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Abstract: Diseases that affect both wild and domestic animals can be particularly difficult to prevent,
predict, mitigate, and control. Such multi-host diseases can have devastating economic impacts on
domestic animal producers and can present significant challenges to wildlife populations, particularly
for populations of conservation concern. Few mathematical models exist that capture the complexities
of these multi-host pathogens, yet the development of such models would allow us to estimate and
compare the potential effectiveness of management actions for mitigating or suppressing disease in
wildlife and/or livestock host populations. We conducted a workshop in March 2014 to identify the
challenges associated with developing models of pathogen transmission across the wildlife-livestock
interface. The development of mathematical models of pathogen transmission at this interface is
hampered by the difficulties associated with describing the host-pathogen systems, including: (1) the
identity of wildlife hosts, their distributions, and movement patterns; (2) the pathogen transmission
pathways between wildlife and domestic animals; (3) the effects of the disease and concomitant
mitigation efforts on wild and domestic animal populations; and (4) barriers to communication
between sectors. To promote the development of mathematical models of transmission at this
interface, we recommend further integration of modern quantitative techniques and improvement of
communication among wildlife biologists, mathematical modelers, veterinary medicine professionals,
producers, and other stakeholders concerned with the consequences of pathogen transmission at this
important, yet poorly understood, interface.
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1. Background

Increasing human population growth, the subsequent increasing demand for food production
(including increased meat and animal product consumption), and the conversion of natural habitats to
agricultural land uses have all altered interactions between domestic and wild animal populations.
Historically, transmissions of pathogens from livestock to wildlife have led to the maintenance of
introduced livestock diseases in wildlife populations for up to a century or more [1], and vice versa.
More recently, the loss and alteration of wildlife habitats due to anthropogenic activities have resulted
in changes to pathogen and host distributions that provide increased opportunities for interaction
between wildlife and livestock hosts, leading to pathogen spillover [2]. Spillover events from wildlife
have resulted in the emergence of disease caused by previously unidentified pathogens, such as
Hendra and Nipah viruses, and the resurgence of others, including avian influenza virus, African
swine fever (ASF), and bovine tuberculosis (bTB) [2,3]. The increased likelihood of spillover events
due to the proximity of wildlife and livestock contributes to the disease risk for both free ranging and
domestic animals, as well as for humans.

Diseases affecting domestic animal populations are important from a variety of perspectives.
For individual producers, disease-related morbidity and mortality of livestock negatively affects the
production of animals and animal products, and, ultimately, may have animal welfare and financial
implications [4–6]. From a regional or national perspective, livestock and poultry diseases can result in
economic and trade consequences; for example, the 2001 outbreak of foot-and-mouth disease (FMD)
in the UK led to the destruction of millions of animals and contributed to economic losses of over
$9 billion USD [7,8]. Total costs of the 1997/1998 Netherlands Classical Swine Fever (CSF) outbreak
have been estimated at $2.3 billion USD [9], and a total of $240 billion USD in economic losses have
been reported as a result of the ASF outbreak in domestic and wild pigs in the Russian Federation
between 2008 and 2011 [10]. For developing countries in particular, diseases of livestock and poultry
can threaten food security and livelihoods [11,12].

Similarly, disease emergence, or re-emergence, among wildlife populations can negatively impact
ecological systems and functions, as well as disrupt economic activities. Stakeholders such as hunters
and wildlife-watchers can be affected by disease-mediated declines in wildlife populations with
significant economic impacts; losses due to invasive animals and associated pathogens in the United
States are estimated to cost $35 billion annually [13]. Spillover of pathogens from domestic animals to
immunologically naïve wild animal populations can lead to drastic declines in wildlife populations,
particularly if combined with other stressors, which have important conservation implications [14–16].
For example, the transmission of canine distemper virus from domestic dogs to wild African carnivores
has been linked to population declines of some wild species [17–19]. Small populations that are already
at risk are much more vulnerable to extinction in the face of disturbances such as the emergence
of a novel pathogen [14,20,21]. Finally, disease can have indirect effects by altering the ecosystem’s
functionality [22], resulting in impacts felt by many species beyond those directly affected.

