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Natural killer (NK) cells are important for host defense against malignancy and infection.
At a cellular level NK cells are activated when signals from activating receptors exceed
signaling from inhibitory receptors. At a molecular level NK cells undergo an education
process to both prevent autoimmunity and acquire lytic capacity. Mouse models have
shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from
mice with deletion in different members of the inositol phospholipid signaling pathway
exhibit defects in development, NK cell repertoire expression and effector function. Here
we review the current state of knowledge concerning the function of inositol phospholipid
signaling components in NK cell biology.
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Unlike T and B lymphocytes, natural killer (NK) cells do not
rearrange antigen receptor genes in order to detect their cellu-
lar targets (Lanier, 1998). Rather, NK cells utilize an array of
activating and inhibitory receptors with the latter largely detect-
ing major histocompatibility complex (MHC) class I ligands, or
in the case of 2B4, the signaling lymphocyte activation molecule
(SLAM) family ligand CD48. Both activating and inhibitory NK
receptors are stochastically expressed with frequencies in the NK
compartment determined by their relative promoter strength, and
in some cases, survival differences among NK subsets determined
by the presence or absence of ligands their receptor array can
detect and their relative affinity for that ligand (Manilay et al.,
1999; Lowin-Kropf and Held, 2000; Wang et al., 2002; Fortenbery
et al., 2010). Inhibitory receptors allow for the NK cell to rec-
ognize and ignore “healthy-self” cells while activating receptors
enable the NK cell to recognize and lyse foreign or “damaged-
self” cells or antibody bound cells. In some instances the NK
cell may also produce inflammatory cytokines such as inter-
feron (IFN)γ in response to target cell engagement (Vivier et al.,
2011). Individual NK cells in the compartment can express dif-
ferent combinations of activating and inhibitory receptors, but
also different levels of certain receptors (Bryceson et al., 2011).
The final balance of activating and inhibitory receptors, and the
presence or absence of ligands, determines a threshold for acti-
vation of an individual NK cell (Lanier, 1998; Bryceson et al.,
2011; Vivier et al., 2011). In extreme cases the NK cell may even
be anergized by unopposed activating signals (Raulet and Vance,
2006). This repertoire diversity in the NK cell compartment of
an individual allows for a response to a diverse range of stimuli
including an early response to virus-infected cells (Brandstadter
and Yang, 2011) and surveillance for residual tumor cells (Vivier
et al., 2008).

Phosphatidylinositol (PI) is a membrane lipid found in all
cell types that can be phosphorylated to form phosphatidyli-
nositol 3-monophosphate PI(3)P, PI(4)P, or PI(5)P. Each of
these PIP species can be further phosphorylated by phospho-
inositide 3-kinase (PI3K), PI4K, or PI5K to form PIP2 species.
PI3K is able to phosphorylate PI(4,5)P2 to form PI(3,4,5)P3

(Berridge and Irvine, 1989; Rhee and Bae, 1997). PI(3,4)P2,
PI(4,5)P2, and PI(3,4,5)P3 allow for recruitment to the plasma
membrane of pleckstrin homology (PH) domain-containing pro-
teins (several other domains are also able to recruit proteins to
these lipids as well and will be discussed below) as shown in
Figure 1 and Table 1. PI(4,5)P2 is also important in NK cell
signaling by acting as the substrate for phospholipase C (PLC),
which hydrolyzes PI(4,5)P2 into diacylglycerol (DAG), to activate
PKC and inositol 1,4,5-trisphosphate [I(1,4,5)P3] which triggers
release of intracellular Ca2+ stores. PIP2 and PIP3 can be mod-
ified by various phosphatases including inositol polyphosphate
4-phosphatase (INPP4) and SH2 domain-containing inositol-
5-phosphatase (SHIP) or modified by phosphatase and tensin
homologue deleted on chromosome 10 (PTEN) to create PI(3)P,
PI(3,4)P2, or PI(4,5)P2, respectively. These activities can atten-
uate signaling pathways or, in the case of the SHIP product
PI(3,4)P2, activate them by enabling recruitment of proteins with
various PH domain-containing proteins to sites of signaling at
the plasma membrane (Kerr, 2011). Here we will discuss the role
of the above IP modifying enzymes in the context of NK cell
biology.

