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ABSTRACT: In the present work, several properties of fluoroperovskites are
computed and examined through the approximations of trans- and blaha-modified
Becke−Johnson (TB-mBJ) and generalized gradient approximation of Perdew−
Burke−Ernzerhof (GGA-PBE) integrated within density functional theory (DFT).
The lattice parameters for cubic TlXF3 (X = Be, Sr) ternary fluoroperovskite
compounds at an optimized state are examined and their values are used to calculate
the fundamental physical properties. TlXF3 (X = Be and Sr) cubic fluoroperovskite
compounds contain no inversion symmetry and are thus a non-centrosymmetric
system. The phonon dispersion spectra confirm the thermodynamic stability of these
compounds. The results of electronic properties clarify that both the compounds
possess a 4.3 eV of indirect band gap from M−X for TlBeF3 and a direct band gap of
6.03 eV from X−X for TlSrF3, which display that both compounds are insulators.
Furthermore, the dielectric function is considered to explore optical properties like
reflectivity, refractive index, absorption coefficient, etc., and the different types of transitions between the bands were investigated by
using the imaginary part of the dielectric function. Mechanically, the compounds of interest are computed to be stable and possess
high bulk modulus values, and the ratio of “G/B” is higher than “1”, which indicates the strong and ductile nature of the compound.
Based on our computations for the selected materials, we deem an efficient application of these compounds in an industrial
application, which will provide a reference for future work.

1. INTRODUCTION
The materials having ABX3 stoichiometry show a family of
perovskite-type structures where “A” and “B” are metallic
cations, while “X” is an anion. ABF3 shows the fluoroperovskite
compounds, which is a subgroup of the perovskite family in
which “X” is replaced by “F” in ABX3. It possesses a very
simple crystalline structure and has great importance and uses
in a wide range of fields. The fluoroperovskite compounds have
found applications in radiation dosimeters,1 optical proper-
ties,2−7 tunable laser,8 ferro-electricity,9 high-temperature
super-ionic behavior,10 semi-conductivity,11−14 anti-ferromag-
netism,15 catalytic activity,16 piezoelectricity,17,18 and super-
conducting properties.19,20 A stable structure of perovskite
compounds can be formed by taking the transition elements on
“A” or “B” sites.21−24 The crystalline structure of an exciting
group of fluoroperovskite materials is mechanically stable and
possesses exceptional optoelectronic capabilities that range
from semiconducting (1−4 eV) to insulating (beyond 4 eV) in
nature.25−27 Recently, material scientists have shown a great

interest in fluoroperovskite compounds because of their unique
desirable properties.28−30 Rehman et al. investigated several
physical properties of BeMF3, M = Ti and V, using GGA
within FP-LAPW with a simulation code of WIEN2K.31 Some
unique physical properties of Tl-based fluoroperovskite
compounds TlXF3 (X = Ca, Cd, Hg, and Mg) were reported
by Khan et al. while using the ab initio method for density
functional theory (DFT) calculations.32 Many significant
features, including ferroelectric, piezoelectric, and nonlinear
optical capabilities, need a non-centrosymmetric structure. The
selected TlXF3 (X = Be and Sr) cubic fluoroperovskite
compounds contain no inversion symmetry and are thus a non-
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centrosymmetric system. Optical lithography in semiconduc-
tors is subject to rising technological demands, and a shorter-
wavelength lithographic light is needed for that. Thus, optical
lithography steppers need lenses made of ultraviolet-trans-
parent (UV-transparent) materials.33−35 The best prospects for
this use of perovskite-like fluorides with large band gaps is
because, for lens materials, the cubic perovskite structure is
preferred. After all, it lacks the birefringence that makes lens
fabrication challenging.36,37 To detect radiation, thallium-based
compounds are being produced, and numerous studies have
demonstrated their value in this use. These compounds’
increased effective atomic number, caused by the presence of a
thallium atom, increases the effectiveness of detection.38 These
compounds can be used in several electronic devices because
of the complex composition of both elements “A” and “B” in
TlXF3 (X = Be, Sr) compounds. Up till now, no sufficient
theoretical and experimental work exists on the structural,
elastic, electronic, and optical properties of TlXF3 (X = Be, Sr)
compounds. To find out some of its physical properties, the
TlXF3 (X = Be and Sr) fluoroperovskite compounds are
selected for the first time and various properties are calculated
using WIEN2K, which will help scientists to investigate and
confirm it experimentally.