Models are useful for predicting the effects of disease on populations, estimating the effects
of management outcomes, and providing a framework within which trade-offs between different
actions (including no action) can be evaluated [23,24]. However, unique challenges are posed when
modeling wildlife diseases due to the relative paucity of information on wildlife compared to humans
or domestic animals [23]. Specifically, host characteristics such as social structure, movement patterns,
population numbers, and contact networks, which are vital aspects for capturing the potential spread
of pathogens and the impacts of the emerging infectious diseases they cause [24–27], are more difficult
to observe for wildlife species. Estimating the prevalence of infected or exposed individuals in a
wildlife population is also often more difficult, requiring the capture and handling of animals or
estimates from harvested animals which may not be reflective of exposure and infection rates in the
non-harvested population [28]. Finally, although the need for approaches to disease management
that draw together expertise from across disciplines—transdisciplinarity—is ever-increasing, a lack
of effective communication and collaboration among various scientists and stakeholders, such as
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veterinary scientists, wildlife biologists, vector and microbiologists, statisticians, livestock owners, and
managers, persists. This apparent continued segregation of disciplines exacerbates the difficulties of
modeling diseases at the interface [29].

1.1. Disease at the Interface

A number of diseases have a shared component at the common boundary—or interface—between
domestic and wild animal populations. The wildlife-livestock interface can be fundamentally defined
as the continuum of direct and indirect contact between free-ranging wildlife and domestic livestock
(or poultry). Indirect contact can occur through exposure to infected materials (such as aerosols, mucus,
or feces) or through environmental reservoirs, such as soil water [30]. Overlapping habitats, including
shared feeding grounds or watering points, can all provide opportunities for infectious pathogens to
pass to and from domestic and wild animals. This interface is temporally and spatially dynamic, as the
types and frequencies of interactions between wild and domestic animal species are influenced by daily,
seasonal, and stochastic annual patterns in animal behavior and environmental conditions, as well as
anthropogenic activities [31]. Habitat fragmentation, encroachment, and agricultural intensification,
for example, provide greater opportunities for novel interspecific interactions. These interactions
can include wildlife species that historically have not come in contact with each other, as well as
contact between livestock and wildlife, which can lead to disease emergence [2,32]. For example,
Brucella abortus transmission between domestic livestock and wild elk (Cervus canadensis) has occurred
through contact with infectious birth materials at shared feeding sites [33–35], and Nipah and Hendra
viruses emerged primarily due to land use changes that brought domestic livestock into greater
contact with wildlife [36,37]. One Health approaches also recognize that humans are intrinsic to this
continuum of contacts at the interface [1,16] because anthropogenic activities enhance the probability
of novel interactions, intensify the outcome of interactions between livestock and free-ranging wildlife
populations, and affect humans through the emergence of zoonotic pathogens.

1.2. Objectives

The complexities of the wildlife-livestock interface, the increased rate of the transfer of pathogens
among wildlife, livestock, and humans, and the challenges associated with pathogen detection and
disease management in wildlife, all necessitate a collaborative, transdisciplinary effort to develop novel,
science-based methods to address disease concerns within these systems. The use of mathematical
models is one such method and is increasingly recognized as a valuable tool for synthesizing
information to better understand pathogen transmission routes and to support policies and programs
aimed at the prevention and/or management of animal diseases [38]. In this context, transdisciplinary
approaches are crucial to producing robust, powerful, and most importantly, useful multi-host dynamic
transmission models. The objectives of this paper are to: (1) identify, qualitatively, the gaps and
challenges in modeling pathogen transmission at the wildlife-livestock interface; (2) provide an
overview of the quantitative methods and approaches to tackle these gaps; and (3) recommend a
science-based path forward.

Considering the diversity of perspectives required to understand pathogen transmission at the
wildlife-livestock interface, we approached our objectives by compiling ideas from both subject matter
experts and the peer-reviewed literature. During a 2014 international workshop, we gathered a
group of veterinarians, biologists, epidemiologists, statisticians, and mathematicians to evaluate the
gaps and challenges in understanding and modeling pathogen transmission at the interface between
free-ranging wildlife populations and livestock and poultry populations. A central focus of the group
was to identify deficiencies in modeling transmission in livestock-wildlife disease systems using, as
examples, FMD, bTB, highly pathogenic avian influenza (HPAI), and CSF; these diseases formed a
foundation for discussion from which this broader paper emerged.
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2. Importance of Mathematical Models of Disease Transmission at the Interface