PIP5K
Phosphatidylinositol 4-phosphate can be phosphorylated by
type I phosphatidylinositol phosphate kinases (PIPKIs) to form
PI(4,5)P2. Three isoforms of phosphatidylinositol 4-phosphate
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FIGURE 1 | Inositol phospholipid family members allow for recruitment

of proteins with indicated binding domains. Modification of the
inositol phospholipids by the indicated enzymes allow for either the
attenuation or promotion of signaling pathways that determine NK cell
development, function, survival, and/or trafficking in the host. PIP5K
PLC, phospholipase C; DAG, diacylglycerol; PIP5K, phosphatidylinositol

4-phosphate 5-kinase; PI3K, phosphoinositide 3-kinase; SHIP, SH2
domain-containing inositol-5-phosphatase; PTEN, phosphatase
and tensin homologue deleted on chromosome 10; INPP4, inositol
polyphosphate 4-phosphatase; PH, pleckstrin homology;
ENTH, epsin N-terminal homology; ANTH, AP180 N-terminal
homology.

Table 1 | PI modifying enzymes (PIP5K, PI3K, PTEN, SHIP1, and INPP4) are either recruited to or activated following signaling through the

indicated NK cell receptor.

PIP5K PI3K PTEN SHIP1 INPP4

Receptors CD16 Ly49A ? Ly49A ?

LFA-1 Ly49C/I Ly49C/I

DNAM-1 KIR2DL1 CD3ζ

NKp46 KIR2DL3 2B4

2B4 KIR3DL1 FcγRIIB

NKG2D KIR3DL2 NKG2D

NKG2D NK1.1

NK1.1 NKp46

Ly49D

Other important interactions Talin ? ? Shc ?

Arf6

Downstream pathway/critical

effector

PLCγ/IP3 Akt Akt (decreased) Akt ?

WASp MAP/ERK Erk 1/2 (decreased) Grb2

Munc13-4 JNK1/2 (p110d−/−)

Downstream gene targets

(effector functions)

Cytolytic competency NKRR formation Cytolysis (decreased) NKRR formation ?

Immune synapse formation Cytokine production NK development and NKRR

formation (Vα14iNKT)

Cytokine production

Serial killing Cytokine production (Vα14iNKT) Cytolytic competency

Following activation, the enzyme allows for activation of downstream signaling pathways through the production of inositol phospholipid species (as indicated in
Figure 1) and leading to specific effector functions as indicated. Receptors listed in orange indicate that a physical interaction between the receptor and given enzyme
has not yet been established but that the enzyme is required for proper downstream signaling.
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5-kinase have been described (PIP5Kα, PIP5Kβ, PIP5Kγ; Ishi-
hara et al., 1996; Loijens and Anderson, 1996; Tolias et al., 1998)
with PIP5Kα and PIP5Kγ playing important, non-redundant
roles in cell signaling through the production of PI(4,5)P2 in
NK cells (Micucci et al., 2008). PI(4,5)P2 is a major phospho-
inositide at the plasma membrane (McLaughlin et al., 2002). It is
believed that there are different pools of PI(4,5)P2 in cells, inside
and outside of lipid rafts, that control different signaling path-
ways by allowing for localized changes in PI(4,5)P2 concentration
(Pike and Casey, 1996; Hinchliffe et al., 1998; Martin, 2001;
McLaughlin and Murray, 2005; Golebiewska et al., 2008; Johnson
et al., 2008).

Following NK cell activation, ADP-ribosylation factor 6 (Arf6)
and talin recruit PIP5Kα and PIP5Kγ to the immunological
synapse, respectively (Di Paolo et al., 2002; Galandrini et al.,
2005). Expression of both isozymes is required for cytolytic
competency through the increase in PI(4,5)P2 they create at
the plasma membrane (Vyas et al., 2001; Di Paolo et al., 2002;
Ling et al., 2002; Galandrini et al., 2005; Mace et al., 2010). An
important trait of NK cells is the ability to serially kill multi-
ple target cells (Bhat and Watzl, 2007). PIP5Kγ may play a role
in serial killing as it is required for the regulation of the solu-
ble N-ethylmaleimide-sensitive factor activating protein receptor
(SNARE) protein Munc13-4 that mediates lytic granule recycling.
Hence, PIP5Kγ−/− NK cells are unable to serially lyse target cells
as efficiently as wild type NK cells (Capuano et al., 2012). Inter-
estingly, decreased levels of PIP5Kα or PIP5Kγ have no impact
on IFNγ production and do not alter PI3K signaling in NK
cells as measured by Akt activation and Vav-1 phosphorylation
(Micucci et al., 2008). Thus, PIP5Ks are required for sustained
cytolytic competence, but are dispensable for cytokine production
by NK cells.