2. COMPUTATIONAL METHODOLOGY
In this study, the WIEN2K simulation code is used in the
computational approach with the DFT scheme,39−41 and the
scheme of FP-LAPW42 is used to solve the equation of Kohn−
Sham. In the case of many-body problems, this technique is the
basic quantum mechanical procedure and is one of the most
reliable approaches for studying physical properties.43,44 The
GGA and TB-mBJ45 potential approximations can be dealt
with by the use of the impact of physical properties. To explain
matrix size, a parameter RMT × Kmax = 8 is used in the
calculation, where Kmax gives information about the plane wave
cutoff and RMT tells us about the smallest radii in the sphere.
The chosen muffin tins (MTs) are approximately propor-
tionate to the radii. The stable range of energy for the whole
system lies between 10−3 Ry, where self-consistent calculations
are known as “converged”. The wave function within the
valence spheres ranges up to lmax = 10 with the charge density
having a value up to Gmax = 14. For accurate and clear
calculations, the Monkorst−Pack 3000 special k-points were

used in the Brillouin zone. Similarly, for an accurate value of
bands and optical properties, the TB-mBJ approximation was
used. The Birch−Murnaghan equation of states46 was used for
optimizing lattice parameters. Generally, the dielectric function
ε(ω) = ε1(ω) + iε2(ω) is used for investigating the optical
properties. The established IRelast code by Morteza et al.47 is
used to calculate the cubic elastic constant (Ecs) and other
mechanical properties of ternary TlXF3 (X = Be and Sr)
fluoroperovskite compounds.

3. INVESTIGATED RESULTS AND DISCUSSION
This section describes in detail the investigated results for
structural, elastic, and optoelectronic properties for ternary
cubic TlXF3 (X = Be and Sr) fluoroperovskite compounds.

3.1. Structural Properties. The ternary TlXF3 (X = Be
and Sr) fluoroperovskites possess a cubic crystal structure as
displayed in Figure 1, in which “Tl” atoms lie at (0, 0, 0), X =
Be and Sr is at (0.5, 0.5, 0.5), and “F” takes the Wyckoff
positions of either (0, 0.5, 0.5) or (0.5, 0, 0.5), or (0.5, 0.5, 0).

The fundamental structural properties are predicted from
the fitted curves of the total energy of the primitive unit cell vs.
the total volume of the primitive unit cell through the Birch−
Mumaghan equation of state (EOS). The optimized points
define the fundamental state of the crystals and are
accompanied by the corresponding minimum volume, called
the optimum volume, which is materialized to calculate the
structural lattice parameters. Table 1 indicates the outcomes of
structural optimized parameters. The fitted curves of structural
optimization for TlXF3 (X = Be and Sr) are displayed in Figure

Figure 1. Description of the crystalline unit cell of ternary cubic TlBeF3 and TlSrF3 fluoroperovskite compounds.

Table 1. Values of Optimized Structural Parameters
Computed for Ternary TlXF3 (X = Be and Sr)
Fluoroperovskite Compoundsa

optimized structural values TlBeF3 TlSrF3

a0 (lattice constant) 4.5393 4.8879
B (Bulk modulus) 49.2938 36.4548
B′ (derivative of bulk modulus) 5.6198 5.0592
E0 (ground state energy) −41,206.508627 −47,537.202492
V0 (ground state volume) 631.2132 788.0924

aThe table displays the lattice constant “a0” in Å, bulk modulus “B” in
GPa, the (derivative of the bulk modulus) B′, the ground state energy
E0 in Ry, and the ground state volume “V0” in (a.u)3.
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2 through the Birch−Mumaghan EOS. The equilibrium
structural lattice parameters and the bulk modulus (B) of
these materials amplify the potency, whereas the pressure
derivative of “B” of a material is handy in finding the
thermoplastic aspects. Hence, both parameters are worthy of
being rated. Table 1 illustrates the investigated values of “B”,
which reduce as we move from TlBeF3 to TlSrF3. The bulk
modulus value of TlBeF3 is higher than that of TlSrF3, which
indicates that TlBeF3 is harder than TlSrF3.

