which contains two neural populations that are crucial to the
regulation of food intake. In one of these populations, neurons co-
express neuropeptide Y (NPY) and AgRP, both potent stimulators of
food intake, while an adjacent set of ARC neurons co-express proo-
piomelanocortin (POMC) and cocaine- and amphetamine-regulated
transcript (CART), both of which suppress food intake [10]. The cells
of both populations respond to signals pertaining to long- and short-
term energy status in the animal. The fact that AgRP neuronal
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projections are mostly restricted to brain areas involved in energy
balance has made AgRP an attractive target for pharmacological in-
hibition in relation to energy balance. Numerous reports postulate that
AgRP neurons are essential to the hyperphagic response: central
administration of AgRP stimulates feeding [11], ablation of AgRP
neurons suppresses food intake [12e14], and optogenetic [15] or
pharmacogenetic [16] stimulation of cells expressing AgRP induces
feeding. Genetic deletion of AgRP neurons, however, has only a slight
effect on energy balance, which has been attributed to developmental
compensation [17]. Indeed, post-embryonic ablation of AgRP neurons
leads to a marked decrease in food intake, probably due to the
resulting dysregulation in GABA signalling [18,19].
The in vivo regulation of AgRP neurons depends on several tran-
scription factors including forkhead box protein 01 (FoxO1) [20], uracil
nucleotide/cysteinyl leukotriene receptor (Gpr17) [21], the hypotha-
lamic homeobox domain transcription factor Bsx [22], signal trans-
ducer and activator of transcription 3 STAT3 [23] and diencephalon/
mesencephalon homeobox 1 (Dmbx1) [24]. Since in vitro studies show
that KLF4 can directly control AgRP promoter activity [8], we sought to
investigate the in vivo role of this transcription factor. Using gain- and
loss-of function virogenetic approaches, we have demonstrated that
induction of KLF4 in the ARC increases feeding behaviour and weight
gain through the specific stimulation of AgRP. Over-expression of KLF4
in the ARC was sufficient to completely block the suppression of caloric
intake and weight gain caused by leptin in lean rats. Consistent with
those data, genetic inhibition of KLF4 in the ARC of lean and high fat
diet (HFD)-fed rats suppressed fasting-induced increases in food
intake. However, down-regulation of KLF4 in the ARC of HFD-fed rats
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did not reverse HFD-induced leptin resistance. Overall, these findings
demonstrate that KLF4 participates in the physiological regulation of
feeding by mediating the effects of leptin.

2. MATERIAL AND METHODS

2.1. Animals
For all experiments, 8- to 10-week-old (250e300 g) male Sprague
Dawley rats were housed in individual cages under conditions of
controlled temperature (23 �C) and illumination (12 h light/12 h dark
cycle). They had ad libitum access to water and standard laboratory
chow, unless otherwise stated. For all surgical procedures rats were
anesthetized by an intraperitoneal (IP) injection of ketamineexylacine
anaesthetics (80 mg/kg and 8 mg/kg of body weight, respectively). To
determine how food deprivation influenced KLF4 protein levels, three
groups of animals were used: a control group was fed ad libitum, an
two additional experimental groups were deprived of food for 12 h or
48 h. To study the effect of fasting-induced food intake on hypotha-
lamic KLF4 levels, an overnight fasting was performed before
measuring food intake during 2 h. To study how leptin modulates KLF4
protein levels, one group of rats received an IP injection of vehicle
(NaHCO3 100 mM, pH 7.9) or recombinant rat leptin (1 mg/kg; provided
by Dr A. F. Parlow, National Hormone and Peptide Program, Harbor-
UCLA Medical Center, Torrance CA). Additionally, 8-week-old wild
type (WT) and leptin-deficient (ob/ob) littermate mice were purchased
from Charles River Laboratories International Inc., and sacrificed one
week after their arrival at our animal facilities. DIO rats were fed on
HFD (65% fat content, Research Diets) for 15 weeks and their body
weight and food intake measured weekly. All experiments and pro-
cedures were reviewed and approved by the Ethics Committee of the
University of Santiago de Compostela, in accordance with EU guide-
lines for the use of experimental animals.