Having different pools of PI(4,5)P2 in the membrane may allow
diverse cell functions to be compartmentalized via production of
key second messengers [e.g., DAG, I(1,4,5)P3 and PI(3,4,5)P3] by
selective recruitment of different signaling proteins with PI(4,5)P2

binding domains and the regulation of ion channels preferentially
localized to these compartments (Gamper and Shapiro, 2007).
There are several domains that enable PI(4,5)P2 binding by a pro-
tein: PH, epsin N-terminal homology (ENTH), AP180 N-terminal
homology (ANTH), FERM, and C2 domains (Ferguson et al.,
1995; Hamada et al., 2000; Ford et al., 2001). PH domains enable
signaling proteins to selectively bind different PIP species while
ENTH and ANTH domain-containing proteins have a higher
affinity for PI(4,5)P2than for other inositol phospholipids (Ford
et al., 2001; Itoh et al., 2001). Wiskott–Aldrich syndrome protein
(WASp), the clathrin adaptor AP1, the actin nucleating protein
Arp2/3 AP180, and talin make use of ENTH and ANTH domains
for recruitment to the plasma membrane. An NK cell is required to
reorganize actin to form an immunological synapse before lysing a
target cell (Rak et al., 2011). There is recent evidence that clathrin
and AP1 aid in this process in T cells (Alvarez Arias et al., 2010;
Calabia-Linares et al., 2011). After NK cell activation, increased
PI(4,5)P2 levels recruit WASp to the membrane which in turn
activates the actin nucleating protein complex Arp2/3 allowing
for actin rearrangement and formation of the NK immunological
synapse (Badour et al., 2003; Mace et al., 2010). Thus, PI(4,5)P2

also plays a critical role in actin reorganization and creation of the
immune synapse.

PI3K
There are three different classes of PI3K enzymes; class I enzymes
exist as a heterodimer between a catalytic subunit and a regula-
tory subunit. Class Ia PI3K enzymes are p110α (PI3KCA), p110β

(PI3KCB), and p110δ (PI3KCD), which can pair with one of five
regulatory subunits p85α, p55α, p50α (alternatively spliced from
PIK3R1), P85β (PIK3R2), and p55γ (PIK3R3). There is one PI3K
class Ib enzyme: p110γ (PI3KCG) which heterodimerizes with
either p101 (PIK3R5) or p87 (PIK3R6). There are three class II
enzymes (PI3K-C2α, PI3K-C2β, and PI3K-C2γ) that have a poorly
defined role in cell signaling and do not heterodimerize with a reg-
ulatory subunit. One PI3K class III enzyme (VPS34) has recently
been identified which heterodimerizes with its regulatory subunit
VPS15 to catalyze the formation of PI(3)P from PI. Class I PI3K
enzymes (in leukocytes primarily p110γ and p110δ) are the main
enzymes responsible for the phosphorylation of the D-3 position
of PI(4,5)P2 to create PI(3,4,5)P3 (Cantley, 2002; Saudemont and
Colucci, 2009; Vanhaesebroeck et al., 2010), and thus this section
will focus on class Ia enzymes.