3.2. Elastic Properties. In this study, the elastic constant
“Cij” and other elastic parameters for examining the mechanical
properties of different materials are computed using the IRelast
package. The decisive factor of elastic constant parameters
gives information about the reaction to applied macroscopic
stress. A physical link can be made by constants of elasticity
“Cij” between the active functioning of a material. It also
explains the deformation shaped by the applied stress, and its
restoration to the initial stage later than the applied stress has
been observed.48 The “Cij” plays a vital role in materials, which
gives important insights into structure stability, anisotropy, and
bonding character of the atomic planes that are adjoining. In a
cubic compound, three self-dependent elastic constants, C11,
C12, and C44, are tried to determine these parameters. The
deformation created at any time in the cubic unit cell is applied
by a suitable strain tensor, yielding an energy strain correlation.
The IRelast package developed by Jamal Murtaza is utilized
extremely efficiently. Table 2 gives the summary of “Cij” and
some other mechanical properties calculated from the elastic
constant “Cij” and bulk modulus “B”. Calculations are
optimistic. The criterion is (C11 − C12) > 0; (C11 + 2C12) >
0; C44 > 0; and “B” should be a prompt standard: C12 < B <
C11, this gives the mechanical stability necessary for cubical
crystal systems.49 Table 2 depicts the elastic parameters of the
selected ternary TlXF3 (X = Be, Sr) fluoroperovskite
compound by using the IRelast calculation package. As is
well known, no experimental results or theoretical findings for
the elastic constant of the existing compound have been
provided. Therefore, the calculated elastic properties can be
used as a citation for further research work. The relation used

for the calculation of added elastic parameters A, G, and E are
as follows
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Here, the anisotropy factor is shown by “A” in eqs i and v. It is
Poisson’s ratio. Young’s modulus in eq vi is represented by “E”.

Figure 2. Optimized unit cell structure of ternary TlXF3 (X = Be and Sr) fluoroperovskite compounds.

Table 2. Investigated Elastic Constants Cij (C11, C12, C44 in
GPa), Young’s Modulus “E”, Bulk Modulus “B”, Shear
Modulus “G”, Reus’s Shear Modulus (all in GPa), Poisson’s
Ratio “υ”, Pugh Ratio (B/G), and Anisotropy Factor “A” for
Ternary TlXF3 (X = Be and Sr) Fluoroperovskite
Compounds

elastic parameters TlBeF3 TlSrF3

C11 (GPa) 85.834366 92.182387
C12 (GPa) 91.265622 15.902439
C44 (GPa) 72.564401 6.944043
GR −7.193 10.321
E (Young’s modulus) 98.808 49.480
G (shear modulus) 17.62977259 14.87155629
An (anisotropy factor) −26.721 0.182
υ (Poisson’s ratio) 0.164 0.274
B/G (Pugh ratio) 2.777942809 2.451310359
B (GPa) 48.9745 36.4548
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In eq iv, “G” gives Voigt’s shear modulus following the “G”
upper limit values. In eq vii, “GR” shows Reus’s shear modulus
ensuring the lower bound of G. Table 2 verifies the positive
value of bulk modulus and elastic constant for both
compounds, which depicts that the compounds are mechan-
ically stable. In the case of an isotropic compound, the value of
“A” will be “1,” the value other than “1” shows anisotropy, and
the degree of the variations from “1” gives elastic anisotropy. In
this work, the values of the anisotropy factor are −26.721 for
TlBeF3 and 0.182 for TlSrF3. As both values are lesser than “1”
therefore it shows anisotropic nature. The “E” value of a
material is directly proportional to the stiffness of that material.
The material will be stiffer if the value of “E” is higher. The
information about bonding forces is given by Poisson’s ratio
(υ). In the case of covalent materials, the value of “υ” will be
small (υ < 0.1), and its value is 0.25 if the compound is ionic.
In this study, the value of “υ” is 0.48100 for TlBeF3 and
0.57157 for TlSrF3. Therefore, for the ternary TlXF3 (X = Be,
Sr) fluoroperovskite materials, the excessive role in intra-
bonding is ionic. The mechanical properties (ductility and
brittleness) of TlBeF3 and TlSrF3 are explained by the
computed “B/G” (Pugh ratio) and the standard Pugh’s criteria
are 1.75. The material will be ductile if the B/G ratio is greater
than 1.75. As given in Table 2, the values for the “B/G” ratio
are greater for both compounds, i.e., 2.77 for TlBeF3 and 2.45
for TlSrF3, thus both compounds are ductile. This is the
earliest theoretical study of the elastic properties of these
compounds and can be utilized as the reference data for further
research work.