2.2. Stereotaxic microinjection of adenoviral and lentiviral
expression vectors
Rats were placed in a stereotaxic frame (David Kopf Instruments,
Tujunga, CA) and one of the following vectors injected with a 25-gauge
needle (Hamilton): either adenoviral vectors over-expressing GFP (con-
trol) or KLF4 (1� 1010 PFU/ml each; SignaGen Laboratories, MD, USA);
or lentiviral vectors over-expressing shRNA against KLF4, shRNA against
FOX01, or GFP (control). (shRNA KLF4 clone ID: TRCN0000095370;
5.3� 106 TU/mL; shRNA FOX01 clone ID: TRCN0000054879, Sigmae
Aldrich Inc., Buchs, Switzerland). The coordinates used to reach the ARC
were AP: �2.8, Lat: �0.3, DV: �10.2. The incision was closed with
sutures and rats were kept warm until fully recovered.

2.3. Body composition, locomotor activity and indirect calorimetry
Energy expenditure, respiratory quotient (RQ) and locomotor activity
were measured as previously described [25]. Body composition was
measured using NMR imaging (Whole Body Composition Analyzer;
EchoMRI).

2.4. Leptin central pathway studies
Intracerebroventricular (ICV) cannulae were implanted in the lateral
ventricle as described previously [26], and after complete recovery the
rats were randomly allocated into four groups. For inhibition of the STAT3
pathway, rats were fasted overnight (12 h) and then given a single ICV
infusion of either vehicle (saline) or 75 pmol STAT3 peptide inhibitor
(STAT3 PI, Calbiochem). 30min later, rats received either vehicle (10mM
NaHCO3, pH 7.9) or 3 mg of leptin, as described previously [27,28]. For
inhibition of the phosphatidylinositide 3-kinase (PI3K) pathway, a similar
442 MOLECULAR METABOLISM 3 (2014) 441e451 � 2014 The Authors. Published by
protocol was followed, using either vehicle (DMSO) or 1 nmol PI3K in-
hibitor (LY294002; SigmaeAldrich), as described previously [29].
19 min later, either vehicle or 3 mg of recombinant rat leptin was
administered. 30min after leptin administration, rats were sacrificed and
the ARC was dissected out using micropunches and a dissecting mi-
croscope, as previously [30]. Accuracy of ARC dissection was assessed
in terms of protein levels of the ARC-specificmarker AgRP. Dissections of
the ventromedial hypothalamus (VMH) and the lateral hypothalamus
(LHA) were also performed, and their accuracy assessed by steroido-
genic factor 1 (SF1) protein levels.

2.5. Leptin sensitivity assays
IP leptin was injected as described previously [31], at 1 mg/kg body
weight, a dose reported to reduce caloric intake and body weight in rats
[32]. Vehicle (100 mM NaHCO3, pH 7.9) was used in control animals. To
study central leptin pathways and their influence on KLF4, rats were
sacrificed after 90min; to assess peripheral effects of leptin, food intake
and body weight were measured 24 h after IP administration.

2.6. Immunohistochemistry
Diaminobenzidine (DAB) immunohistochemistry, GFP immunofluores-
cence and double labelling were performed as previously described
[25,30]. Paraffin sections of (4 mm) were consecutively incubated with
a primary antibody against KLF4 (Cell Signalling) and AgRP (Abcam).
The specificity of the antibodies was demonstrated by substitution of
the second primary antibody with NRS; substitution of the second
primary antibody with GFAP (Dakopatts) which was localized to
different cell types (astrocytes) than KLF4 or AgRP (neurons) used as
the first primary antibodies that showed no colocalization of the
immunofluorescence signal (data not shown).

2.7. In situ hybridization
In situ hybridization assays were performed to visualize hypothalamic
mRNA expression of KLF4, AgRP, NPY, POMC and CART, as previously
described [33].

