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ABSTRACT
Interferons (IFNs) are a large family of pleiotropic cytokines that regulate both innate and adaptive 
immunity and show anti-cancer effects in various cancer types. Moreover, it was revealed that IFN 
signaling plays critical roles in the success of cancer therapy strategies, thereby enhancing their ther-
apeutic effects. However, IFNs have minimal or even adverse effects on cancer eradication, and mediate 
cancer immune escape in some instances. Thus, IFNs have a double-edged effect on the cancer immune 
response. Recent studies suggest that IFNs regulate each step of the cancer immunity-cycle, consisting of 
cancer antigen release, presentation of antigens and activation of T cells, trafficking and infiltration of 
effector T cells into the tumor microenvironment, and recognition and killing of cancer cells, which 
contributes to our understanding of the mechanisms of IFNs in regulating cancer immunity. In this review, 
we focus on IFNs and cancer immunity and elaborate on the roles of IFNs in regulating the cancer- 
immunity cycle.
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Introduction

The fact that inactive viruses interfere with the amplification of 
live viruses was established by the end of the 1940s, although 
the mechanism underlying this phenomenon was unknown.1 

In 1957, Isaacs and Lindenmann found that incubation of heat- 
inactivated influenza virus with the chorioallantoic membrane 
of chick embryos induced the production of a new factor 
interfering with the amplification of live influenza virus in 
the membrane. They named this new factor interferon 
(IFN).2 At the beginning of the 1960s, chicken interferon 
(IFN-β) was purified.3 Soon after purification of IFN-β, 
Wheelock discovered a novel virus-inhibitor (IFN-γ) produced 
by human leukocytes similar as chick embryo interferon in 
1965.4 It is now known that IFNs are a large family of 
cytokines.

Although IFNs were originally identified as potent anti-viral 
factors, they were also recognized to regulate immune 
responses and inhibit cancers. Before IFNs were purified, 
scientists employed unpurified interferon to treat various 
types of cancer in mice and patients.5 Since interferon pos-
sesses anti-viral effects and virus infection is associated with 
some malignancies (for example, Rous sarcoma virus cause 
Rous sarcoma), researchers began to use IFNs to treat virus- 
induced tumors in animal models in the mid-1960s and 
observed therapeutic effects on these tumors.3,5 The first clin-
ical trial using IFN to treat cancer was initiated in 1971 in 
osteosarcoma,6 and now IFNs have been used to treat various 
types of cancer in the clinic, including melanoma, hairy cell 

leukemia, and renal cell carcinoma.7 However, IFN treatment 
has minimal or even adverse effects in some instances,8 which 
suggests that IFNs play a complicated role in the cancer 
immune response.

Recently, immune checkpoint blockage (ICB) has been 
demonstrated to be a promising strategy to treat cancer,9 and 
IFN signaling seems to be critical to successful ICB 
therapy.10–12 Moreover, IFNs enhance the therapeutic sensitiv-
ity of ICBs in various cancer types.13–17 These studies suggest 
that IFN signaling plays an important role in cancer immu-
notherapy. In this review, we focus on IFNs and cancer immu-
nity, and elaborate on the roles of IFNs in regulating the 
cancer-immunity cycle.

IFNs and IFN-induced signaling

IFNs are divided into three subtypes based on their cognate 
receptors and sequence identity. IFN-α, IFN-β, IFN-ε, IFN-ĸ, 
and IFN-ω belong to type I IFNs that bind to the IFNα/β 
receptor composed of IFNAR1 and IFNAR2. Type I IFN recep-
tors are expressed in most cell types in the body. IFNAR1 is 
absolutely necessary for type I IFN signaling,18 whereas 
IFNAR2 has various isoforms with different effects on this 
signaling pathway. In humans, the longest IFNAR2c isoform 
and the soluble IFNAR2a isoform (lacking the transmembrane 
domain) activate this signaling.19–22 The shorter IFNAR2b iso-
form inhibits this signaling by acting as a dominant-negative 
regulator.23 IFN-γ is the only member of type II IFN and binds 
to the IFN-γ receptor composed of IFNGR1 and IFNGR2. 
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IFNGR1 recognizes and binds to IFN-γ, and IFNGR2 is 
responsible for signal transduction. Both subunits of IFNGR 
are ubiquitously expressed in all mammalian cells.24,25 The 
type III IFNs consist of IFN-λ1 (IL-29), IFN-λ2 (IL-28A), 
IFN-λ3 (IL-28B), and IFN-λ4, and this type of IFN binds to 
the heterodimeric receptor composed of IFNLR1 (also known 
as IL28RA) and IL10RB.19 Although the expression of IL10RB 
is widely expressed in many cell types, the expression of 
IFNLR1 is usually restricted in epithelial cells and absent in 
some immune cells, such as human NK cells; thus, the actions 
of type III IFNs may be restricted spatially.26,27

There are many intracellular and extracellular stimuli that 
trigger the production of type I IFNs. Typically, upon infection 
with microbes or exposure to damaged cellular components, 
danger-associated molecular patterns (DAMPs) can be recog-
nized by pattern recognition receptors (PRRs), such as toll-like 
receptors (TLRs), cyclic GMP-AMP synthase (cGAS), MDA-5, 
DAI, RIG-I like receptors, and DDX41in the cell membrane or 
cytoplasm. After recognizing and binding with DAMPs, these 
PRRs are activated and interact with adaptor proteins and 
activate kinases to phosphorylate NF-ĸB, IFN regulatory factor 
3 (IRF3), and activating protein 1 (AP-1), which translocate 
into the nucleus and induce the expression of IFN-β in most 
cell types in the body28 (Figure 1). The production of IFN-α 
requires the transcription factor IRF7 rather than IRF3, and 
IFN-α is primarily expressed by plasmacytoid dendritic cells 
(DCs) because of the constitutive expression of IRF7.29 The 
less-studied members of type I IFNs (IFN-ε, IFN-ĸ and IFN-ω) 
seem to be secreted in a tissue-specific manner in response to 
various stimuli.19 Similar to type I IFNs, the stimuli and source 
of type III IFNs are broad, and most cell types in the body 

produce IFN-λ.26 In contrast to type I and type III IFNs, the 
resource of IFN-γ is restricted in immune cells, such as T cells, 
B cells, natural killer (NK) cells, natural killer T (NKT) cells, 
DCs, and macrophages.30–37 Many cytokines, such as IL-1, IL- 
2, IL-12, IL-15, IL-18, IL-21, IL-23, IL-27, IFN-α/β and TNF-α, 
can induce IFN-γ secretion in various types of immune cells.38 

