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Abstract 

Usually, age-specific incidence rates of chronic diseases are estimated from longitu-

dinal studies that follow participants over time and record incident cases. However, 

these studies can be cost- and time-expensive and are prone to loss to follow up. 

An alternative method allows incidence estimation based on aggregated data from 

(cross-sectional) prevalence and mortality studies using relations between incidence, 

prevalence and mortality described by the illness-death model and a related partial 

differential equation. Currently, adequate options for the assessment of the accuracy 

of the achieved incidence estimates are missing and bootstrap resampling methods 

are used instead. Therefore, we developed novel ways to estimate incidence rates 

based on the maximum likelihood principle with corresponding confidence intervals. 

Historical data about breathlessness in British coal miners and diabetes in Germany 

are used to illustrate the applicability of this method in scenarios with non-differential 

and differential mortality. We have two scenarios of available data in the case of dif-

ferential mortality: mortality of diseased and all-cause mortality, or all-cause mortality 

and mortality rate ratio. Our results show that estimation of incidence rates and cor-

responding confidence intervals of chronic conditions based on aggregated data with 

the maximum likelihood method using a binomial likelihood function is possible and 

can replace resampling techniques.

Introduction

Age-specific incidence rates may provide hints about disease etiology, vulnerable 
groups and (success of) disease prevention. They are typically estimated from longi-
tudinal studies, for instance, cohort studies, where initially disease-free study partici-
pants are followed over time and incident cases are recorded. However, longitudinal 
studies can be lengthy, expensive and are prone to loss to follow up [1]. Typically, a 
cross-sectional design is easier to conduct with respect to duration of data collection. 
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Cross-sectional studies allow estimation of age-specific prevalences of diseases. 
In case of chronic diseases, established interrelations between incidence rate and 
prevalence can be used to estimate the former from the later based on aggregated 
prevalence data. In 2016, Landwehr & Brinks [2] compared different deterministic 
approaches to this task. A method based on a differential equation [3] similar to the 
Kolmogorow Forward Equation [4] turned out to be superior with respect to mean 
absolute error. For conclusions of inferential statistics in the differential equation 
approach, we had to use re-sampling techniques so far as shown, for example, in 
Brinks et al. (2015) [5]. In this work, we propose a novel maximum likelihood (ML) 
approach and put special emphasis on estimating confidence intervals, which is 
mandatory in many statistical analyses [6]. We first briefly review the illness-death 
model for chronic conditions and mathematical relations between the age-specific 
prevalence and the transition rates in the illness-death model. As applications, we 
use a historical data set about breathlessness in British coal miners [7] and data 
about type 2 diabetes in Germany [8]. These data are used to obtain the age- specific 
incidence rates from aggregated prevalence data. In addition to that, confidence 
intervals for the ML-estimator of the age-specific incidence rate are estimated as well. 
We distinguish different situations according to the mortality rates. In the situation of 
non- differential mortality, people with and without the disease of interest have equal 
mortality rates (m0 = m1). The case where the mortality rates are unequal (m0 ̸= m1)  
is called differential mortality [9]. This differential mortality is a reasonable assump-
tion for many diseases. We will have our analysis in three different scenarios: 1) 
non-differential mortality; 2) differential mortality given the mortality of diseased and 
all-cause mortality (general mortality rate); 3) differential mortality given the general 
mortality and mortality rate ratio (the ratio of mortality rates of non-diseased and 
diseased individuals).

The aim of our work is to propose a method for the estimation of the incidence rate 
from prevalence and associated confidence intervals, using a maximum likelihood 
method based on a (partial) differential equation that links prevalence, incidence rate 
and mortality rates in an illness-death model for a chronic condition.

Methods

Data sets

The maximum likelihood method in this article is based on aggregated current 
status data where information on disease status is collected at one time-point 
(prevalence data). The usage of this method for the estimation of incidence rates 
and corresponding confidence intervals will be analyzed based on two differ-
ent data sets. The first example investigates fictional data on breathlessness 
in British coal miners as the chronic condition. The second example is a real 
data set about type 2 diabetes in women in Germany. Data and source code in 
the statistical programming language R (The R Foundation for Statistical Com-
puting) are provided in the free online repository Zenodo under DOI 10.5281/
zenodo.8383573. Calculations and results were produced using R version 4.1.0 
on a 64-bit Linux notebook.