2.8. Western blotting
Total protein was extracted from liver, epididymal white adipose tissue
(WAT) and ARC as previously described [34]. Briefly, total protein ly-
sates from WAT (30 mg) and ARC (12 mg) were subjected to immu-
noblotting, as previously described [25], and probed with the
antibodies to the following: acetyl CoA carboxylase (ACC), phospho-
ACC-Ser79 (pACC) (Upstate); FOX01, phospho-FOX01 (pFOX01),
KLF-4, STAT3, phospho-STAT3 (pSTAT3) and phospho-hormone-
sensitive lipase (Ser-660) (Cell Signalling); AgRP, glutamatic acid
decarboxylase 65 (GAD65), glutamatic acid decarboxylase 67 (GAD67)
and vesicular GABA transporter (VGAT) (Abcam); NPY and b-actin
(SigmaeAldrich); fatty acid synthase (FAS) (H-300), HSL, lipoprotein
lipase (LPL) (H-53) and SF1 (Santa Cruz Biotechnology). 6e8 samples
per animal group were used, and protein levels were normalized to b-
actin for each sample.

2.9. Liver triglyceride content
The extraction procedure for liver triglycerides (TG) was performed as
described previously [25]. TG content of each sample was measured
using a colorimetric assay (Spinreact).

2.10. Statistical analysis and data presentation
Data are expressed as mean � SEM. mRNA and protein data are
expressed in relation (%) to control (vehicle-treated) rats. Statistical sig-
nificance was determined using Student’s t-test to compare two groups.
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p < 0.05 was considered significant. Two-way ANOVA was used to
examine interactions between variables when two factors were analysed.

3. RESULTS

3.1. Nutritional status and leptin regulate KLF4 protein levels in the
hypothalamic arcuate nucleus
KLF4 and AgRP were colocalized in the hypothalamic arcuate nucleus
(ARC) (Figure 1A). Quantification of co-expression of KLF4 and AgRP
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shows that 85 � 0.2% of KLF4 neurons expressed AgRP and that
93� 2% of AgRP neurons expressed KLF4 (Figure 1B). However, KLF4
and GFAP did not show colocalization in the ARC (Figure 1C). We first
hypothesized that if KLF4 binds to a specific CACCC-box in the AgRP
promotor [8], hypothalamic KLF4 should be modulated by nutritional
status and leptin. Using in situ hybridization we observed that KLF4
mRNA expression was expressed in the hypothalamic ARC
(Supplementary Figure 1A). To further assess the relevance of this
finding we dissected out the ARC and assessed its protein levels. ARC
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and VMH dissections were corroborated by protein levels of their
specific markers, AgRP in the ARC (Supplementary Figure 1B) and SF1
in the VMH (Supplementary Figure 1C). Colocalization studies of AgRP
and KLF4 showed a high degree of neuronal co-expression in the ARC
(Figure 1A and B), whereas KLF4 and GFAP were not colocalized within
the same hypothalamic area (Figure 1C). Western blotting showed that
within the ARC, KLF4 protein levels were increased after 12 h and 48 h
fasting as compared with rats fed ad libitum (Figure 1D). These data
were corroborated by immunohistochemistry (Figure 1E), with an
increased intensity of immunostaining being observed in the ARC of
fasted rats as compared with rats fed ad libitum (Figure 1F).
Because fasting is a hypoleptinemic state, we next tested whether
leptin, one of the predominant hormones known to inhibit the activity of
AgRP neurons, affected hypothalamic KLF4 levels. We found that IP
administration of leptin decreased KLF4 levels in the ARC after 90 min
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in rats, but, by contrast, in leptin-deficient (ob/ob) mice ARC KLF4
protein levels were significantly increased (Figure 1G). We hypothe-
sized that these effects were mediated by STAT3 and/or PI3K, since
leptin seems to be an important modulator of hypothalamic KLF4 and
both the STAT3 and PI3K signalling pathways are essential modulators
of the anorectic action of leptin [35]. To address the role of central
STAT3 signalling in mediating the effects of leptin on KLF4, we used a
cell-permeable phosphopeptide-specific inhibitor of the STAT3 sig-
nalling pathway (STAT3 PI), which is normally activated by the long
form of the leptin receptor [27]. Rats received, first, a single ICV
infusion of either vehicle or STAT3 PI, and 30 min later, a second ICV
infusion of either vehicle or leptin. Inhibition of the STAT3 signalling
pathway in this way prevented the decrease in KLF4 protein levels
caused by leptin in controls in the ARC (Figure 2A). Inhibition of the
PI3K signalling pathway using the PI3K inhibitor LY294002 [28,29]
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similarly prevented leptin-induced suppression of KLF4 protein
expression (Figure 2B). Importantly, the inhibition of STAT3 (Figure 2C)
or PI3K (Figure 2D) did not themselves cause any alteration in KLF4
protein levels in the ARC.