For example, IL-12 alone or combined with other cytokines 
(such as IL-18) or combined with T cell receptor (TCR) and 
MHCII-Ag peptide complexes induce IFN-γ secretion in lym-
phoid cells mediated by signal transducer and activator of 
transcription 4 (STAT4) or nuclear factor of activated T cells 
(NFAT).31,39–41 In addition to cytokines, bacterial infection 
(such as mycobacteria or Legionella) or stimulation with the 
components of bacteria (such as lipopolysaccharide) induces 
IFN-γ production in macrophages and DCs via unclear 
mechanisms.34

The functions of the three types of IFNs seem to be redun-
dant, and the canonical signaling induced by different IFNs is 
also similar; in particular, type I and type III IFNs induce the 
same signaling. Upon binding to their ligands, IFNAR or 
IFNLR activates the constitutively interacting kinases JAK1 
and TYK2. Activated JAK1 and TYK2 phosphorylate STAT1 
and STAT2 and induce heterodimerization of STAT1 and 
STAT2 or homodimerization of STAT1, and then form 
a trimeric complex known as IFN-stimulated gene factor 3 
(ISGF3) by interacting with IRF9. ISGF3 enters the nucleus 
and binds IFN-stimulated response elements (ISREs) to induce 
the expression of type I and type III IFN target genes. Unlike 
IFNAR and IFNLR, IFNGR binds to IFN-γ and activates JAK1 
and JAK2. Activated JAK1 and JAK2 cause phosphorylation 
and homodimerization of STAT1, which translocates into the 

Figure 1. Signaling pathways in the induction of IFNs.
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nucleus and binds IFN-γ-activating sites (GASs) to induce the 
transcription of IFN-γ target genes.25 The signaling pathways 
and major target genes induced by the three types of IFNs are 
summarized in Figure 2.

The implication of IFNs in cancer therapy

Given that the induction of IFNs is largely triggered by multi-
ple DAMPs and the activation of IFN signaling pathway exhi-
bits cell intrinsic (anti-proliferation and inducing cell death) 
and extrinsic (immunomodulation) anti-cancer activity, it 
seems reasonable to conclude that IFNs play a critical role in 
the successes of conventional cancer therapeutic strategies. 
Indeed, IFNs alone or strategies of stimulating IFN production, 
and combined using IFNs and other cancer therapies have 
been demonstrated to be effective to treat various malignan-
cies. Additionally, it has also been revealed that deficiency of 
IFN signaling is one of the most important reasons for the 
resistance or failure of common cancer therapeutic strategies.

Firstly, the efficient type I IFN signaling was recognized as 
a footstone closely related to the success of conventional cancer 
therapeutic strategies, such as chemotherapy, radiotherapy and 
immunotherapy.42 Sistigu et al. demonstrated that cancericidal 
effects of anthracyclines rely on cancer cell autonomously 
producing type I IFN induced by the activation of toll-like 

receptor 3 (TLR3).43 Chemotherapeutic drug cyclophospha-
mide was revealed to modulate the transcriptional prolife of 
peripheral blood mononuclear cells (PBMCs) in patients with 
hematologic malignancies and induce a type I IFN associated 
sterile inflammation, which contributes to cancer cell 
elimination.44–46 Apart from chemotherapy, the efficacy of 
radiotherapy was also highly entwined with the activation of 
type I IFN signaling.47,48 Both studies in mouse models of 
melanoma and colorectal carcinoma indicated that radiother-
apy induces the production of type I IFN in myeloid cells and 
thus attributes to the generation of tumor infiltrating DC with 
enhanced ability to prime T cells.47,48 Additionally, both type 
I IFN (IFN-α and IFN-β) and type II IFN have been reported to 
enhance the efficacy of anti-PD1 or anti-PD-L1 in various 
cancer types, such as melanoma and pancreatic cancer.13–17

Secondly, various IFN stimulating strategies based on tar-
geting PRRs have been developed to treat cancer, and accumu-
lating evidence indicate that PRR agonists synergize with other 
therapy approaches and attribute to a better therapeutic effi-
cacy. Deng et al. found that the administration of STING 
agonist (2ʹ3’ cGAMP, 10μg) synergized with radiation (20 
Gy) and significantly boost anti-cancer immune response in 
murine colon cancer bearing mouse models.48 Ghaffari et al. 
also showed that STING agonist (2′3′-c-di-AM, 4 mg/kg i.p.) 
combined with anti-PD-1 antibody, greatly promotes IFN 

Figure 2. Signaling pathways and major target genes induced by IFNs.
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response and the expression of MHC class II genes and subse-
quently amplifies the therapeutic efficacy of carboplatin in the 
murine model of high-grade serous ovarian cancer.49 Recently, 
Márquez-Rodaet al. found that intratumoral injection of 
a nanoplexed form of polyinosinic:polycytidylic acid (poly I: 
C), a TLR3 agonist called BO-112, in combination with PD-1 
blockade therapy, significantly promotes infiltration of CD8+ 

T cells and increases the expression of genes associated with 
T cell cytotoxic activity.50 Moreover, BO-112 is also found to 
restore the efficacy of T cell-based adoptive cell therapy (ACT) 
through increasing MHC class I expression of type I and type II 
IFN deficient melanoma cells in an IFN- and Nlrc5- 
independent manner.51 Beside, a very recent study indicated 
that STING agonist (DMXAA or cGAMP) helps to subvert the 
immunosuppressive TME, thereby promotes CAR T cell traf-
ficking and persistence in breast cancer.52 In general, the PRRs 
in cancer cells or surrounding non-cancer cells (including 
infiltrated immune cells) senses DAMPs or directly activated 
by their agonists to induce the production of IFNs, which 
subsequently boost anti-cancer immune response to eradicate 
cancer cells. Therefore, positive feedback between cancericidal 
strategies and IFN-based anti-cancer immunity exists in the 
process of killing cancer cells.