Funding: The author(s) received no specific 
funding for this work.

Competing interests: The authors have 
declared that no competing interests exist.



PLOS One | https://doi.org/10.1371/journal.pone.0321924 May 14, 2025 3 / 14

Data set 1: Breathlessness in British coal miners

The chronic condition under consideration in data set 1 is breathlessness in British coal miners. This fictitious data was 
published in Elandt-Johnson and Johnson (2014). Table 1 shows information on the associated prevalence data. It reports 
on age-specific aggregated data stratified by age groups from 20 to 64 with a size of 5 years for every group. Prevalence 
data are presented as the number of persons observed (n

k
), the number of persons with breathlessness (c

k
) and the 

age-specific prevalence for all k age groups (k = 1, …,9) [7].
Besides the data presented in Table 1, we will also incorporate mortality in the maximum likelihood estimation: Table 2 

shows the life tables for the general population and the population with breathlessness in Wales and England for the same 
age groups as the prevalence data.

The data from Table 1 will be used for the maximum likelihood estimation in case of non-differential mortality. The infor-
mation in Table 2 will be additionally used in the example for differential mortality with the mortality of diseased and the 
general mortality given.

The general mortality in the example is given by m(a) = exp(–9.300 + 0.092 · a) and the mortality of diseased individu-
als by m1(a) = exp(–6.295 + 0.052 · a) (see Source Code on Zenodo for explanation).

Table 1. Fictitious example data about breathlessness in British coal miners taken from table 14.2 a in [7] stratified by age groups with num-
bers of persons observed, number of persons with breathlessness and age-specific prevalence for 5-year age groups from 20 to 64.

Age group k (in years) Number of persons observed (nk) Number of persons with condition (ck) prevalence (pk) of breathlessness (in %)

20 to 24 1952 16 0.820

25 to 29 1791 32 1.787

30 to 34 2113 73 3.455

35 to 39 2783 169 6.073

40 to 44 2274 223 9.807

45 to 49 2393 357 14.92

50 to 54 2090 521 24.93

55 to 59 1750 558 31.89

60 to 64 1136 478 42.08

https://doi.org/10.1371/journal.pone.0321924.t001

Table 2. Fictitious example data about breathlessness in British coal miners taken from table 14.2 b in [7] with life tables for England and 
Wales in the general population and in the population with breathlessness stratified by 5-year age groups from 20 to 64.

Life tables

Age group k (in years) General population Population with breathlessness

20 to 24 481185 343937

25 to 29 478683 333343

30 to 34 476150 320446

35 to 39 472641 304305

40 to 44 467066 284325

45 to 49 457729 260806

50 to 54 441895 233060

55 to 59 415262 200561

60 to 64 372908 163241

https://doi.org/10.1371/journal.pone.0321924.t002

https://doi.org/10.1371/journal.pone.0321924.t001
https://doi.org/10.1371/journal.pone.0321924.t002
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Data set 2: Type 2 diabetes in Germany

The second example uses data about type 2 diabetes in German women in 2009 and 2010. Table 3 has aggregated data 
about the ascertained diagnoses of type 2 diabetes of women in the years 2009 and 2010 taken from the German statu-
tory health insurance. A detailed description of this data can be found in [8].

Due to legal restrictions in the use of the original data, random noise (2%) has been added to the original data. After this, 
the data has been downsampled by the factor of 100 and rounded to the nearest integer. Table 3 summarizes the data for 
age groups from 20 to 99 years with a size of 5 years for every age group. Presented are the numbers of women observed 
in the age group (n

k
) and the numbers of women with diagnosed type 2 diabetes (c

k
) for both years 2009 and 2010.