Mathematical models are being applied with increasing frequency to improve our understanding
of complex multi-host disease systems [38,39]. Models have been used to predict pathogen spread,
to investigate disease control strategies, to develop risk analyses, and to study disease impacts
on population dynamics [40–43]. A number of modeling approaches borrowed from population
biology contribute to our knowledge of wildlife species occurrence in time and space and abundance,
and can be used in the development of predictions regarding areas of overlap between wildlife
and domestic animals during high risk pathogen transmission periods (e.g., brucellosis in elk and
livestock [44]). In addition, mathematical models can help evaluate the contribution of proposed
transmission pathways [45–47] to generating outbreaks, so that control efforts can be focused on the
pathways that contribute the most to epidemics. Models can also assist by identifying the probability of
pathogen eradication from livestock and/or wildlife under different management scenarios [6,48,49],
identifying priority areas for surveillance [31,50], and predicting the likelihood of host extinction [21].

The development of predictive models of disease outbreaks caused by multi-host pathogens is
hampered by the difficulty in determining: (1) the identity of hosts and pathogens, their distributions,
and movement patterns; (2) the transmission pathways and rates between wildlife and domestic
animals; (3) the effects of disease caused by pathogens and concomitant disease mitigation efforts on
wildlife and livestock populations; and (4) barriers to communication among these sectors. Below, we
explore these sources of uncertainty and gaps in our knowledge, as well as analytical approaches that
have been used to deepen our understanding of disease in livestock, wildlife, or at the interface of
both groups; a summary with some key examples is provided in Table 1.

Table 1. Three central sources of uncertainty and outstanding questions (‘knowledge gaps’) encountered
when considering mathematical models of disease transmission at the livestock-wildlife interface.

Sources of Uncertainty Key Knowledge Gaps Analytical
Approaches Literature Examples

Distribution and
movements of hosts and

pathogens

When and where do livestock and wildlife
hosts overlap?

Resource selection
functions

Elk and brucellosis [44]
Deer and chronic wasting

disease [51]

Is the geographic range of the pathogen the
same as that of the host(s) or is the

pathogen constrained by
environmental conditions?

Presence-only models

Anthrax distribution [52]
Plague distribution [53]

Ecological niche modeling in
general [54]

When and where does pathogen exposure
result in population extinction?

Occupancy models Chagas disease vectors [55]
Chytrid fungus and frogs [56]

Transmission pathways
and rates

How do animals become infected? Direct
contact? Indirect contact?

SIR models
Multiple species and rabies [57]

Pigs and influenza A [6]

What are the most important pathways for
transmission between wildlife

and livestock?

Contact networks
(with SIR models)

Lions and distemper [58]
Parasite transmission [59]

Raccoon rabies [60]

Are there features in the landscape that
facilitate or prevent the spread of

the pathogen?

Agent-based models

Colobus monkeys [61]
Prairie dogs and plague, individual

model to simulate SIR
dynamics [46]

Bobcats and FIV [62]

Diffusion models

Feral swine and FMD [63]
Raccoon rabies [64]

Chronic wasting disease
and deer [65]

Metapopulation
models

Raccoon metapopulations and
rabies [66]

Raccoon and skunk rabies [67]
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Table 1. Cont.

Sources of Uncertainty Key Knowledge Gaps Analytical
Approaches Literature Examples

Effects of disease and
mitigation on host

populations

What long-term impact does disease have
on the host population?

Population viability
models Seabirds and avian cholera [68]

Where are the high-risk areas to target
mitigation efforts? What scenarios lead to

greater risks of transmission?

Optimization
Raccoon rabies and bait

distribution [66]
Bovine tuberculosis [69]

Risk assessment

Many examples including:
Salamanders and chytrid [50]
Raccoon and skunk rabies [67]

Saiga antelope, livestock, foot and
mouth disease [70]

What are the trade-offs among alternative
mitigation strategies? What are likely to be
the most effective mitigation techniques?