Thirdly, accumulating evidence indicated that deficiency of 
IFN signaling is one of the most important reasons for the 
immune dysfunction and even the resistance or failure of 
common cancer therapeutic strategies. For example, the effi-
cacy of immune checkpoint blockade therapy was significantly 
reduced on STING knockout mice bearing B16-SIY melanoma, 
because the loss of STING signaling impaired the tumor-cell- 
derived DNA triggered production of type I IFN and thus 
failed to activate DCs.53 Ghosh et al. showed that mutant p53 
mediates apoptosis resistance and immune evasion of cancer 
cells through interacting with TBK1 and then preventing the 
formation of TBK1/STING/IRF3 complex and finally impair-
ing the expression of IFN-β.54 An early study indicated that the 
expression of interferon-stimulated genes (ISGs) was impaired 
in the lymphocytes from patients with breast cancer, mela-
noma, and gastrointestinal cancer, which indicates that defect 
in IFN signaling in lymphocyte may represent a common 
cancer-associated mechanism of immune dysfunction.55 

Similarly, it was showen that the downstream targets of IFN- 
γ were downregulated in different melanoma cell lines with the 
disappointing response to immunotherapies, suggesting down-
regulation of IFN-γ signaling is common in melanoma and 
potentially predicts the response to immunotherapy.56 It has 
been elucidated recently that JAK1 defeated melanoma B16 
cells were insensitive to T cell-based adoptive cell therapy 
(ACT) due to the incompetence in both type I and II IFN 
signaling.51 Similarly, loss-of-function mutations in JAK1/2 
has also been revealed to be responsible for the primary and 
acquired resistance to anti-PD-1 blockage in melanoma and 
colon cancer carcinoma.12 Christopher et al. demonstrated that 
effective antitumor responses to anti-PD-1 blockage required 
DCs to produce IL-12 upon sensing IFN-γ released from 
T cells, in turn DC derived IL-12 activates T effector cells, 
whereas IFN-γ deficiency impaired the anti-PD-1 efficiency.10

In summary, it is a promising strategy to use IFNs alone or 
combined with therapeutic strategies to treat cancer. 

Preclinical studies have indicated that IFNs are competent in 
provoking cancer immunity in different cancer types (Table 1). 
Consistent with the results of preclinical studies, a number of 
clinical studies have also confirmed the efficiency of IFNs in the 
management of various types of cancer (Table 2). However, it 
should be mentioned that different types of IFNs may be 
suitable for the treatment of different types of cancer.25

Although the positive roles of IFNs in cancer therapy have 
been well recognized, IFNs occasionally have been noticed to 
induce the acquisition of therapy resistance through mediating 
cancer immune escape by affecting both immune cells and 
nonimmune cells in the tumor microvironment.91 For 
instance, Jacquelot et al. reported that sustained type I IFN 
activation induce the up-regulation of programmed cell death 
ligand 1 (PD-L1) in both tumor and DCs and then enhance the 
expression of nitric oxide synthase 2 (NOS2), which is related 
to the accumulation of Treg and myeloid cells in the TME, 
finally lead to the resistance to programmed cell death 1 (PD-1) 
blockade.92 Consistently, type I IFN also upregulates the 
expression of NOS2 and PD-L1 gene in PBMCs from mela-
noma patients.92 Type I IFN singling also induce radiation 
resistance by promoting the recruitment of immunosuppres-
sive myeloid cells via the CCR2 pathway.93 In addition, several 
studies indicated that the overexpression of a subset of ISGs 
known as interferon-related DNA damage resistance signature 
(IRDS) reduced the sensitivity of tumor cells to genotoxic 
therapy strategies in vitro.94,95Another similar study showed 
that tumor cells taken up the stroma-cell-derived exosomes 
containing non-coding RNA and repeat/transposable ele-
ments, enhanced STAT1-drived expression of IRDS and the 
activation of NOTH3. And the cooperation of STAT1 and 
NOTH3 triggered the accumulation of therapy resistant 
tumor-initiating cells and tumor recurrence.96

Conclusively, more effort should be paid to further under-
stand the mechanisms by which IFNs regulate cancer immu-
nity and how they are involved in other cancer therapies in 
order to conceive optimal and efficient therapeutic strategies 
for cancer management, and it may reduce therapeutic resis-
tance of IFN-based therapy by adjusting the dosage and admin-
istration duration or combination with other therapeutic 
approaches.

IFNs regulate the cancer-immunity cycle

Cancer growth is determined by the balance between cell 
proliferation and cell death. Neoantigens resulting from 
gene mutation or overexpression of oncogenes in cancer 
cells are released after cell death, captured, and then pre-
sented to T cells by antigen-presenting cells (APCs), such as 
DCs and macrophages, which cause the activation of effector 
T cells. The activated effector T cells traffic and infiltrate into 
tumor tissues, where they recognize and kill cancer cells with 
the same tumor antigens, resulting in the release of more 
antigens. This cyclic process is defined as the cancer immu-
nity cycle.97 Current studies suggest that IFNs regulate each 
step of the cancer immunity cycle (Figure 3), contributing to 
our understanding of the mechanisms by which IFNs regu-
late cancer immunity.
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IFNs directly induce cell death and promote release of 
tumor antigens

It has long been believed that only IFN-γ directly induces 
malignant cell death, whereas the other types of IFNs exert 
their anti-cancer effects by regulating the activity of host 
immune cells, such as DCs, NK cells and cytotoxic 

T lymphocytes (CTLs).25,98 Recent studies have shown that 
all types of IFNs have direct pro-apoptotic effects.

Both IFN-α and IFN-β regulate intrinsic and extrinsic apop-
totic pathways.99,100 Mechanistically, IFN-α and IFN-β induce 
the transcription of the TP53 gene, inhibit proliferation, and 
induce apoptosis of cancer cells.101 Moreover, they also directly 

Table 1. Pre-clinical studies of IFNs in cancer treatment.

Cancer type Treatment information Biological roles Reference

Melanoma IFN-α, 5-Aza-2�-deoxycitidine and DNA 
vaccine

Improve vaccine efficacy and correlate with changes in chemokine gene expression 
and CD8+ TIL infiltration. Reduce tumor burden and increase median survival.

57

Melanoma PEG-IFN-α Reduce tumor weight. Inhibit proliferation but promote apoptosis of tumor cells. 58

Melanoma IFN-α and dacarbazine Reduce tumor hypoxia, downregulate G-protein signaling-5 (RGS5) expression, and 
increase mature pericyte coverage. Inhibit tumor growth by normalizing tumor 
vasculature.

59

Melanoma IFN-α-2b and thalidomide Decrease mean vessel count of tumors and suppress angiogenesis. 60

Colorectal cancer IFN-α Suppress CCL17 expression in tumors and thus decrease the trafficking of Treg. 61

Colorectal cancer Dendritic cell-based immunotherapy 
and IFN-α

Suppress outgrowth of tumors and induce potent antitumor cellular immune 
responses.