This data set is used to demonstrate the analysis in presence of differential mortality when the mortality rate ratio and 
the general mortality are known. Values for the general mortality m are taken from the German Federal Statistical Office 
[10]. Values for the mortality rate ratio R are taken from the Danish Diabetes Register [11]. This transfer is possible as rate 
ratios provide a stable measure of association in a wide variety of human populations [12].
Both values are used as a function in age a:

 m(a) = exp(–11.35 + 0.1061 · a) 

 
R(a) = max

{
exp

(
log(6.5) – (a – 20) · log(6.5) – log(2)

50

)
, 1

}
.
 

Illness-death model

Fig 1 shows the illness-death model (IDM). The possible transitions and associated rates are the age-specific incidence 
rate i, the mortality rate of non-diseased m

0
 and the mortality rate of diseased m

1
. In addition to that, the underlying 

Table 3. Numbers of observed women and women with type 2 diabetes in Germany in the years 2009 and 2010 stratified by age groups with 5 
year size from 20 to 99 years. Data from the statutory health insurance.

Age group 
k (in years)

Year 2009 Year 2010

Number of women 
observed (nk)

Number of women with 
type 2 diabetes (ck)

Number of women 
observed (nk)

Number of women with 
type 2 diabetes (ck)

20 to 24 19029 33 18939 36

25 to 29 19549 65 18917 69

30 to 34 19391 109 19388 122

35 to 39 20885 200 19722 208

40 to 44 28844 402 26543 403

45 to 49 28856 706 29509 742

50 to 54 25641 1145 25870 1178

55 to 59 23223 1826 23238 1850

60 to 64 18845 2134 20112 2423

65 to 69 21964 3160 19714 2887

70 to 74 22965 4281 23452 4446

75 to 79 15944 3628 16509 3909

80 to 84 13310 3114 13083 3295

85 to 89 8796 2159 8637 2220

90 to 94 2380 569 2760 681

95 to 99 892 188 833 177

https://doi.org/10.1371/journal.pone.0321924.t003

https://doi.org/10.1371/journal.pone.0321924.t003
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chronic condition has the prevalence p. Recently, it has been shown that a partial differential equation (PDE) relates the 
age-specific prevalence p of a chronic condition at some time t to i, m

0
 and m

1
[13,14].

These measures generally depend on the calendar time t and on age a. For instance, p(t, a) denotes the fraction of 
people alive with the condition and i(t, a) is the incidence rate of the people aged a at time t, respectively [13]. In epide-
miological contexts, the calendar time t is sometimes called period [15]. Note that we only consider chronic conditions 
(persistent, irreversible) so there is no transition from the Diseased state back to Healthy (Fig 1).

The PDE linking the transition rates from the IDM in Fig 1 with the age-specific prevalence p is given by [16]

 

(
∂

∂ t
+

∂

∂a

)
p = (1 – p) [i – p (m1 –m0)] .

 (1)

After solving the formula in equation (1) for i this leads to

 
i =

(∂/∂ t+ ∂/∂a)p
(1 – p)

+ p (m1 –m0) .
 

In some applications, the mortality rates m
0
 and m

1
 are unknown and only the general mortality m of the overall popula-

tion and the mortality rate ratio R = m
1
/m

0
 are available. The general mortality can be expressed in terms of the prevalence 

and the mortality rates (and respectively R) with the following equation:

 m = (1 – p) m0 + p m1 = m0 [1 + p (R – 1)] (2)

This relation can be used in calculations when m
0
 and/or m

1
 are unknown [16].

Maximum likelihood estimation

Aggregated current status data is given for K age groups indexed k (k = 1,..., K). Let c
k
 be the number of people with the 

chronic condition in age group k and n
k
 the overall number of people in age group k.

It is assumed that the number of individuals with the chronic condition under consideration is binomially distributed. The 
corresponding probability mass function is given by 

(nk
ck

)
pckk (1 – pk)

nk–ck  for k = 1,..., K. Then, the binomial likelihood function 
L for the aggregated current status (see Table 3 as an example) data is:

 
L =

K∏
k=1

(
nk
ck

)
pckk (1 – pk)

nk–ck

 (3)

with p
k
 as the age-group-specific prevalence [17]. When the prevalences p

k
 from Equation (3) have an analytical rep-

resentation as a function of the rates i, m
0
, and m

1
 (for example: p = p(i, m

0
, m

1
)), the estimation of parameters can be 

Fig 1. Illness-death model for a chronic condition (‘Diseased’) and associated transition rates: incidence rate i, mortality rate without (m0) and 
with the disease (m1).