Decision theory
Few examples but see: Cost-benefit

of wildlife-livestock disease
mitigation [71]

Multiple scenario risk
assessment

Bison and brucellosis, alternative
management actions [72]

Plague and prairie dogs, alternative
climate scenarios [73]

2.1. Hosts and Pathogens: Their Distributions and Movement Patterns

Accurate identification of species that play a role in multi-host disease dynamics is an important
and practical challenge. Identifying these species in wildlife disease systems is difficult and can
often only be done by perturbing the system, for example, with an intervention technique and then
intensively monitoring the system [74]. Our inability to identify all participants in the system can lead
to the application of pathogen and disease control measures that are too generic to be effective, or even
misapplied, in the event that the hosts, or geographic regions, being targeted are not actually those
that are driving disease dynamics.

Once key species involved in the transmission and maintenance of pathogens are identified,
we still often lack knowledge about their spatial and temporal distribution; information which is
critical for predicting when and where disease might emerge. Systematic surveys for the presence of
wildlife species can be logistically difficult and expensive, and such efforts are often constrained by
limited available resources. Precise and accurate data on the locations of livestock hosts are not always
available, either due to producer confidentiality and privacy concerns or due to a lack of infrastructure
to obtain such information [75]. Distributions of pathogens in wildlife can also be difficult to estimate
and are often only based on positive detections, without systematic surveys to confirm absence.
For wildlife, species databases available to estimate the distribution of a disease can be hindered by
low rates of detection of morbidity or mortality events because of limited observational opportunities,
carcass loss or destruction, and underreporting, even where cases may be observed, particularly by
the public [54]. If disease-associated morbidity and mortality make the detection of infected animals
difficult, even systematic sampling efforts can result in biased estimates of infected individuals [76].
In addition, testing wildlife for diseases by collecting diagnostic samples often requires invasive
capture methods or lethal sampling, which can be stressful for animals and researchers, and may give
rise to public, legal, and animal welfare concerns [32].

Some surveillance programs, such as those for HPAIV and chronic wasting disease (CWD), have
used hunter-killed samples to increase sample sizes at a low cost [77,78]; however, this method is
limited to seasons and species that are subject to harvest. Non-lethal, non-invasive, and environmental
sampling methods are actively being explored and/or implemented to enhance the sampling effort
and frequency, while reducing the need for direct animal handling of wildlife. Camera traps to
detect physical signs of disease [79], sampling feces to detect volatile organic compounds indicative
of disease [80], the collection of saliva/oral fluids [81], and breath sampling [82] are all strategies
currently being evaluated as noninvasive disease sampling tools.
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Pathogen distributions in livestock hosts can be equally difficult to estimate. Underreporting may
occur due to the infrequent observation of livestock and lead to delayed detection. Non-compliance in
the reporting of notifiable diseases may also be an issue that can lead to underreporting of disease.
Reporting of disease by livestock producers may be influenced by a number of factors, including an
inability to recognize the disease [83], the potential deleterious impact of reporting disease on the
individual farm through regulatory measures [84], and a lack of trust in the government [84,85].

The spatial or temporal resolution of the data may also influence our understanding of where
and when a pathogen is present in a host population. For example, bats may be sampled for
Pseudogymnoascus destructans, or Pd (the causative agent of white-nose syndrome), in the summer
at roost locations to avoid disturbing hibernating colonies or due to a lack of knowledge regarding
where winter hibernacula are located. Detecting Pd, however, is more difficult in the summer and it
may be unknown where roosting bats overwinter [86]. Therefore, sampling at roost locations in the
summer, though necessary in some circumstances, may lead to an incomplete picture of Pd presence
on the landscape.

Most available population or host distribution data are incomplete or reflect imperfect
detection [87]. Imperfect detection can have effects on inferences about pathogen and/or disease
in both the wild and domestic animal components of multi-host systems if not properly accounted
for. When modeling species distributions, however, the nature of the absence data (or the zeros)
should be considered. Absence data in wildlife can be attributed to the true absence of the species,
climatic or environmental conditions that prevent the species from occurring at the location, or
methodological absences where no survey has taken place or the survey lacked methodological
rigor [88,89]. Occupancy modeling [90] was developed for analyzing designed surveys of detection
and non-detection to determine at which sites a species is truly absent versus undetected and is finding
increasing utility in disease studies for both domestic and wild animal populations (Table 1).

Imperfect detection of pathogens may occur through the same mechanisms as imperfect detection
of hosts; however, pathogens can also be subject to diagnostic testing bias. Tests used in wildlife are
often only validated in domestic animals and are often not optimized for wildlife species. In the case
of serologic tests, a positive result may only indicate a previous exposure or infection event and does
not indicate an active infection [28]. Tests for diseases are rarely 100% perfect and, as with wildlife host
species detection, multiple samples are often needed to accurately determine the presence or absence
of the pathogen or disease [91].