3.3. Band Structure and Density of States (DOS). The
electronic band structure with principal symmetry points at
zero pressure in the Brillouin zone is displayed in Figure 3. The

energy band gap is given by the zero-energy difference next to
the zone center C. Here, the given band gap along the X−X of
the TlSrF3 compound is direct and that along the M−X of the
TlBeF3 is indirect.

Figure 3 gives information about the total and partial
densities of states, i.e., (T-DOS) and (P-DOS). The F-p state
beneath the Fermi level gives a major contribution in the
valance band, while small contributions by the Tl-s state and X
states are observed.

3.4. Optical Properties. An important computational
scheme for assessing a compound’s optical properties is the
FP-LAPW. We analyze the optical parameters of the
mentioned substance TlXF3 (X = Be, Sr) using the basic
dielectric function equation. The optical behavior of different
compounds in different photon energy ranges (0−15 eV) is
fully explained. The mathematical expression of the various
parameters of optical properties can be noted as
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Figure 3. Fitted band structures and DOS from −10 eV up to 10 eV for ternary TlXF3 (X = Be and Sr) fluoroperovskite compounds.
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where the equations from vii−xii show the ε(ω) (dielectric
function), n(ω) (refractive index), k(ω) (extinction coef-
ficient), I(ω) (absorption coefficient), R(ω) (reflectivity), and
σ(ω) (optical conductivity).

3.4.1. Dielectric Function. The real and imaginary
components of the dielectric function are represented by ε1
and ε2 in eq i for the dielectric function and computed for both
the TlXF3 (X = Be, Sr) compounds. The spectra are shown in
Figure 4. The electronic BS (band structure) of a material is
strongly connected to the real component of the dielectric
function, which is used to describe the degree to which a
material can be polarized. The real part of the dielectric
function also describes its dispersive behavior. On the one
hand, the imaginary part demonstrates how the medium
absorbs light. Figure 4 displays the optical activity of the
compounds in the energy range from 0 to 15 eV, with several
significant peaks.

3.4.2. Optical Conductivity and Optical Reflectivity. The
optical conductivity of a material describes the linkage between

the induced current density and the magnitude of the induced
electric field in a material for arbitrary frequencies. The
complex dielectric function used to evaluate optical con-
ductivity defines the conduction of electrons driven by an
applied electromagnetic field and is the extension of electrical
transport to optically high-frequency incident photons. The
resultant spectrum is displayed in Figure 5. The TlBeF3 and
TlSrF3 fluoroperovskite compounds are highly optical
conductive at an incident energy of 8 and 7.5 eV, respectively.
The TlXF3 (X = Be, and Sr) compound is a fluoride perovskite
with a cubic structure that has a large band gap and is suitable
as a vacuum-ultraviolet-transparent (VUV-transparent) materi-
al for lenses in optical lithographic technology. Optical
reflectivity is a direct measure of electrical response. The
figure shows the reflectance of the selected compounds. It is
clear from the figure that the zero-frequency reflectivity is 2.5
and 5% at 0 eV for TlBeF3 and TlSrF3 compounds,
respectively. This is relatively unchanged up to 3.2 eV. The
material ought to be transparent in this energy range,
according to the small value of reflectivity and the absorption
coefficient in the infrared and visible-light ranges. Also, due to
its low reflectivity in contrast to some of the other metal
fluorides, it might be more practical. The highest values of
reflectivity are 49 and 40% for TlBeF3 and TlSrF3, respectively,
at the same energy range of 13 eV.