https://doi.org/10.1371/journal.pone.0321924.g001

https://doi.org/10.1371/journal.pone.0321924.g001
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straightforward. This will be demonstrated with data about breathlessness in British coal miners. Aim of this concept is 
the substitution of the prevalence with a functional relation based on the relations in equation (2) and estimation with the 
maximum likelihood method. Prevalence (and if needed also mortality rates) are estimated with the maximum likelihood 
method with given prevalence and mortality data. This will result in a plug-in-ML-estimator of the incidence rate using 
the relations between the rates described with the PDE. The mortality rates and the mortality data given determine the 
resulting partial differential equation. Consequently, the applicability of the method depends on the mortality rates and the 
mortality data.

Therefore, we perform our approach in three different scenarios with non-differential and differential mortality in dis-
eased and non-diseased individuals (based on the data sets described above). In the case of differential mortality, the 
type of mortality data that is available is of importance. For example, it is possible that the mortality rate m

1
 of diseased 

and the general mortality m in the overall population are available or that only the general mortality m and the mortality 
rate ratio R = m

1
/m

0
 are available. The second case is the epidemiologically more relevant case since this case occurs 

more frequently in reality.

Likelihood in case of non-differential mortality

In our first example we assume non-differential mortality. Persons without and with the chronic condition (breathlessness 
in the example) have equal mortality rates (m0 = m1). The non-differential mortality reduces equation (1) to

 

(
∂

∂ t
+

∂

∂ a

)
p = (1 – p)i.

 (4)

With the assumption that the prevalence is independent of time t and only depends on age a, the PDE in equation (1) 
becomes the following ordinary differential equation (ODE) in a:

 
∂a p :=

∂p
∂a

= (1 – p)i.
 (5)

Equation (5) has the general solution in (6) with the initial prevalence p0 = p(a0):

 
p(a) = 1 – (1 – p0) exp

(
–
∫ a

a0

i(τ)dτ
)

 (6)

(See formula (12) in [16]). Equation (5) is the basis for a straightforward estimator of the incidence rate as i(a) 
can be written as ∂ap

(1–p). We make the approach to write the incidence rate as: i(a) = exp(β0 + β1a) (with β0, β1 as 
coefficients, see also results section). The substitution of this formula in equation (6) using the initial age 20 and 
the initial prevalence p0 = p(a0) = p(20) = 0 gives: p(a) = 1– exp(h(20) – h(a)) with the auxiliary function h(z) = 
exp(γ0+γ1z)

γ1
. Details about the analytical steps are provided in a supplementary file. With these evaluations, the Like-

lihood function in equation (3) is given by L (γ0, γ1) =
∏K

k=1

(nk
ck

)
p(γ0, γ1)

ck
k (1 – p(γ0, γ1)k)

nk–ck with p(γ0, γ1)k = 1–  
exp

(
exp(γ0+γ120)

γ1
– exp(γ0+γ1k)

γ1

)
.

Likelihood in case of differential mortality

In case of differential mortality, we have to distinguish the situations depending on which type of mortality data is given. In 
our first example (the data about the coal miners), the mortality rate m

1
 of the diseased and the general mortality m in the 

overall population are available. In the second example (diabetes in German women in 2009 and 2010), we consider the 
case where the general mortality m and the mortality rate ratio R = m1/m0 are available.
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Mortality of diseased and general mortality

We assume the case that we have differential mortality in the data about British coal miners with the mortality of diseased 
and the general mortality given. Starting with the PDE in equation (1) and using the information from equation (2) that 
says that the general mortality rate (m) is a convex combination of the mortality rate of non-diseased (m0) and the mortal-
ity rate of diseased (m1) we obtain the following PDE [16]:

 

(
∂

∂ t
+

∂

∂ a

)
p = i – p (i+m1 –m) .