62

Renal cell carcinoma IFN-α-incorporated Hyaluronic acid- 
tyramine hydrogel and sorafenib

Inhibit proliferation of tumors by inducing apoptosis and suppress angiogenesis. 63

Renal cell carcinoma PEG-IFN-α2b and 5-FU Augment IFN-induced anti-proliferative effects with the induction of cell apoptosis. 64

Mesothelioma IFN-α or combination with β-carotene or 
alpha-difluoromethylornithine 
(DFMO)

Stimulate effects on immune cells by inhibiting TGF-β generation. 65

Pancreatic cancer IFN-α and doxorubicin Inhibit tumor cells growth in vivo and activate cytotoxicity of NK cells and CTLs, by 
increasing the expression of MHC I and NKG2D ligands on tumor cells.

66

Prostate cancer PEG-IFN-α and docetaxel Inhibit neoplastic angiogenesis by inducing a decrease in the local production of 
proangiogenic molecules by tumor cells and increasing apoptosis of tumor 
associated endothelial cells.

67

Colon cancer IFN-β Repress the growth of colon cancer in the peritoneal cavity and liver. 68

Melanoma IFN-β Activate neutrophils and alter tumor associated neutrophils (TAN) polarization 
toward anti-tumor N1 in mice and patients.

69

Glioblastoma IFN-β and temozolomide Promote tumor cell death, eliminate invasive tumors, activate microglia surrounding 
the tumors, and increase long-term survival.

70

Prostate cancer IFN-β Increase the natural killer cell activity and reduce tumor volume. 71

Neuroblastoma IFN-β Delay tumor growth, stabilize vessel, enhance antitumor efficacy by improving 
intratumoral delivery of systemically administered topotecan (TPT).

72 

73

Lymphoma IFN-α/β Increase the survival time of ESb-immunized mice rechallenged with ESb cells and 
inhibit the development of lymphoma cell metastases.

74

Melanoma Salmonella typhimurium expressing 
recombinant IFN-γ

Inhibit tumor growth and prolong the survival of C57BL/6 mice bearing B16F10 
melanoma.

75

Cervical cancer IFN-γ Induce the resolution of cervical intraepithelial lesions and high-risk HPV DNA 
clearance in vivo.

76

Breast cancer IFN-γ-endostatin-based gene- 
radiotherapy

Activate IFN-γ-stimulated CTL and NK cells, and enhance the endostatin-induced 
anti-angiogenic activity.

77

Ovarian cancer IL-4-Pseudomonas exotoxin and IFN-α 
and IFN-γ

Increase overall survival of mice with human ovarian cancer xenograft and increase 
ovarian cancer cell death in vitro and in vivo.

78

Glioblastoma hTERT-siRNA and IFN-γ Inhibit angiogenesis and tumor progression through the downregulation of 
molecules involved in these processes.

79

Lung cancer Hyperthermia and IFN-γ Suppress the basal, the heat shock-induced and the cisplatin-induced expression of 
Hsp27 in tumor cells and suppress tumor growth in vivo.

80

Oral squamous carcinoma Hyperthermia and IFN-γ Suppress the basal, the heat shock-induced and the cisplatin-induced expression of 
Hsp27 in tumor cells and suppress tumor growth in vivo.

80

Pancreatic cancer Anti-PD1 therapy combined with IFN-γ Suppress tumor-derived CXCL8 and inhibit the tumor trafficking of CXCR2+ CD68+ 

macrophages by blocking the CXCL8-CXCR2 axis to enhance anti-PD1 efficacy.

17

Colon cancer IFN-γ and ATG5-targeted inhibition Decrease tumor incidence rate and enhance the antitumor efficacy. 81

Colon adenocarcinoma GM-CSF and IFN-γ Exhibit tumor formation delay, induce a systemic immune response and indicate 
a dual role for T and NK cells in mediating the anti-tumor activity.

82

Hepatocellular carcinoma IFN-α and PEG-IFN-λ1 Obtain highest antitumor efficacy at the tumor site that was associated with 
infiltration of NK cells into TME. Suppress tumor growth, inhibit HBsAg production 
and induce tumor cell apoptosis.

83 

84 

85

Melanoma IFN-λ Induce both tumor apoptosis and NK cell-mediated immunological tumor 
destruction through innate immune responses.

86

Melanoma Ad-IFN-λ2 orAd-IFN-λ1 Increase the number of infiltrating CD8+ T cells into the tumors. 87

Colon cancer IFN-λ Inhibit metastatic tumor formation through innate immune responses. 86

Colon adenocarcinoma rhIFN-λ1 Inhibit the proliferation of tumor cells in a dose-dependent manner, activate the 
STATs and induce apoptosis of tumor cells.

88

Lung adenocarcinoma Ad-mIFN-λ2 Inhibit tumor cell growth through inducing apoptosis of tumor cell and regulating 
cell immune response.

89

Lung cancer IFN-λ2 Suppress tumor cell growth and induce cell death. 90
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induce the production of pro-apoptotic factors, such as TRAIL 
and FAS102,103 and enhance their pro-apoptotic effects in var-
ious malignant cell types.104,105 Additionally, IRF family mem-
bers are well-known ISGs induced by type I IFNs.25 Most 
members of the IRF family, such as IRF1, IRF3, and IRF5, 
have been documented to induce cell death in various malig-
nant tumor types.106–108 Although the pro-cytotoxic effects of 
type III and other members of type I IFNs are currently not 
well studied, considering that the ISGs induced by them are 
almost same, it is reasonable to deduce that most members of 
type I and type III IFNs could directly induce malignant cell 
death. As expected, several recent studies have shown that type 
III IFNs, such as IFN-λ1, IFN-λ2, and IFN-λ4, induce cell 
death in various malignant tumor types.90,109–112