Initial studies of PI3K enzymes in NK cells did not focus
on individual PI3K subunits but instead were performed with
broad-acting, non-selective PI3K inhibitors such as Ly294002
(Vlahos et al., 1994) and Wortmannin (Arcaro and Wymann,
1993). It was shown that PI3K is activated within 5 min of NK
cell activation (Zhong et al., 2002) and that PI3K is required
for antibody-dependent cellular cytotoxicity (ADCC; Kanakaraj
et al., 1994) but is not required for the NK cell to make a
“missing self” attack on MHC class I-deficient K562 cells (Bon-
nema et al., 1994). Other studies were able to show that PI3K
expression in NK cells is required for lymphocyte function-
associated antigen-1 (LFA-1) adherence to intercellular adhesion
molecule-1 (ICAM-1)-expressing cells and thus, important for
formation of the NK immune synapse (Barber and Long, 2003)
and for facilitating signaling through various NK activating recep-
tors (Barber et al., 2004). In addition, the 2B4 and killer cell
immunoglobulin-like receptors (KIR; that sense self-ligands CD48
and MHC class I, respectively) can also recruit PI3K (Marti et al.,
1998; Aoukaty and Tan, 2002; Eissmann et al., 2005), and this
may enable these receptors to have self-licensing roles (Fortenbery
et al., 2010).

The PI3K signaling cascade has emerged as an essential intra-
cellular signaling pathway in NK cell biology. The spleen tyrosine
kinase (Syk) is able to activate the PI3K–>Rac1–>PAK1–>

MEK–>ERK signaling pathway leading to NK cell degranulation
(Jiang et al., 2000, 2002, 2003). We believe that PI3K might also
promote Bruton’s tyrosine kinase (Btk) activation in NK cells given
that increased PI(3,4,5)P3 levels in other hematopoietic cell types
lead to Btk activation (Kawakami et al., 2000; Saito et al., 2001)
and that Btk has recently been shown to be required for proper
NK cell activation (Bao et al., 2012). Interestingly, Btk has been
shown to regulate PIP5Ks [and thus PI(4,5)P2 production] in B
cells (Saito et al., 2003). Thus, the interaction between Btk and the
inositol phospholipid signaling pathway in NK cells merits further
investigation.
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Deletion of specific PI3K subunits has allowed for determining
their individual contributions to inositol phospholipid signaling
in NK cells. Awasthi et al. (2008) found that PIK3R1−/− NK cells
(NK cells lacking p85α, p55α, and p50α) have a severely disrupted
NK cell compartment. They showed that PIK3R1−/− NK cells are
decreased in number in the bone marrow and liver but not the
spleen. Moreover, NK cells that were present were cytolytically
incompetent against both “missing-self” and NKG2D (an acti-
vating receptor expressed by both human and mouse NK cells)
ligand-expressing target cells and had a skewed Ly49 receptor
repertoire compared to wild type (WT) NK cells. This cytolytic
defect could be due to improper formation of the NK immune
synapse. Activation of NK cells via NKG2D requires interac-
tion between the Rho guanosine triphosphatase Cdc42 (Carlin
et al., 2011), the adaptor protein CrkL (Segovis et al., 2009) and
DAP10 (Wu et al., 1999; Billadeau et al., 2003; Upshaw et al., 2006)
with p85α required for proper formation of the immunological
synapse. Thus, multiple inositol phospholipid signaling events
are required for proper microtubule and actin cytoskeleton
rearrangement.