 (7)

With the assumption of independence from time t this reduces to an ODE:

 ∂ap = i – p(i+m1 –m) (8)

The general solution of this ODE is given by:

 
p(a) = exp (–G(a)) {p0 +

∫ a

a0

i(τ) exp(G(τ))dτ }
 (9)

In equation (9) the function G(a) is given by G(a)=
∫ a
a0
{i+m1 –m}(τ)dτ  and a0 is the initial condition with p0 = p(a0) [18]. 

In accordance to the example with non-differential mortality we assume that the incidence rate can be calculated with 
i(a) = exp(γ0 + γ1a) with the coefficients γ0 and γ1. This incidence rate is then substituted into equation (9) with the initial 
condition a0 = 20 and p(20) = p0 = 0.
After inserting the prevalence in equation (3), the likelihood is given by

 
L (γ0, γ1) =

K∏
k=1

(
nk
ck

)
p(γ0, γ1)

ck
k (1 – p(γ0, γ1)k)

nk–ck with
 

 
p(γ0, γ1)k = exp (–G(k)) {

∫ k

20

exp(γ0 + γ1τ) exp(G(τ))dτ }
 

General mortality and mortality rate ratio

The third scenario shows calculations in the case of differential mortality with general mortality and mortality rate ratio 
given (example with diabetes in German women in 2009 and 2010 from Table 3). With m = (1 – p)m0 + pm1 and R = m1

m0
 

the PDE in equation (1) is

 

(
∂

∂t
+

∂

∂a

)
p = (1 – p)

{
i –m

p(R – 1)

1 + p(R – 1)

}

 (10)

and can be solved for the incidence rate with:

 
i =

(∂/∂t+ ∂/∂a)p
1 – p

+m
p(R – 1)

1 + p(R – 1)
.
 (11)
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Given the data from Table 3 we make the following approach for the prevalence p(t, a) = expit 
(
β0 + β1t+ β2a+ β3a2

)
 

with dependence on two time scales: calendar-time t and age a. We then calculate the maximum likelihood estimator for 
the coefficients β0, β1, β2, β3 and the Likelihood function

 

L (β0, β1,β2, β3, t) =
∏

k∈{22.5,...,97.5}

(
nk
ck

)
p(t, a)ck (1 – p(t, a))nk–ck

 

with t ∈ {2009, 2010}. As this was a nonlinear optimization problem, we solved it with the BFGS method and the initial 
values -2.3, 0.1, 0 and -0.001. After the maximum likelihood estimation of p, we can find the estimate for the incidence 
rate i with equation (11) using the plug-in method (non-parametric method for the estimation of functionals) where the 
incidence rate is used as a statistical functional in p. The plug-in method then offers the opportunity to estimate a Normal- 
based interval for the incidence rate (more information about this method are in [17]). The calculation of confidence 
intervals for i is done with the delta method. The delta method estimates the standard errors of i  with a transformation of 
the standard errors in p using a differentiable function (g) that transforms p to i  and its derivative for the calculation of the 
variance of i  [17] (see results section). All upper and lower bounds of the confidence intervals were calculated based on 
the Fisher information matrix and subsequent asymptotic normal approximation [19].

Results

In presenting our results, we will first show the estimation in the case of non-differential mortality using the data in Table 1 
from the example about breathlessness in coal miners. The second example is in the presence of differential mortality with 
the mortality of diseased and the general mortality given by usage of the data in Table 2 (coal miners). The third approach 
has differential mortality with the mortality rate ratio and the general mortality known.

Non-differential mortality

In our first example we assume non-differential mortality where persons without and with breathlessness have equal mor-
tality rates (m0 = m1). A linear regression model was fit to logit(p(a)) with

 
logit (p(a)) = log

(
p(a)

1 – p(a)

)
= β0 + β1a.

 

and the midpoints of the age groups in Table 1 as the ages for evaluation (a = 22.5, 27.5, …, 62.5). Using the preva-
lences in Table 1 for fitting the model we get β0= -7.02 and β1= 0.11.