The pro-apoptotic effects of IFN-γ have been well docu-
mented and intensively reviewed previously.113–115 Like type 
I and type III IFNs, IFN-γ also induces the transcription of pro- 
apoptosis genes, such as TRAIL, FAS, FAS ligand, and caspase- 
8.116–119 Moreover, it can promote apoptosis of malignant cells 
by inducing endoplasmic reticulum stress and reactive oxygen 
species (ROS).120 Apart from apoptosis, IFN-γ also induces 
ferroptosis in cancer cells. It was recently reported that IFN-γ 
secreted by activated CD8+ T cells enhanced the ferroptosis of 
cancer cells by inhibiting the expression of SLC3A2 and 
SLC7A11, which disturbed the uptake of cysteine and thus 
resulted in lipid peroxidation and consequent ferroptosis of 
cancer cells.121 Additionally, IFN-γ has been reported to 
induce ETosis in lung cancer cells.122,123 ETosis is a suicidal 
process in which the cell extrudes its intracellular DNA and 
histones to generate an extracellular reticular structure. This 
event is a special type of cell death that usually occurs in 
neutrophils and mast cells.124 IFN-γ can induce oxidative stress 
and the upregulation of ROS, which promotes mimic ETosis in 
lung malignant cells.122 Additionally, IFN-γ treatment was also 
found to induce caspase-mediated DNA damage and further 
activate ATR/ATM-regulated peptidyl arginine deiminase 4 
(PAD4) mediated histone 3 citrullination, triggering mimic 
ETosis in A549 human lung cancer cells.123

IFNs promote the tumor-antigen presentation

DCs are typically antigen-presenting cells that process and 
present antigens to T cells. Generally, endogenous antigens 
(such as synthesized virus antigens) are presented to CD8+ 

T cells in a class I MHC-dependent manner, whereas the 
exogenous antigens are presented to CD4+ T cells in a class II 
MHC dependent manner by DCs. Tumor-antigens are 
acquired and processed by DCs and presented to CD8+ 

T cells with the help of Th1 CD4+ T cells.125 It has been 
demonstrated that all types of IFNs promote the tumor- 
antigen presentation process of DCs.

The effects of IFNs on the differentiation and maturation of 
DCs have been investigated as early as 1998 when the type 
I IFNs, such as IFN-α and IFN-β, were first identified to be not 
only necessary for the differentiation,126,127 but also facilitate 
the maturation and activation of DCs.128,129 Based on these 
findings, IFN-α or IFN-β has been developed as one of the 
standard components of cytokine cocktails inducing matura-
tion of DCs.130 In 2011, Diamond et al. revealed that type 

I IFNs were essential for tumor-specific antigen presentation 
of DCs, because the lack of IFNAR1 in DCs resulted in defects 
of antigen cross-presentation to CD8+ T cells.131 Moreover, 
DCs treated with IFN-α2b or IFN-α5 showed enhanced adhe-
sion to cultured lymphatic endothelial cells, indicating that 
IFN-α is favor of the adhesion and transmigration of DCs.132 

Various studies have consistently demonstrated that the acti-
vation of IFN-β-producing signaling pathways also facilitate 
the process of tumor-antigen presentation of DCs. For exam-
ple, TLR agonists, such as lipopolysaccharide (LPS) and poly-
inosinic: polycytidylic acid (poly I:C), are known to stimulate 
the maturation of DCs via activation of the TLR signal trans-
duction pathway.133,134 Additionally, STING agonists have 
been reported to promote the infiltration of DCs into the 
TME and enhance the antigen-presentation ability of DCs 
through the STING-TBK1 signaling pathway.97,135,136

It has been long believed that the major function of NK, 
NKT, and γδ T cells was to lyse virus-infected or transformed 
cells through the cytolytic effect of IFN-γ. However, recent 
studies have shown that these IFN-γ-producing innate lym-
phocytes also facilitate the antigen-presentation of DCs.137 

A study comparing the efficiency of several clinical grade DC 
maturation cocktails demonstrated that LPS plus IFN-γ is 
more potent in inducing the maturation of DCs compared 
with the gold standard cocktails based on IFN-α and other 
cytokines.138 Moreover, it has been demonstrated that IFN-γ 
produced by CD4+ T cells in the TME induces the expression 
of class I and class II MHC molecules and stimulates the 
production of antigen processing machinery by APCs, which 
enhances the antigen-presentation to T cells in a class I or class 
II restricted manner.139–141 One recent study also confirmed 
that short-term (less than 48 h) exposure to LPS and IFN-γ 
promotes the maturation of DCs; however, long-term exposure 
to LPS and IFN-γ inhibits the functions of DCs and even 
induces apoptosis of DCs.142 This study suggests that long- 
term exposure to inflammation may result in the exhaustion of 
DCs in the cancer tissue microenvironment.

Some type III IFN members have also been reported to 
regulate the maturation of DCs. For example, IFN-λ1 has 
been shown to induce the maturation of DCs, break immune 
tolerance and potentially contribute to clearance of hepatitis 
B virus (HBV) by the immune system.143,144 However, no study 
has investigated and compared the effect and efficiency of type 
III IFNs on promoting maturation of DCs in the TME.

Apart from the modulation of DCs, IFN signaling also plays 
a critical role in the crosstalks between innate immune cells 
and DCs. In the TME, tumor derived cGAMP was taken up or 
transferred to the endothelial cells, DCs or macrophages via 
some specific transporters,145–147 which triggers the produc-
tion of type I IFN. Afterward, secreted type I IFN promotes the 
infiltration of innate cytolytic cells, such as NK cells. And 
activated NK cells by the ligands on cancer cells will perform 
their cytotoxic function to promote the release of tumor anti-
gen and concomitantly secrete several chemoattractants, such 
as XCL1, CCL5148 or FLT3LG,149 which mediate the recruit-
ment of conventional dendritic cells (cDC), a type of DCs 
specialized in cross-presentation. IFNs are also important in 
NK-dependent DC maturation. An early research found that 
the interaction between NK cells and DCs lead to the 

e1929005-6 X. ZHANG ET AL.
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engagement of NKp30, which further induces the production 
of TNF-α and IFN-γ from NK cells, and these cytokines will 
promote the maturation of DCs.150