3.2. Over-expression of KLF4 in the hypothalamic arcuate nucleus
increases food intake and body weight through stimulation of AgRP
Since KLF4 is located in AgRP neurons and is regulated by nutritional
status and leptin, we next investigated whether specific over-
expression of KLF4 in the ARC would be sufficient to affect food
intake and body weight. Stereotaxic injection of adenoviruses over-
expressing KLF4 into the ARC (Figure 3A) showed that the over-
expression of KLF4 in this specific nucleus (Figure 3B) increased
total food intake (Figure 3C) and body weight (Figure 3D) over a 5-day
period. These transient effects on food intake and body weight are
probably explained by the limited length of action of the adenoviruses.
The gain of weight was consistent with an increased fat mass
(Figure 3E) without any significant change in lean mass (Figure 3F).
These effects were sufficiently explained by the hyperphagia, because
energy expenditure, locomotor activity and respiratory quotient
remained unaltered in the same period following KLF4 over-
expression (Supplementary Figure 2). In rats in which adenoviral
injections did not reach the ARC no differences in food intake or body
weight were observed, suggesting that KLF4 acts specifically in the
ARC (Supplementary Figure 3). Consistent with their increase in fat
mass, rats injected in the ARC with adenoviruses over-expressing
KLF4 also showed larger adipocytes (Supplementary Figure 4A) and
higher levels of FAS and lipoprotein (LPL) in WAT than rats injected
with empty viruses (Supplementary Figure 4B). No differences in
hepatic TG levels were detected between the two groups
(Supplementary Figure 4C).
To ascertain which hypothalamic neuropeptides were triggered by
over-expression of KLF4, we next assessed ARC levels of AgRP, NPY,
POMC and CART. Thus, we found that the over-expression of KLF4
produced a significant up-regulation of AgRP mRNA expression,
whereas other key neuropeptides regulating food intake, such as
CART, NPY and POMC, were not affected (Figure 3G). These data,
obtained by in situ hybridization, were corroborated by western blot-
ting, with a significant increase being observed in AgRP but not NPY
protein levels (Figure 3H). Additionally, we also found that the levels of
GABA synthesizing enzymes glutamate decarboxylase 65 and 67
(GAD65 and GAD67) and vesicular GABA transporter (VGAT) were
decreased in the ARC after over-expression of KLF4 (Figure 3H).