We use the following aspects to get the corresponding age-specific incidence rate:

1. The expit-function is the inverse of the logit function with expit = logit-1 = exp
1+exp

2. The derivate of expit is expit∙(1–expit)

3. p(a) = expit (β0 + β1a)

4. p′(a) = β1 [1– expit(β0 + β1a)]∙ expit (β0 + β1a) = β1 (1 – p(a)) · p(a)

With these and equation (5) we can rewrite the age-specific incidence rate as: i(a) = β1(1–p(a))·p(a)
(1–p(a)) = β1 · p(a) = β1

∙expit (β0 + β1a).
With i(a) = β1 · p(a) = β1∙ expit (β0 + β1a) and data from Table 1 we get the (ML-estimated) incidence rate for the 

example about breathlessness in British coal miners with: i(a) = 0.11∙expit(–7.02 + 0.11a). Fig 2 shows the estimated 
incidence rates (with this functional relation) for the midpoints of the age groups as a black line.
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It also shows that the age-specific incidence rate i(a) of breathlessness grows exponentially with age. The maximum 
likelihood estimation of the prevalence given by p(a) = 1– exp(h(20) – h(a)) with the auxiliary function h(z) = exp(γ0+γ1z)

γ1
 

(with the initial age 20 and the initial prevalence p0 = 0) is evaluated at the same midpoints of age groups as before 
(a = 22.5, 27.5,…, 62.5) and substituted into equation (3) to get a likelihood function (L(γ0, γ1)) that was used to obtain 
the maximum likelihood estimator for the coefficients γ0 and γ1. The point estimates were γ0 = –7.823 and γ1 = 0.0756 
leading to i(a) = exp(–7.823 + 0.0756 · a) for the calculation of age-specific maximum likelihood estimates of the incidence 
rate. Additionally, the 95% confidence intervals for the parameters are estimated using the inverse of the Fisher informa-
tion matrix for large sample approximation of the variance-covariance matrix [19]. Table 4 shows the point estimates and 
the resulting 95%-CI for γ0 and γ1.

Differential mortality

In the case of differential mortality, we distinguish two situations with either the mortality rate m
1
 of the diseased and the 

general mortality m in the overall population (the data about the coal miners) or the general mortality m and the mortality 
rate ratio R = m1/m0 given (Diabetes in German women in 2009 and 2010).

Mortality of diseased and general mortality

In the data about breathlessness in British coal miners we assume to have differential mortality with the mortality of dis-
eased and the general mortality as the aggregated mortality info given in this case. Table 2 has the information that we 
use for the estimation of the mortality rate in the general population of England and Wales as well as the mortality rate 

Fig 2. Estimated incidence rates (with this functional relation) for the midpoints of the age groups as a black line.

https://doi.org/10.1371/journal.pone.0321924.g002

Table 4. Maximum likelihood estimators for the coefficients γ0 and γ1 used for parameterization 
of the age-specific incidence rate of breathlessness in British coal miners without differential 
mortality.

Point estimate 95% confidence interval

γ
0

-7.823 -8.058 to -7.588

γ
1

0.0756 0.0701 to 0.0811

https://doi.org/10.1371/journal.pone.0321924.t004

https://doi.org/10.1371/journal.pone.0321924.g002
https://doi.org/10.1371/journal.pone.0321924.t004
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of British coal miners with breathlessness. This is done with the theory of single decrement processes. More information 
about this can be found in Chapter 3 of [20]. The 5-year life tables in column 2 and 3 are converted to one-year probabili-
ties of dying at first.

Table 2 is used to estimate the mortality rate of British coal miners and the general mortality in England and Wales.
The following age groups are used: 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64.
Column 2 in Table 2 has the Life tables of the General population (Sx ) and Table 2 column 3 has the Life tables of the 
population with breathlessness (Sxp).

These data that is given in 5-year steps are used for the calculation of the 1-year probability (pmk) in the first step with 
the following equation:

 
pmk = 1 –

(
1 –

Sxk – Sxk+1

Sxk

)0.2

 

Here the Life tables from the next elder age (k+ 1) are substracted from age group k . A linear regression then models 
these one-year probabilities via log(pm) = β0 + β1a with a as age.

The coefficients estimated from these linear regression models are used to get the mortality rates. Table 5 shows the 
estimated coefficients.