The PI3K class Ia and class Ib subunits p110δ and p110γ seem
to have non-redundant roles in NK cell signaling. In vitro cytoly-
sis assays indicate that either p110δ (Kim et al., 2007; Saudemont
et al., 2007; Tassi et al., 2007) or p110γ (Kim et al., 2007; Tassi
et al., 2007) but not both (Kim et al., 2007; Tassi et al., 2007)
enzymes are dispensable for target cell lysis. However, two papers
have shown that there is decreased ability for NK cell rejection
of tumor cell in vivo, at least in the case of p110δ deficiency
(Saudemont et al., 2007; Guo et al., 2008). Further investigations
are required to understand why p110δ is required for in vivo target
cell lysis but not for NK cytolytic activity in vitro. Data regard-
ing the requirement of p110δ and p110γ for cytokine production
are more contradictory. Two studies found that p110δ is required
for cytokine production (Kim et al., 2007; Guo et al., 2008) and
one went on to show that p110γ is dispensable (Kim et al., 2007)
for the production of cytokines including IFNγ, tumor necrosis
factor (TNF)α, and granulocyte–macrophage colony-stimulating
factor (GM-CSF). However, two different studies have shown that
p110γ is in fact required for NK cell cytokine production (Tassi
et al., 2007; Orr et al., 2009). At least part of the discrepancy
may be due the use of different mouse genetic backgrounds. Kim
et al. (2007) made use of B10D2 mice (MHC-H2d) background
whereas most of the other mutants were on a C57BL/6 genetic
background (MHC-H2b). Further, the mice used by Tassi et al.
(2007) were incompletely backcrossed to the C57BL/6 background
such that only ∼80% of all alleles were C57BL/6 homozygous,
with other alleles remained from the original 129Sv background.
This is potentially problematic as 129Sv mice have hyporespon-
sive NK cells and thus these 129Sv allelic loci may act as genetic
modifiers of PI3K mutations (Belanger et al., 2008). For a more
detailed and nuanced discussion of the differences observed in
the different PI3K mutant studies please see Kerr and Colucci
(2011). Interestingly, p110α, a PI3K isozyme found in many
cell types but not in leukocytes, is required for the upregulation
of the NKG2D ligand RAE-1 following murine cytomegalovirus
(MCMV) infection (Tokuyama et al., 2011). Thus, PI3K may
regulate NK cell behavior not only in a cell intrinsic manner,

but also via regulation of activating ligands expressed by target
cells.

Phosphoinositide 3-kinase is also required for NK cell chemo-
taxis to various chemokines. These include lymphotactin, CC-
chemokine ligand (CCL)2, CCL5, IFN-inducible protein-10
(CXCL10) and stromal-derived factor-1 alpha (SDF-1α; al-
Aoukaty et al., 1999). When the function of individual PI3K
isoforms in NK chemotactic behavior was examined it was found
that both p110δ and p110γ are required for chemotaxis to CXCL12
and CCL3 both in vitro and in vivo. However, only p110δ was
found to be required for chemotaxis to CXCL10 and the G protein-
coupled receptor (GPCR) sphingosine 1-phosphate receptor 5
(S1P5), a receptor known to influence NK cell tissue distribu-
tion. Additionally, p110δ was found to be sufficient to mediate NK
cell extravasation to tumors and steady state NK cell distribution
to the spleen, lymph nodes, and liver (Saudemont et al., 2009).

PTEN
Phosphatase and tensin homologue deleted on chromosome 10
(PTEN) is one of the most commonly mutated genes in human
cancers and is the underlying genetic etiology of Cowden syn-
drome, a disease characterized by the development of multiple
hamartomas (Lynch et al., 1997). PTEN reverses the PI3K reac-
tion by hydrolyzing PI(3,4,5)P3 to PI(4,5)P2. It is unclear if this
reaction contributes meaningfully to the PI(4,5)P2 pool or if the
importance of PTEN rests solely on antagonizing PI(3,4,5)P3 pro-
duction. PTEN has not been extensively investigated in the context
of NK cells. One study found that PTEN-deficient Vα14iNKT
cells, a subpopulation of NKT cells accounting for about half
of NKT cells, are not able to produce IFNγ as efficiently as
WT Vα14iNKT cells. Moreover, compared to mice without dele-
tion of PTEN these mice were unable to mount an effective
response to melanoma (Kishimoto et al., 2007). Recent prelimi-
nary work from the Caligiuri lab has indicated that PTEN may
decrease NK cell activation through the attenuation of the Akt
and ERK1/2 signaling pathways through decreased availability of
PI(3,4,5)P3. NK-92 cells transduced with a lentivirus expressing
PTEN have decreased cytotoxicity against target cells and pri-
mary NK cells over-expressing PTEN exhibit decreased CD107α

surface expression upon stimulation (Briercheck et al., 2012).
The data from the Caligiuri lab indicate that PTEN may play
a conventional role in most NK cells by limiting Akt activa-
tion; however, perhaps at least in the Vα14iNKT subpopulation
of NK cells PTEN plays a role in NK cell activation through
the creation of PI(4,5)P2 pools. Thus, PTEN appears to have
an important role in both NK types and thus should be inves-
tigated more thoroughly in the context of NK cell biology,
perhaps through the creation of mice with NK-specific deletion
of PTEN.