Other techniques for the estimation of species distributions (including pathogens) are resource
selection functions (RSFs) [92], generally applied to data sets consisting of multiple spatially referenced
locations from individual animals (such as acquired from GPS collars), and niche modelling [55,93],
often used for presence-only data and/or historical records. These techniques can be used to develop
maps representing the potential habitat of wildlife and livestock hosts, allowing areas of overlap to be
identified. However, if disease outbreaks are more closely tied to measures of abundance rather than
estimates of presence, maps based on presence/absence data alone may be misleading [94], and other
techniques such as spatio-temporal point process analyses [95] should be considered.

2.2. Transmission Routes, Rates, and Contact Networks

Modelling transmission at the interface between wild and domestic species is particularly
challenging due to a lack of data on inter-species contacts, both direct and indirect, that might
lead to pathogen transmission [45]. The force of infection (i.e., the rate at which susceptible animals
become infected) is a key parameter in disease models and is particularly difficult to estimate in
wildlife-livestock disease systems, or any multi-host system including humans, where partitioning the
force of infection among the different host species is of interest [38]. The mode of transmission (i.e.,
direct contact, indirect contact, airborne, or vector-borne transmission) [96], as well as the nature and
intensity of interactions between hosts, also influence transmission dynamics and are often unknown.
Models of wildlife-livestock diseases focus on overlap and contact rates of wildlife and domestic
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hosts as key parameters driving the system [71,97–100]. However, identifying pathogen transmission
pathways and contact rates between domestic and wild hosts is difficult [101]. Host species (domestic
or wild) may be secretive or, in the case of environmental transmission, have left the area long before
the disease emerges in a new host population. Models estimating contact networks between wildlife
and domestic hosts often rely on range distribution maps, which are then overlaid. These methods
ignore small-scale behaviors that may be important for pathogen transmission and often ignore a
potential change in behavior due to infection [102]. Studies that explore these movements and contact
patterns in the context of pathogen transmission, e.g., [103–105], have improved our understanding
of transmission dynamics, although the results are likely specific to the characteristics of the study
system (Table 1).

Identifying and describing indirect transmission routes such as the environment can be
challenging for interface diseases. The environment can serve as a reservoir such that the indirect
transmission of the pathogen to wild and domestic animal hosts may be an important and overlooked
component of some disease ecosystems, including anthrax [53], low pathogenicity avian influenza
(LPAI) viruses [106], toxoplasmosis [107], bTB [108], and brucellosis [44], among others. For example,
B. abortus can be passed along from aborted bison fetal material on the landscape to cattle long after
bison have vacated an area [33].

The traditional model of disease dynamics is the susceptible-infected-resistant model or SIR
model [109,110]. Individuals transition between compartments based on the transmission rate of the
pathogen between individuals and the length of the infectious period. The spread of disease in a
population is controlled by the parameter R0 (the basic reproductive ratio), representing the average
number of secondary cases caused by an infectious individual in a susceptible population. In terms
of interface disease, SIR models have been used to examine the effects of alternative management
scenarios on the risk of at least one bighorn sheep respiratory disease case resulting from contact
with a domestic sheep [99] and to assess the risk of FMD transferring from saiga to livestock [71].
These models can be formulated in continuous time as ordinary differential equation models and have
been widely used to represent disease dynamics (for a general overview see [39]; specific examples
include [111,112] and Table 1).

Parameterizing SIR models can be difficult, for example, because capturing individual wild
animals repeatedly to assess disease status, particularly animals that move large distances like
migratory birds or bats, is often not possible. This can limit studies to a cross-sectional design
which provides prevalence data for only a single point in time [28]. Estimating the rate of contact
between individual hosts is also challenging, in large part because it is often difficult to define what a
meaningful contact is (i.e., a contact that can potentially lead to pathogen transmission) and contacts
are rarely observed (see [113] for a list of experimental techniques used to quantify contact networks in
the field). In the majority of cases for animal diseases, we are left observing the outcome of transmission
dynamics and inferring the transmission dynamics from models that replicate the observed outcomes,
e.g., [114].