IFNs promote the priming and activation of t cells

DCs not only process and present antigens to T cells, but also 
prime and activate T cells by providing cytokines that are 
essential for the activation of naïve T cells; thus, DCs also 
play important roles in their priming and activation. As early 
as 2002, it was demonstrated that IFN-α was essential for DCs 
to stimulate naïve T-cell proliferation based on the observation 
that the lack of IFNAR1 in DCs or blocking IFN-α with 
neutralizing antibody impaired the ability of DCs from bone 
marrow to stimulate T cell priming.129 Similarly, Longhi et al. 
also revealed that the systemic type I IFN signaling pathway is 
required for DCs to induce a CD4+ Th1 immune response 
in vivo.133 Additionally, IFN-γ is one of the most important 
cytokines for inducing Th1 polarization. NK cells interact with 
DCs and then assist the polarization of Th1 cells in an IFN-γ- 
dependent manner.151 Moreover, Type III IFNs also facilitate 
Th1 polarization. A study indicated that naïve and memory 
human CD4+ T cells express IL-28AR (IFNLR1) and preclude 
the expression of Th2 cytokines (IL-4 and IL-13) in these 
cells.152 Consistent with this study, IFN-λ1 was also found to 
reduce IL-13 secretion but enhance IFN-γ secretion in human 
PBMCs following mitogen stimulation (Con-A).153 Hence, 
IFN-λ could modulate Th1/Th2 balance by elevating Th1 cyto-
kines but restricting the production of Th2 cytokines,154,155 

which contributes to T cell priming and cancer elimination.
Type I IFNs not only promote the priming of T cells, but 

also prolong the survival and augment the proliferation of 
activated T cells through the cell-intrinsic type I IFN signaling 
pathway. Marrack et al. first reported in 1999 that IFN-α/β 
plays an important role in maintaining the vitality of T cells 
in vitro.156 It was then revealed that type I IFN directly stimu-
lated the clonal expansion and effector differentiation of CD8+ 

T cells in vitro and in vivo, because IFNAR expression by 
T cells was necessary for this process.157,158 In addition to 
type I IFN, Zimmerman et al. demonstrated that IFN-γ also 
promoted the survival and proliferation of tumor-specific 
T cells by upregulating the expression of survivin and Ifi202.159

IFNs promote trafficking and infiltration of t cells

Trafficking and infiltration of T cells is one of the key steps in 
the anti-cancer response of T cells. T cells must traffic toward 
the tumor site and undergo extravasation before they recognize 
and eliminate tumor cells. This process is largely dependent on 
multiple chemokines, including CCL2, CCL3, CCL4, CCL5, 
CXCL9, and CXCL10. These chemokines are important signal-
ing molecules that recruit T cells in the TME.160 IFNs are 
pleiotropic cytokines that promote multiple types of cells to 
produce chemokines that attract and recruit T cells in the 
TME. Padovan et al. found that IFN-α stimulates the secretion 
of CXCL9 and CXCL10 in monocyte-derived DCs and conse-
quently promotes the infiltration of CD8+ T cells.161 IFN-β 
promotes the expression of CCL5 and CXCR3 in melanoma 
cells and augments CD8+ T cell recruitment into the tumor.14 

IFN-γ has been reported to promote the production of 
CXCL10 in melanoma cells,162 which enhances the production 
of CCL5 in fibroblasts, a common component cell type in the 
TME.163

Intact endothelial cells are also very important for T cell 
infiltration by providing an adhesion face. Moreover, endothe-
lial cells were recently identified as the main source of type 
I IFNs in the TME to stimulate the infiltration of CD8+ T cells 
into the TME.164 IFNs can also affect the functions of endothe-
lial cells and promote T cell infiltration. For example, type 
I IFN is found to promote the synthesis of CCL5 in endothelial 
cells.165 In addition, treatment of endothelial cells with IFN-γ 
can selectively augment the migration of Th1 cells, the subtype 
of T cells that promotes cellular immunity.166

Apart from endothelial cells, tumor vasculature also plays 
a crucial role in the process of trafficking and infiltration of 
T cells. However, IFNs, as anti-angiogenic cytokines,167 may 
restrict the construction of vessels in the TME and thus make it 
difficult for T cell trafficking. Hence, it is necessary to evaluate 
the net effect of IFN treatment on the trafficking and infiltra-
tion of T cells during cancer management.

IFNs enhance the recognition and killing of cancer cells by 
effector cells

The coordination between antigen peptide-class I MHC mole-
cules and TCR provides initial and essential signals for T cell- 
mediated elimination of cancer cells.168 IFNs have been shown 
to enhance the recognition of cancer cells by T cells by boosting 
these crucial signals. An early study indicated that IFN-α 
increased the surface expression of tumor-associated antigens 
in breast cancer and colon cancer cells.169 Moreover, IFNs can 
promote the expression of MHC class I molecules on cancer 
cells, which contributes to tumor antigen peptide presentation 
and recognition by T cells.66,76,86,170,171 Additionally, IFNs also 
elevate the expression of adhesion molecules to stabilize the 
interaction between T cells and target cells. It was demon-
strated that IFN-γ not only induces the expression of MHC, 
but also stimulates the expression of adhesion molecule ICAM- 
1 in human bladder carcinoma cells.172

Activated T cells kill target cancer cells either through the 
release of perforin and granzyme or by enhancing the expres-
sion of tumor necrosis factor (TNF) family proteins, including 
FasL (CD95L), TRIAL, and mTNF, to induce apoptosis of 
target cells.173–175 IFNs promote the expression of these mole-
cules involved in the cytotoxic effects of T cells. Type I IFN was 
found to promote the expression of the activation marker 
CD69 and contribute to increase the cytotoxicity of γδ T cells 
against leukemia cells.176 Several studies have demonstrated 
that IFN-γ increases the expression of perforin, granzyme B, 
CD95, CD95 ligand, and TRAIL in effector T cells, thereby 
promotes cancer cell death.177–179 Type III IFNs also increase 
the cytotoxic effect of T cells. It has been reported that IFN-λ3 
stimulation significantly enhanced the co-expression of 
CD107a and granzyme B, and increased the release of perforin 
in CTLs of macaques.180

In addition to T cells, NK cells and NKT cells are also 
significant effector cells killing cancer cells, and IFNs enhance 
the cytotoxicity of these effector cells. A study has 
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demonstrated that IFNR2−/-NK cells showed significantly com-
promised cytotoxicity against RMA-S MSCV compared with 
WT NK cells, suggesting type I IFNs play a pivotal role in the 
killing of cancer cells by NK cells.181 Moreover, combined with 
perforin, IFN-γ is also important for the successful rejection of 
MHC class I-deficient RMA-S-CD80 tumor cells by NK 
cells.182 Additionally, IFN-α and TLR ligands are reported to 
directly modulate the function of NKT cells by promoting the 
secretion of cytotoxic cytokines, such as TNF-α and IFN-γ.183 

A recent study found that IFN-α treatment (1000 IU/mL, 18h) 
also induce the elevated expression of CD69 and perforin of 
NK cells and NKT cells from melanoma patients.184