SHIP1
There are two paralogs of SHIP: SHIP1 (Damen et al., 1996;
Kavanaugh et al., 1996; Kerr et al., 1996; Lioubin et al., 1996; Ono
et al., 1996) which is expressed in hematopoietic cells, pluripo-
tent stem cells (Tu et al., 2001) and osteoblast lineage cells (Hazen
et al., 2009), and SHIP2 (Pesesse et al., 1997) which is expressed
in a wide array of cell types and tissues. SHIP1 contains an
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N-terminal SH2 domain which allows it to bind to phosphotyro-
sine motifs, a inositol-5-phosphatase enzymatic domain allowing
for removal of the 5′ phosphate from PI(3,4,5)P3 or I(1,3,4,5)P4

to produce PI(3,4)P2 and I(1,3,4)P3, respectively, and two C-
terminal NPXY motifs which, when tyrosine phosphorylated,
allow for PTB domain binding. SHIP1 also contains a C2 domain
that binds its product PI(3,4)P2 triggering an allosteric change
that can enhance SHIP1 enzyme activity (Ong et al., 2007), as
well as a PH-like domain that recognizes its substrate PI(3,4,5)P3

(Ming-Lum et al., 2012). The conversion of PI(3,4,5)P3 to
PI(3,4)P2 allows for the attenuation of signaling pathways where
PH domain-containing PI3K effectors exhibit selective recruit-
ment to PI(3,4,5)P3 while also enabling the activation of other
PI3K effectors whose PH domains allow recruitment to PI(3,4)P2
(Kerr, 2011).

SH2 domain-containing inositol-5-phosphatase 1 has been
shown to play an important role in NK cell biology in several
different studies albeit with some discordant findings. SHIP1-
deficient mice were initially shown to have increased NK cell
numbers due to increased survival of certain subsets that expressed
poly-specific Ly49 receptors resulting in a skewed NK receptor
repertoire and thus an inability to reject an MHC-mismatched
bone marrow transplant (Wang et al., 2002; Fortenbery et al.,
2010). Subsequently it was shown that SHIP1−/− NK cells are
hyporesponsive for target cell lysis on an H2b MHC-I background
due to inappropriate recruitment of SHP-1 to 2B4 resulting in an
imbalance of inhibitory signals (Wahle et al., 2006, 2007; Forten-
bery et al., 2010). Mice that are deficient in both 2B4 and SHIP1
have restored ability to lyse target cells lending further evidence
for the inhibitory dominance of 2B4 in SHIP1-deficient mice
(Fortenbery et al., 2010). NK cells from SHIP1-deficient mice were
also shown to produce IFNγ inefficiently following stimulation
and to have inappropriate expression of Ly49B, a poly-specific
MHC-I receptor (Scarpellino et al., 2007) normally expressed by
myeloid cells (Fortenbery et al., 2010). Interestingly, unlike mice
with an H2b MHC-I genetic background, SHIP1−/− mice on an
H2d homozygous background are able to kill MHC-I-mismatched
target cells with supernormal efficiency and MHC-matched tar-
get cells at levels comparable to WT NK cells (Fortenbery et al.,
2010). This was proposed to occur due to increased NK licensing
due to over-expression of Ly49A that was observed in the H2d
SHIP−/− NK cell compartment. These studies led to the ques-
tion of whether the NK defects in SHIP1−/− mice are NK cell
intrinsic or due to the inflammatory milieu present in these mice.
Banh et al. (2012) showed that based upon CD27 and CD11b
expression NK cells from SHIP−/− mice are less mature than
those from wild type mice. Contradictory to previous studies
(Wang et al., 2002; Trotta et al., 2005), they showed that SHIP1-
deficient mice have decreased numbers of NK cells and that NK
cells from these mice do have decreased production of IFNγ when
co-stimulated with interleukin (IL)-12 and IL-18. In bone mar-
row chimera experiments Banh et al. (2012) saw no difference
in IFNγ production when NK activating receptors were cross-
linked, but saw a difference only when NK cells were co-stimulated
with IL-12 and IL-18 leading to the conclusion that SHIP1 does
not play an intrinsic role in NK cell cytokine production. How-
ever, in a mouse model with NK cell-specific deletion of SHIP1

we saw a significant impairment in IFNγ production following
activation receptor cross-linking (Gumbleton and Kerr, unpub-
lished data). In another study, NK cells with over-expression
of SHIP1 had decreased IFNγ production, and SHIP1-deficient
mice produced greater IFNγ when stimulated with IL-12 and
anti-CD16 antibody, indicating that perhaps SHIP1 plays an
inhibitory role in the context of IL-12 co-stimulation (Parihar
et al., 2005).