In general, SIR models assume homogeneous mixing of populations and are not spatially
explicit. Network theory provides a method for describing the structure of social contacts in a
population [27,113,115]. Using network theory, complex social behavior can be quantified and network
graphs produced, representing the connectivity of the population. For example, some populations may
consist of random infrequent contact between individuals, while other populations may be structured
into family groups where contact rates are high within a group and low between groups. Network
models can be used to explain why some populations may be more susceptible to disease than others
and allow for an exploration of how the removal of particular individuals may differentially affect the
spread of disease through a population [116]. Network approaches have been used for livestock [117]
and have been increasingly used for wildlife disease systems [60,118] (Table 1).

Network models can also be used to inform agent-based models (ABMs) or individual-based
models (IBMs), which are a type of spatially explicit model where agents (i.e., individuals) move
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within the landscape and interact with other agents according to a set of rules determined by the
modeler [119,120]. Contact rates can be inferred from simulating populations and estimating the
number of interactions from the simulated data, or defined by information from network models.
ABMs allow for potentially more complex transmission dynamics, including the incorporation of
environmental transmission, multiple hosts, animal movement behavior, and reservoir species. ABMs
have been used to elucidate the transmission dynamics of feline immunodeficiency virus in bobcats [63],
of a hypothetical microparasite in red colobus monkeys [62], and plague in prairie dogs [121], but may
be more difficult for multi-host systems (Table 1).

Realistic parameterizations of some model components of wildlife-livestock disease dynamics
may be possible using population genetics approaches. Examining the genetics of microbes and
pathogens is a promising avenue forward for identifying potential transmission pathways between
species [122]. For example, whole-genome sequencing of B. abortus, the causative agent of brucellosis,
revealed that the pathogen was historically introduced to wildlife on at least five occasions in the
Greater Yellowstone Ecosystem, but that contemporary livestock cases were coming from elk [35].
The genetics of Escherichia coli have been used to establish social contact patterns in giraffe (Giraffe
camelopardis) [123] and potential pathogen transmission pathways between mongoose (Mungos mungo)
and humans [124]. Cowled et al. [125] studied Salmonella infection and risk factors in a wild pig
population using genetic methods and Blackburn et al. [126] used genetics of Bacillus anthracis to verify
the role of blowflies in the transmission cycle of B. anthracis. Other studies have combined pathogen
genetic and epidemiological information to estimate transmission trees for an avian influenza outbreak
among poultry farms in the Netherlands [127] and FMD outbreaks in the UK [128].

Finally, though most modeling efforts focus on one disease-one host systems, when evaluating
the impacts of disease and mitigation strategies, it is important to consider that disease systems may
include multiple hosts [129]. The dynamics of diseases that include multiple-hosts are inherently
more complex. For example, it may be difficult to identify hosts for a disease that kills species A but
not species B, and species B is able to transmit the pathogen a long distance to a new population of
species A [121]. Multiple disease agents may also impact the disease dynamics with infections from
one pathogen repressing or enhancing the ability of a second pathogen to establish itself in a host
species [39,130–132].

2.3. Modeling the Effects of Disease and Mitigation Strategies

Estimating the impacts of disease on host populations at several levels can also be biased by
imperfect detectability. Diseased individuals may hide, become isolated from healthy individuals,
be depredated or scavenged, or die before detection and confirmation of the individual’s disease
state. These are all scenarios under which the impact of disease on a population (i.e., survival,
reproduction) would be underestimated [87]. Estimates of population-level effects will be biased
when sampling schemes do not take variable detection in space or time into account (e.g., convenience
sampling) [133,134]. Accounting for imperfect detection at other levels, such as in the estimation
of total host population size before or after the disease introduction [87], will also be important for
accurately assessing the impact that disease has on host populations.

Evaluating and modelling population-level impacts of disease may be complicated by genetic
variability among hosts or pathogens. Comparisons among studies may lead to different conclusions
regarding the lethality of the disease if different types of host or strains of pathogen are grouped
together. For example, some strains of pathogen may be more virulent than others [135], while genetic
variability among hosts may mediate the responses to disease for particular genotypes [136]. Variability
among hosts can potentially be exploited to promote disease mitigation, for example, management
techniques for eradicating bTB from Europe and elsewhere have shifted the focus of control efforts
towards approaches that harness the genetic variation in the host response to infection [137]. These
techniques rely on the ability of the host to adapt more quickly than the pathogen can evolve into a new
strain. Strain variation of pathogens, for example, avian influenza viruses, makes predicting the effects
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of future disease outbreaks on host populations difficult, in large part because of the complexities
associated with accurately predicting which strain or strains will emerge next [138].