3.3. Activation of KLF4 in the hypothalamic arcuate nucleus blunts
leptin sensitivity in rats fed a chow diet
Given the data thus far, showing KLF4 to be regulated by leptin and to
stimulate both in vivo AgRP expression and food intake, we next hy-
pothesized that hypothalamic KLF4 modulates leptin sensitivity. To test
this, we used an adenovirus to over-express KLF4 in the ARC for 4 days
and then delivered IP leptin or its vehicle, following a published pro-
tocol [31]. As expected, in control rats treated with the empty virus the
subsequent peripheral administration of leptin decreased 24 h-food
intake (Figure 4A) and body weight (Figure 4B). However, over-
expression of KLF4 in the ARC completely blocked leptin’s subse-
quent actions on both feeding and body weight (Figure 4A and B).
FoxO1 is a transcription factor that directly regulates AgRP expression
[20], and its genetic ablation in AgRP neurons leads to reduced food
intake and fat mass [21]. FoxO1 is, moreover, a critical modulator of
leptin sensitivity [21,36]. Therefore, we next evaluated any potential
relationship between FoxO1 and KLF4 in modulating leptin sensitivity.
MOLECULAR METABOLISM 3 (2014) 441e451 � 2014 The Authors. Published by Elsevier GmbH. This is an o
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As expected, after 90 min peripheral administration of leptin increased
phosphorylation of FoxO1 (pFoxO1) in the ARC of control rats
(Figure 4C). Similarly, leptin also triggered pFoxO1 in rats over-
expressing KLF4 in the ARC (Figure 4C), indicating that manipulation
of KLF4 had not altered FoxO1 activity. Consistently, over-expression of
KLF4 in the ARC did not modify FoxO1 protein levels in the ARC
(Figure 4D). Next, we examined the effect of FoxO1 down-regulation in
the ARC on leptin sensitivity, using lentiviral FoxO1 shRNA stereotax-
ically injected into the ARC and leptin administered peripherally. The
efficiency of the stereotaxic injections in the ARC was corroborated by
immunostaining of GFP (Figure 4E). FoxO1 protein levels were indeed
decreased, whereas KLF4 protein levels remained unaffected in the
ARC after the stereotaxic injection of the FoxO1 shRNA lentiviruses,
(Figure 4F). The inhibition of FoxO1 blunted the anorexigenic action of
leptin (Figure 4G). However, as shown in Figure 4G, leptin decreased
KLF4 protein levels in the ARC of both control rats and in rats injected
with lentiviral FoxO1 shRNA (Figure 4H).

3.4. Hypothalamic KLF4 does not mediate leptin resistance in diet-
induced obesity
A hallmark of HFD-induced obesity is leptin resistance. Leptin sig-
nalling in the hypothalamus is blunted in rats fed a HFD [37]. Since
KLF4 is a key modulator of leptin’s actions on food intake and body
weight, we next hypothesized that hypothalamic KLF4 contributes to
the development of HFD-induced leptin resistance. To test this, we
initially measured KLF4 protein levels in the ARC of rats fed a chow diet
and rats fed a HFD (Figure 5A) but we failed to detect significant dif-
ferences between these two groups. Then, we used a lentivirus
encoding a KLF4 shRNA to inhibit expression of KLF4 specifically within
the ARC (Figure 5B). We predicted that chronic inhibition of KLF4 would
restore leptin sensitivity in HFD-fed leptin-resistant rats. First, we
demonstrated that the lentiviral KLF4 shRNA was able to inhibit the
hyperphagic response in rats pre-fasted overnight when the animals
were fed a chow diet (Figure 5C). The reduced hyperphagia was
consistent with a specific decrease in AgRP mRNA expression
(Figure 5D). Chronic inhibition of KLF4 in the ARC of rats fed a chow
diet did not cause any alteration in cumulative food intake, body weight
or fat mass (Supplementary Figure 5A and B). However, weekly
measurements indicated that there was a significant decrease in the
body weight gain after the third week (Supplementary Figure 5A and
B). In order to investigate if the down-regulation of KLF4 in the ARC
was able to modulate leptin sensitivity, we injected intraperitoneally
leptin in rats 3 weeks after the stereotaxic delivery of lentiviral KLF4
shRNA into the ARC of rats fed a chow diet. However, our data indi-
cated that the lower levels of KLF4 in the ARC did not modify leptin
sensitivity, since rats injected with empty lentiviruses showed similar
food intake (Figure 5E) and body weight (Figure 5F) to rats injected with
lentiviral KLF4 shRNA.
Finally, to study the role of KLF4 in DIO rats, we injected lentiviral KLF4
shRNA into the ARC of HFD-fed rats. Similar to a chow diet, rats fed a
HFD and then administered lentiviral KLF4 shRNA (three weeks after
one single lentiviral injection) showed a decreased hyperphagic
response after overnight pre-fasting (Figure 6A). Chronic inhibition of
KLF4 in the ARC of HFD-fed rats also did not cause any alteration in
food intake, body weight or fat mass (Supplementary Figure 5C and D).
When we challenged DIO rats with exogenous IP leptin at a dose that
reduced caloric intake and body weight in lean rats, leptin failed to
inhibit hypothalamic KLF4 expression (Figure 6B). To explore whether
silencing KLF4 in the ARC altered whole-body leptin sensitivity, we
measured food intake 24 h after IP leptin administration. As expected,
leptin failed to suppress food intake in DIO rats treated with the empty
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Figure 6: Effect of KLF4 down-regulation on 2 h food intake after 12 h of fasting (A). KLF4 protein levels in the ARC of DIO rats treated with leptin (B). Effect of peripheral leptin (1 mg/kg) or vehicle
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lentivirus. We also found that DIO rats treated with the lentiviral KLF4
shRNA remained leptin resistant (Figure 6C).