Both NK cells and macrophages also kill cancer cells 
through the mechanism of antibody-dependent cell-mediated 
cytotoxicity (ADCC), which mainly depends on the binding of 
the Fc fragment of IgG antibodies and their coordinated recep-
tor FcγR located on effector cells.185 IFN-α has been reported 
to induce ADCC against B16 melanoma cells in vivo.186 IFN-β 
also contributes to enhancing the sensitivity of lung cancer cells 
to ADCC.187 IFN-γ is a predominant activator of 
macrophages,188 and thus promotes killing of cancer cells via 
ADCC.187 Mechanistically, type I IFNs and IFN-γ could pro-
mote antibody isotype switching into IgG.189,190 The regulation 
of class switch recombination is largely dependent on germline 
(GL) transcription, which means that distinct cytokines deter-
mine the isotypes of antibodies synthesized by B cells by indu-
cing different transcription factors targeting various cytokine- 
responsive elements accompanied by GL promoters.191 STAT1 
and T-bet, induced by IFN signaling,192,193 are both important 
transcriptional activators for IgG germline transcription.194–196 

Additionally, IFN-γ has also been found to enhance the tran-
scription of the Fc receptor for IgG,197,198 which may also 
contribute to ADCC.

IFNs negatively regulate anti-cancer immunity

Activation of the immune response usually triggers negative 
feedback mechanisms and suppresses immune responses to 
maintain immune homeostasis. As expected, although most 
studies suggest that IFNs competently facilitate anti-tumor 
immune response, increasing evidence indicates that IFNs 
also negatively regulate anti-tumor immunity by either stimu-
lating the expression of immunosuppressive molecules or 
recruiting the infiltration of immune-suppressive cells into 
the TME (Figure 4).

Numerous studies have indicated that IFN-γ induces the 
expression of PD-1 and PD-L1 in cancer cells. For example, 
IFN-γ promoted the expression of PD-L1 in pancreatic 
cancer.199 IFN-γ secreted by tumor-infiltrating lymphocytes 
has been found to stimulate the expression of PD-L1 in 
human melanocytic lesions.200 Mechanistically, IFN-γ secreted 
by tumor-associated macrophages was reported to induce PD- 
L1 elevation through the Janus kinase/signal transducer and 
activator of transcription 3 (JAK/STAT3) signaling pathway 
and the phosphatidylinositol 3-kinase (PI3K)/AKT signaling 
pathway.201 IFN-γ is also reported to stimulate the expression 
of PD-L1 in melanoma in a P53 related JAK2 dependent 
manner.202 Apart from PD-1 and PD-L1, the expression of 
CTLA-4 was also found to be upregulated by IFN-γ signaling 
in melanoma cells and melanocytes.203 Moreover, tryptophan- 
metabolizing enzyme indoleamine-2,3-dioxygenase (IDO), 
a potent negative regulator of anti-cancer immunity, was also 
reported to be induced by IFN-γ secreted by CD8+ T cells in 
the TME, which suppresses anti-cancer immunity in 
a melanoma model.204

Additionally, IFNs also induce the production of immuno-
suppressive cytokines. For example, IFN-β has been found to 

Figure 3. IFNs regulate each step of cancer-immunity cycle.
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induce the expression of IL-10 and IL-6 in DCs, which results 
in Th2-biased immune suppression.205 Moreover, type I and 
type III IFNs enhance the expression of IL-10R on APCs and 
sensitize them to IL-10 stimulation, which negatively regulates 
the activity of IFNs on APCs through inhibiting TLR-induced 
IL-12 production.206

In addition to immune suppressive molecules and cyto-
kines, IFNs also promote the infiltration of immune suppres-
sive cells. Type I IFN has been found to be associated with 
myeloid-derived suppressor cell (MDSC) mobilization via the 
CCR2 pathway and leads to the radiation resistance in a mouse 
cancer model.93 Besides, type I IFN contributes to induction of 
the infiltration of regulatory T cell (Treg) through upregulation 
of IL-10.207 Whereas IFN-λ has also been reported to trigger 
the proliferation of FOXP3-expressing suppressor T cells by 
inducing tolerogenic DCs.208 Additionally, the loss of E74-like 
transcription factor (Elf5) in a triple-negative breast cancer 
tumor model reduces the expression of an ubiquitin ligase 
named FBXW7, leads to the stabilization of IFN-γ receptor 1 
(IFNGR1).209 Then, the enhanced IFN-γ signaling promotes 
the infiltration of immunosuppressive neutrophils and the 
upregulation of PD-L1 expression.209

Finally, IFNs have an anti-angiogenic ability to constrain 
tumor growth. It is noteworthy that the diminishment of 
tumor vessels may also make it difficult for the trafficking 
and infiltration of T cells, and thus compromise anti-tumor 
immunity. However, this point needs to be validated by further 
experiments.

nonimmune effects of IFNs

IFNs, as cytokines, share several common characteristics of 
most cytokines. The receptors of one cytokine may be distrib-
uted on a variety of cell types. In addition, even a slight dose of 
cytokines may induce various biological effects due to the 
affinity between the cytokine and its corresponding receptor. 
This means that IFN administration in cancer treatment may 
contribute to unexpected severe side effects when the dosage is 
slightly higher than it should be. In fact, many nonimmune 
effects of IFN administration in patients have been reported, 
such as skin rash, flu-like symptoms, nephropathy, gastroin-
testinal discomfort, endocrine disorders, autoimmune diseases, 
and mental disorders.210–215 Additionally, it has been revealed 
that IFNs participate in the regulation of cell cycle, cell differ-
entiation, angiogenesis, and cancer development and 
progression.