As the mortality rates are unknown, these probabilities are modeled in a linear regression model and the resulting 
coefficients are then used to define the mortality rates m1(a) and m(a). A more detailed description of these calculations 
as well as the resulting mortality rates can be found in the supplementary document.

Inserting i(a) = exp(γ0 + γ1a) into equation (9) with the initial conditions a0 = 20 for age and p(20) = p0 = 0 for the 
starting prevalence the maximum likelihood estimator with 95% confidence intervals for γ0 and γ1 in Table 6 are calculated.

General mortality and mortality rate ratio

In the example with data about diabetes in German women in 2009 and 2010 shown in Table 3 the general mortality m 
and the mortality rate ratio R are known (see Methods section about Data set 2). Based on the data we assume the preva-
lence as p(t, a) = expit 

(
β0 + β1 + β2a+ β3a2

)
. With this we calculated the maximum likelihood estimator for the coeffi-

cients β0, β1,β2, β3. As this was a nonlinear optimization problem we solved it with the BFGS method and the initial values 
-2.3, 0.1, 0 and -0.001.

Table 5. Estimated coefficients and mortality rates in breathlessness example in case of differential mortality.

Population with breathlessness General population

β̂0
–6.295098 –9.300141

β̂1
0.0529716 0.09189776

mortality rate m1(a) = –6.295098 + 0.0529716 · a m1(a) = –9.300141 + 0.09189776 · a

https://doi.org/10.1371/journal.pone.0321924.t005

Table 6. Maximum likelihood estimators for the coefficients γ0 and γ1 used for parameterization of 
the age-specific incidence rate of breathlessness in British coal miners with differential mortality.

Point estimate 95% confidence intervals

γ
0

-8.471 -8.7296 to -8.2116

γ
1

0.1010 0.09480 to 0.1073

https://doi.org/10.1371/journal.pone.0321924.t006

https://doi.org/10.1371/journal.pone.0321924.t005
https://doi.org/10.1371/journal.pone.0321924.t006
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After the maximum likelihood estimation of p, the maximum likelihood estimate for the incidence rate i is calculated 
using the plug-in method and the delta method using the differentiable function g and its derivative g′ that transforms p to 

i  and its derivate for the calculation of the variance of i  (see supplementary material). The estimates of the age-specific 
incidence rate including the 95% confidence intervals are shown in Fig 3.

At older ages, the length of the confidence intervals increases indicating a greater uncertainty in the estimation of the 
incidence rate for higher age groups.

Discussion

We described a novel method for statistical inference with maximum likelihood estimation for the incidence rate of a 
chronic condition. The method is based on aggregated data and a differential equation that relates the age-specific prev-
alence of a chronic condition with the underlying age-specific incidence rate. With this maximum likelihood-based method 
the estimation of the age-specific incidence rate from age-specific prevalence data is possible. The estimator has some 
theoretical properties like consistency and efficiency from usage of the maximum likelihood method [11]. Additionally, it is 
also possible to assess the model fit, such as the expit models in the examples above, by likelihood ratio tests or with AIC/
BIC that are based on the likelihood. The estimation and statistical inference of an incidence rate based on a prevalence 
is an epidemiologically important application. It allows usage of aggregated prevalence and mortality data instead of the 
conduction of longitudinal studies. So far, the estimation of the incidence rate based on the differential equation has been 
used in applications without a theory about statistical inference of the differential equation. Therefore, re-sampling tech-
niques were employed to obtain confidence intervals instead. In a re-sampling procedure a number of random samples 
from the reported distributions of the input parameters are drawn to estimate how the uncertainty in the input parameters 
propagates through the differential equations into the outcomes. An example for this type of re-sampling in the field of the 
differential equation described above is given in [5].