4. DISCUSSION

This study establishes the relevance of KLF4 as an in vivo transcription
factor involved in energy homeostasis. More specifically, two lines of
evidence support this conclusion: first, hypothalamic KLF4 is regulated
by nutritional status and by leptin in a FoxO1-independent manner; and
second, viral-mediated over-expression of KLF4 triggers AgRP levels
and blunts the anorectic action of leptin in lean rats.
The importance of AgRP neurons in the control of energy balance has
led to several investigations of their mechanisms of action, projections
to and from other neural populations, and the signalling pathways that
modulate AgRP expression [38]. The transcription factor KLF4 is one of
the most recently discovered activators of AgRP. In vitro studies
involving over-expression or silencing of KLF4 have shown that KLF4 is
required for activation of AgRP [8,39]. In vivo, a compound named PMI-
5011 has also been found to activate both KLF4 and AgRP expression;
however, PMI-5011 also activated hypothalamic orexin and melanin-
concentrating hormone, stimulating food intake by that route [8].
Two important issues have remained unanswered: first, in which cell
types KLF4 is located within the hypothalamus and, second, whether
specific manipulation of KLF4 in vivo is sufficient to control AgRP
activity and AgRP-stimulated food intake, nutrient partitioning and body
weight [26,40,41]. We now report that KLF4 is predominantly located
in the ARC and, within this hypothalamic site, is localized to AgRP
neurons. Consistent with its previously reported regulation of AgRP
expression [42], our data also show that KLF4 protein levels in the ARC
are increased after fasting and down-regulated by leptin.
MOLECULAR METABOLISM 3 (2014) 441e451 � 2014 The Authors. Published by Elsevier GmbH. This is an o
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To further test the capacity of KLF4 to modulate AgRP in vivo, we
injected viral vectors that over-express KLF4 into the ARC, and found
that animals carrying these viruses ate more and gained more weight
than their controls, but that neither energy expenditure nor respiratory
quotient changed significantly. This KLF4-induced food intake could
only be explained by increased levels of AgRP, because levels of the
other known relevant neuropeptides in the ARC, namely NPY, CART or
POMC, were unaffected by KLF4 over-expression. Interestingly, we
found that the levels of the GABA synthesizing enzymes GAD65 and
GAD67 as well as the vesicular GABA transporter (VGAT) were
decreased in the ARC after over-expression of KLF4. Since mice
lacking vesicular GABA transporter in AgRP neurons are lean and
resistant to obesity [43], we initially expected that the over-expression
of KLF4 would increase the synthesis and/or transport of GABA.
However, the decreased levels of GAD65, GAD67 and VGAT observed
in the ARC after over-expression of KLF4 suggest that: a) KLF4 actions
on feeding and body weight do not involve GABA signalling; and b) the
decrease in synthesis and transport of GABA following over-expression
of KLF4 might be due to a compensatory response. In addition,
administering viral vectors that silenced KLF4 in the ARC did not elicit
differences in either food intake or body weight, and the fasting-
induced response seen in control animals was blunted. Moreover,
this impaired response to fasting was specifically mediated by AgRP,
since the silencing of KLF4 caused a significant decrease in fasting-
induced hypothalamic AgRP levels. Importantly, fasting-induced food
intake was compromised in both lean and DIO rats, indicating that
KLF4 is an important modulator of the normal fasting response, in-