Figure 4. Computed real and imaginary parts of the dielectric function for ternary TlXF3 (X = Be and Sr) fluoroperovskite compounds.

Figure 5. Investigated optical conductivity and reflectivity for ternary TlXF3 (X = Be and Sr) fluoroperovskite compounds.
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3.4.3. Refractive Index and Extinction Coefficient. The
n(ω) (refractive index) is a critical aspect to know when
measuring the level of refraction, since it is extremely effective
in photoelectric applications. A material’s refractive index
serves as a gauge for how light moves through it. High
refractive indices cause light to move more slowly, which
causes a proportionately greater change in the direction of the
light inside the material. We have noticed that these
compounds are anisotropic. Figure 6 presents the determined
refractive index for the important compounds. At zero energy,
it has been observed that TlBeF3 and TlSrF3 possess static
reflection coefficients of 1.39 and 1.59, respectively. The
maximum refractive index for TlBeF3 is 2.2 at 6 eV, while that
for TlSrF3 is 2 at 7.5 eV. For the reported substance, the
refractive index exceeds 1. A material’s refractive index
determines how much light is refracted as it passes through
it. The higher the index, the more light is refracted. In general,
the refractive index increases with every technique that
increases the electron density in a substance. A property that
governs how effectively a material absorbs or reflects radiations
or light at a specific wavelength is termed the extinction
coefficient. The figure displays the results of determining the
extinction coefficient k(x) for TlXF3 (X = Be and Sr)
compounds. The local maximum extinction coefficient of
TlBeF3 is about 1.2 at 6.0 eV and that of TlSrF3 is about 1.32
at 8.0 eV.

3.5. Phononic Properties. Phonons have crucial roles in
the dynamics of structural stability, thermal characteristics, and

structural stability, all of which are crucial elements in the
fundamental problems of materials science. The fundamental
vibrational motion that occurs when a lattice of atoms or
molecules vibrates consistently at a single frequency is known
as a phonon in quantum mechanics. The investigated phonon
dispersion spectra for ternary TlXF3 (X = Be and Sr) cubic
fluoroperovskite compounds are depicted in Figure 7.

It is very obvious from Figure 7 that all of the phonon
dispersions curves existed at a positive value of frequency, and
there exist no negative phonon spectra below 0 THz frequency.
The existence of these curves at positive values of frequency
confirms that both ternary TlXF3 (X = Be and Sr) cubic
fluoroperovskite compounds are thermodynamically stable.

4. CONCLUSIONS
The computational investigations of structural, electronic,
elastic, and optoelectronic properties of TlXF3 (X = Be, Sr)
fluoroperovskites are carried out using the framework of DFT,
and the approximations of GGA and TB-mBJ are employed for
improving various properties. The optimized lattice constants
are determined to be 4.5393 and 4.8879 Å for TlBeF3 and
TlSrF3, respectively, which shows a stable cubic crystalline
structure. The selected TlXF3 (X = Be and Sr) cubic
fluoroperovskite compounds contain no inversion symmetry
and are thus a non-centrosymmetric system. The phonon
spectra display the thermodynamic stability of the fluoroper-
ovskite compounds. An indirect band gap from M−X for
TlBeF3 and a direct band gap from X−X exist for TlSrF3,

Figure 6. Extinction coefficient and refractive index computed for TlXF3 (X = Be and Sr) fluoroperovskite compound.

Figure 7. Predicted phonon spectra of ternary TlXF3 (X = Be and Sr) cubic fluoroperovskite compounds.
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displaying that both compounds are insulators. The inves-
tigated mechanical properties depict that the selected
compounds are tough to scratch and mechanically stable.
Based on the reported research for fluoroperovskite TlXF3 (X
= Be and Sr) cubic compounds, the applications at large scale
can be deemed for these materials in advanced electronic
devices and for energy storage purposes.
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