The usage of the PDE and the maximum likelihood method for incidence rate estimation including corresponding 
confidence intervals is possible in case of non-differential as well as differential mortality. In the case of non-differential 
mortality, the PDE reduces to a version only depending on the incidence rate and the prevalence. Therefore, the mortality 
rate of diseased and non-diseased are not needed. In the case of differential mortality, it is possible to use other mortality 

Fig 3. Age-specific incidence rate of diabetes in women as estimated with the plug-in estimate Eq. (9). The vertical bars indicate the 95% 
confidence intervals.

https://doi.org/10.1371/journal.pone.0321924.g003

https://doi.org/10.1371/journal.pone.0321924.g003
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information if information about m0 and m1 are missing. For a chronic condition with differential mortality, the mortality rate 
in the general population and the mortality rate ratio of people with the disease over people without the disease can be 
used for the estimation if they are known. The general mortality for these calculations may be offered from the nationwide 
statistical offices and mortality rate ratios could be transferred from other settings or from other countries if unknown. 
This can be done, because it has been shown that rate ratios provide a stable measure of association in a wide variety of 
human populations [20].

During the discussion of the methods described in this article, the question arises if and how it can be generalized. 
In the examples with differential mortality, one might consider the situation where not only the prevalence but also the 
information about mortality are only known with statistical uncertainty. If this is the situation, the standard error of the inci-
dence rate requires more sophisticated concepts of error propagation, for instance influence functions [21] or Taylor series 
approximations of random variables [22].

A second opportunity for the generalization of the findings in this article refers to the functional form of the prevalence p. 
It is possible to have the prevalence with more information and therefore to fit more complex prevalence data. One exam-
ple could be the addition of time-age-interactions. The prevalence p(t,a) can be written in terms of the expit-function p(t, 
a) = expit(f(t, a)) with any differentiable function f (for example a polynomial in t and a) in such situations. As the derivate 
of the expit function is given by (1 - expit) • expit and with inserting p = expit(f) into Equation (1) it immediately yields to the 
incidence rate estimate based on the plug-in method mentioned in the results section: i = p (∂ f + m

1
 - m

0
) (with ∂ f = ∂f∂t  + ∂f∂a) 

using this concept.
An important generalization of the method described in this article that is needed is the usability in situations with 

non-chronic conditions (non-zero remission rates) as we only considered diseases without remission until now. A disease 
where a way back from the Diseased state to Normal (see Fig 1) is possible has the remission rate r. Having such a dis-
ease alters the PDE in equation (1) to [23]:

 

(
∂

∂ t
+

∂

∂a

)
p = (1 – p) [i – p (m1 –m0)] – rp.

 (12)

In the case of non-differential mortality, the PDE in equation (12) is linear and can be solved analytically, similarly to the 
example about breathlessness in coal miners that was used in our analysis. If there is differential mortality with the mor-
tality rates of diseased and non-diseased individuals being unequal (m

1
 ̸= m

0
) the analysis could be performed in a way 

similar to the example with type 2 diabetes in German women. However, in both cases with differential and non-differential 
mortality, additional information (or assumptions) about the remission rate r are necessary to make inference about the 
incidence rate i.

In an example from 1934 where the age-specific incidence rate of yellow fever in southern America was examined from 
a cross-sectional sample with data about age-specific prevalence and antibodies against yellow fever, the assumption 
was made that a positive serostatus does not change after an infection [24]. One could think about a similar consideration 
in other non-chronic conditions.

The methodology presented here has the potential for application in the context of public health and clinical questions: 
An example of its utility in public health can be found in the example about breathlessness. In the second example on 
diabetes, the methodology allows for group comparisons using the incidence rate ratio (IRR), such as comparing the 
diabetes incidence between people with or without inflammatory rheumatic diseases. Therefore, the methodology also has 
clinical applicability.

Apart from estimating incidence rates, the differential equation has been used in other applications, e.g. mortality from 
prevalence and incidence rate [25], in making projections about people with chronic conditions [26] or estimating the effect 
of health policies [27]. The maximum likelihood approach described in this paper may be advantageous in these applica-
tions, too.
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This study presents a new method for incidence estimation using a maximum likelihood approach that was tested with 
two exemplary data sets. Further studies should analyze the statistical properties of the maximum likelihood estimators. 
Moreover, a simulation study should be conducted that compares the presented ML-method with other methods and 
examines the effectiveness of the ML-method.

In addition to that, more research about the statistical inference for the estimation of incidence rates based on the PDE 
that belongs to an illness-death model describing the relation between prevalence, incidence rate and mortality rates 
should be conducted considering methods from Bayes-statistics and MCMC.
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