dependent of the type of diet. Taken together, these new data support
previous in vitro results [8,9] and indicate that KLF4 is a specific
activator of AgRP neurons that modulates its biological actions in vivo.
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AgRP neurons were previously known to play a critical role in medi-
ating the actions of leptin [44]. It was also thought that increased levels
of hypothalamic KLF4 induced by fasting, a hypoleptinemic state, were
probably regulated by leptin levels. Specifically, the inhibition of KLF4
caused by leptin was known to be mediated by both STAT3 and PI3K,
two key modulators of its anorectic action [35]. Those data thus
indicated that KLF4 was part of the leptin signalling pathway, and that
it was situated downstream of STAT3 and PI3K. In order to investigate
the functional role of KLF4 in leptin’s action, we therefore challenged
leptin in rats injected either with an empty virus or with a viral vector
over-expressing KLF4, into the ARC. Our results indicate that activation
of KLF4 in the ARC is sufficient to abrogate the anorectic effect of leptin
in lean rats, and therefore that KLF4 situated in the ARC is an essential
component of the leptin signalling pathway that controls food intake.
Since FoxO1 mediates AgRP-dependent effects of leptin on food intake
[20] we hypothesized that KLF4 might be interacting with FoxO1.
However, leptin was still able to increase FoxO1 in the ARC of rats
injected with the viral vector over-expressing KLF4, and also able to
stimulate KLF4 when FoxO1 was inhibited in the ARC. Thus, our results
collectively indicate that KLF4 is not a direct target of FoxO1, and
suggest that each transcription factor functions independently to
modulate leptin sensitivity.
CNS resistance to leptin is likely to be an early contributor to the weight
gain associated with DIO [45], and decreased leptin signalling has
been demonstrated in DIO rodents [37,46]. We therefore hypothesized
that decreasing KLF4 in the ARC of DIO rats would be able to reverse
HFD-induced leptin resistance. Consistent with that hypothesis, we
found that peripherally administered leptin failed to decrease hypo-
thalamic KLF4 levels in DIO rats, and this could explain the lack of
effect that leptin had on feeding behaviour in DIO rats. Unexpectedly,
however, leptin was not able to reduce food intake in rats treated with
a viral vector silencing KLF4 in the ARC. These latter data show that
KLF4 does not ameliorate HFD-induced peripheral leptin resistance.
The potential explanations for this effect might be that leptin resistance
is mediated by a variety of factors including: a) alterations in leptin
transport across the bloodebrain barrier; b) alterations in leptin re-
ceptor gene expression, and endocytosis and trafficking of ligand-
activated cell surface receptors; and c) alterations in the leptin sig-
nalling pathway [47e49]. Therefore, we cannot entirely rule out the
possibility that KLF4 may be able to restore some of the components,
albeit not all, involved in HFD-induced leptin resistance and that still
represents a potential target to restore neuronal leptin sensitivity.

5. CONCLUSIONS

a) Hypothalamic KLF4 is regulated by leptin through both STAT3 and PI3K
signalling pathways.

b) KLF4 over-expression in the ARC is sufficient to increase food intake and to
blunt the anorectic action of leptin in a FoxO1-independent manner.

c) Leptin fails to inhibit hypothalamic KLF4 expression in DIO rats, while KLF4
does not on its own regulate HFD-induced peripheral leptin resistance.
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