IFNs can regulate the cell cycle by targeting cell cycle reg-
ulatory proteins or pathways related to the cell cycle. It has 
been reported that IFN-α restricts the cell cycle from G0 to 
S phase in prostate cancer cell lines by upregulating the expres-
sion of the cyclin-dependent kinase inhibitor p21.216,217 

Sangfelt et al. also found that IFN-α treatment caused the 
induction of a group of cyclin-dependent kinase inhibitors 
(CKIs), including p21, p15, and p27.217 IFN-α also stalls the 
cell cycle by inhibiting cyclin D3 and cdc25A218 or inhibiting 
cyclin E- and cyclin D1-dependent CDK2 kinase activity.219 

Additionally, Lu et al. proved that IFN-α constrains the growth 
of hematopoietic progenitor cells by activating the p38 mito-
gen-activated protein kinase pathway.220 In addition to IFN-α, 

IFN-γ also induce the expression of p21WAF1 and thus con-
tribute to cell cycle arrest in the prostate cancer cell line 
DU145.221 Moreover, IFN-λ was also reported to induce G1 
phase arrest in esophageal carcinoma cells.222

It has been known that IFNs promote the differentiation of 
some naïve cells, such as hematopoietic progenitor cells.223,224 

Recent studies showed that IFNs also promote the differentiation 
of various types of malignant cells. A study has elucidated that 
differentiation of mouse myeloid leukemic cells can be induced 
by IFN treatment.225 IFN-β has been shown to induce terminal 
cellular differentiation or programmed cell death in non-small- 
cell lung cancer.226 In addition, IFN-α alone or in combination 
with retinoic acid contribute to the differentiation of cervical 
carcinoma cell lines.227 IFNs (IFN-α, IFN-β, and IFN-γ) also 
show anti-angiogenic effects,166,228,229 and inhibition of angio-
genesis is one of the important mechanisms involved in the anti- 
cancer effects of IFN. Mechanistically, IFNs inhibit the expres-
sion of pro-angiogenic factors, such as vascular endothelial 
growth factor and basic fibroblast growth factor.230,231

Finally, IFNs are involved in carcinogenesis and cancer 
progression by inducing inflammation, which is one of the 
hallmarks of cancer and closely intertwined with cancer devel-
opment. IFN-γ is a pro-inflammatory cytokine and is asso-
ciated with a group of inflammation-related diseases of the 
digestive tract, such as inflammatory bowel disease and ulcera-
tive colitis,232 which are important risk factors for colorectal 
cancer (CRC), a typical inflammation-related cancer. Kobelt 
et al. also demonstrated that IFN-γ, accompanied with TNF-α, 
promote the growth and metastasis of colon cancer cells (HCT 
116) by enhancing the expression of the MACC1 gene, a crucial 
oncogene involved in CRC metastasis.233 In addition to CRC, 
IFN-γ also promotes metastasis of pancreatic cancer, another 
type of inflammation-related cancer. It has been reported that 
IFN-γ administration promotes epithelial-mesenchymal tran-
sition (EMT) of pancreatic cancer cells by enhancing the 
expression of vimentin and reducing the expression of 
E-cadherin in a dose-dependent manner.199 However, in 
other studies, IFN-β and IFN-γ have been reported to suppress 
metastasis of human astroglioma and fibrosarcoma cell lines by 
suppressing the expression of matrix metalloproteinase 9 
(MMP-9), the enzyme undermining ECM promoting malig-
nant cell spreading.234 These paradoxical results suggest that 
the effects of IFN-γ on cancer progression may be diverse in 
different cancer types.

Conclusions and perspectives

Since IFNs play a critical role in the immune responses, they 
have attracted great interest in the cancer immunotherapy. In 
this review, we elaborated on their effects at each step of the 
cancer-immunity cycle. Conclusively, IFNs potently regulate 
the cancer immunity and function at each step of the cancer- 
immunity cycle. However, the anti-cancer immune suppressive 
roles of IFNs are emerging and worthy of attention. Especially, 
it has been noticed that IFNs promote cancer progression in 
some cases by inducing cancer-associated inflammation.

It was believed that immune system both restricts and 
promotes cancer development and progression.235 The double- 
edged roles of IFNs in the cancer immunity may be in 

ONCOIMMUNOLOGY e1929005-11



accordance with the theory of cancer immunoediting, which 
consists of elimination, equilibrium, and escape.236 IFNs play 
important roles in each phase of cancer immunoediting.25 

Since IFNs positively regulate each step of the cancer- 
immunity cycle, there is no doubt that IFNs contribute to the 
process of cancer elimination. IFNs may also be involved in 
immune equilibrium. It has been reported that IFN-γ can 
stimulate the expression of IL-7 in the gut epithelium,237 

which is an important cytokine that maintains memory CD8+ 

T cells. In addition, tissue-resident memory CD8+ T cells pro-
mote melanoma-immune equilibrium in the skin.238 Thus, it 
can be postulated that IFN-γ may be associated with immune 
equilibrium in the anti-cancer immune response. In the last 
phase, IFNs facilitate the immune escape of cancer cells by 
upregulating immune suppressive molecules and promoting 
the infiltration of immune suppressive cells. For example, 
continuous exposure of leukemia cells to IFN-α caused 
a decrease in IFN-α-induced apoptosis due to the loss of 
STAT2.239 Clarifying the phase-specific roles of IFNs in cancer 
immunity may be helpful to optimize stage-specific immu-
notherapy based on IFNs.

Conclusively, the double-edged effects of IFNs on the reg-
ulation of anti-cancer immune response embody the important 
philosophical tenet of traditional Chinese medicine: the theory 
of yin (negative regulation) and yang (positive regulation).240 

There are several factors influencing the yin and the yang of 
IFNs in cancer immunosurveillance and cancer immune 
escape. One is the duration of the IFN signaling in the TME. 
Generally, rapid activation of IFN signaling induces the acute 
inflammation and is beneficial to mobilize the immune system 
and eradiate cancer cells. However, the sustained or prolonged 
stimulation by IFN signaling causes the chronic inflammation, 
which is associated with immune aging and leads to 

inflammation-associated cancers.228 Another is the effects of 
IFNs on different types of immune cells in the TME. As 
a family of pleiotropic cytokines, IFNs modulate the behaviors 
of both immune-activating cells (e.g. CTL, γ/δ T cell, DC, 
B cell) and immunosuppressive cells (e.g. MDSC, Treg, M2) 
(Figure 4).19 In addition, the nature of ISGs also should with be 
taken into account for evaluating the yin and yang effect of 
IFNs on cancer immunity. ISGs are diverse, and some ISGs 
encode molecules involved in the regulation of cell death, 
danger signal sensing, and positively promoting immune 
response. Whereas some ISGs encode immune checkpoint 
blockade molecules and thus have the opposite effects and 
cause immune suppression.

Taken together, the activation of IFNs signaling has double- 
edged effects on anti-cancer immunity. Considering that IFNs 
induce the expression of immune suppressive molecules, such 
as PD1, PD-L1, CTLA4 and IDO, combining them with 
immune checkpoint blockage therapy is a promising strategy 
to enhance the therapeutic effect of IFNs in the clinic, and such 
translational studies combining use of IFNs with anti-PD-L1 or 
anti-PD-1 antibodies are emerging.13–17
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