In contrast to mouse NK cells where an absence of SHIP1 leads
to decreased IFNγ production and cellular cytotoxicity indicat-
ing SHIP1 plays a role in NK cell activation, in human NK cells
SHIP1 was initially found to limit signaling from the CD16 recep-
tor and thus decrease the ADCC response (Galandrini et al., 2002).
Human NK cells are able to be dissected into two populations:
CD56brightCD16negative/dim NK cells that produce cytokines at a
high level and CD56dimCD16bright NK cells that produce cytokines
inefficiently but instead have greater cytolytic activity. SHIP1 is
expressed at a lower level in the CD56brightCD16negative/dim NK
cell subset potentially providing a molecular basis for their com-
paratively high cytokine production (Trotta et al., 2005). The same
group correlated this effect with the presence of MiR-155 and pro-
posed MiR-155 as a regulator of SHIP1 expression and thus, a
regulator of NK cell activity. They were also able to show that
NK cells from mice deficient for the MiR-155 precursor, Bic, were
not able to produce IFNγ as efficiently as NK cells from wild type
mice when co-stimulated with IL-12 and IL-18 or with IL-12 and
anti-CD16 antibody. While these results could be due to MiR-155
regulation of SHIP1, the impact of MiR155 on other key IP signal-
ing proteins such as PTEN (Yamanaka et al., 2009) and the PI3K
subunit p85α needs to be rigorously excluded before this MiR155-
SHIP1 circuit in NK cells is confirmed. As discussed above PI3K
enzymes are important in NK cell chemotaxis. SHIP1 has been
shown to be important in the chemotaxis of other types of leuko-
cytes (Kim et al., 1999; Nishio et al., 2007). Thus we believe it
would be interesting to analyze the importance of SHIP1 on NK
cell chemotaxis.

INPP4
Inositol polyphosphate 4-phosphatase (INPP4) catalyzes the
removal of the D-4 phosphate from PI(3,4)P2 to form PI(3)P.
There are two different isozymes of INPP4: INPP4A and INPP4B
with α and β splice variants of both. INPP4B has recently been
shown to function as a tumor suppressor indicating that both
PI(3,4,5)P3 and PI(3,4)P2 can give positive growth signals and that
SHIP1 in some instances could act as a proto-oncogene (Brooks
et al., 2010; Fuhler et al., 2012). Similar to the way that SHIP1 is
expressed largely in hematopoietic lineages, in B, NK, and mast
cells only INPP4Bα mRNA is highly expressed with potentially
very low levels of INPP4Aα also being expressed. Interestingly,
INPP4B has been shown to have a prominent role in osteoclast
function where SHIP1 is also known to inhibit OC resorptive
behavior ex vivo (Ferron et al., 2011). Thus further studies of
INPP4B in lymphocytes, including NK cells, seems merited.

CONCLUSION
While there is some controversy in specifics, there is overwhelm-
ing evidence to show that the inositol phospholipid signaling
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pathway plays a prominent role in the regulation of NK cell
development and function. The PI3K pathway has a clear role in
the regulation of actin skeleton rearrangement, the formation of
the NK immune synapse, chemotaxis, cytokine production, and
cytolytic competency. In summary of the data discussed above,
PI(4,5)P2 is important for cytolytic competency while PI(3,4,5)P3

is important for cytokine production and PI(3,4)P2 may be impor-
tant for both NK effector functions in several contexts. Given
that PIP5K is required for immune synapse formation and PI3K
isoforms are required for chemotaxis these properties warrant
investigation in the context of SHIP deletion. Lastly, as mentioned

above, both INPP4 and PTEN are important regulators in other
hematopoietic cell types, and thus their role in NK cell biology
should be examined.
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