For wildlife species, detecting the effects of fast-acting and highly pathogenic diseases can be
difficult if individual sampling is intermittent (e.g., canine distemper virus in carnivores). Individuals
are likely to be infected and then die prior to being tested (or re-tested), and, as such, may be
misclassified as uninfected prior to death. In many wildlife cases, disease may be a predisposing factor
reducing survival, but the proximate cause of death may be interspecific competition, road kill,
predation, starvation, or co-infection, etc., such that evaluating the impacts of disease on host
populations may require experimental manipulation of the system to demonstrate whether disease
regulates a host population [139]. In the absence of such comprehensive experiments, one approach
has been to evaluate changes in components of fitness, such as survival and reproduction, such that
a population-level impact of disease in free-ranging animals is reported as a decline in survival (or
an increase in its complement, mortality) or a decline in some measure of reproductive output [140].
Singly or in combination, declines in these measures of components of fitness can serve as indicators
of population-level impacts of disease on hosts.

An essential element for developing a mitigation plan is a model of how the system “works”.
At a minimum, a host-pathogen model requires the integration of knowledge regarding the spatial
distribution of the disease agent and the hosts, the transmission dynamics of the pathogen causing the
disease, and the changes in demographic rates and/or behavior associated with infection [25,97,141].
Once a model that is reflective of the host(s), pathogen(s), and the environmental milieu they share is
developed, the long-term impacts of disease on a population and mitigation or control efforts can be
simulated to identify where or when disease management may be most effective (Table 1) [142–144].
A suite of potential mitigation measures may be used to control pathogens at the wildlife-livestock
interface, including, for example, depopulation or population reduction, vaccination, vector control,
containment, sterilization, or therapeutics. The choice of mitigation measure(s) in the event of an
outbreak depends on many factors, including, but not limited to, pathogen and/or transmission
characteristics, the severity of morbidity and mortality among hosts, host species infected or at risk of
infection, available technologies, and the level of political/trade/economic implications. In addition,
choice of mitigation strategy is further influenced by potentially competing interests from human
health, agricultural/domestic animal health, and conservation perspectives [15].

Both field- and laboratory-based experiments can be used to inform models by providing
estimates for these important parameters, though effective wildlife experiments can be challenging
to accomplish. For laboratory experiments, some pathogens can only be manipulated under strict
conditions, animals can be difficult to obtain, and maintaining populations of wildlife species under
laboratory conditions can require new animal husbandry procedures [76]. In addition, extrapolating
the results of experiments conducted under laboratory conditions to field conditions can be tenuous
because natural conditions may vary substantially in terms of animal densities, types of animal contacts
and frequencies of contact, or climatic conditions [145,146].

Applying disease mitigation strategies in the field and conducting field-based experiments can be
difficult (due to the stochastic events such as fire or drought which can eliminate experimental animals),
ethical concerns that result in small samples sizes or lack of replication among study sites, and difficulty
in controlling animal movements between control and treatment sites [147]. Finally, an inability to
trap and capture, or remotely target, sufficient numbers of the host species for the administration of a
treatment or for culling can be an impediment to successful mitigation. For example, Pederson and
Fenton [148] estimated the percentage of the population that should be treated with anti-parasitic
compounds in order to have population-level effects, but this number may be untenable for wildlife
species. Despite these difficulties, controlled experimental design studies in the field and laboratory
offer great promise for parameterizing disease models designed to predict the effects of mitigation
strategies on host and pathogen populations [45].
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Decision theory offers an established framework for evaluating the trade-offs between potential
mitigation actions, determining which factors in the system under consideration are most likely to
affect the outcome of the model and/or the optimal decision, and, most importantly, accounting for
the societal values associated with different predicted outcomes [149]. Decision theory can allow
for the incorporation of information from the modeling techniques previously described in this
paper to develop a model of “how the system works” [150]. This model can then be perturbed to
estimate the effects of a management tactic or stressor, such as disease, on the system. By conducting
sensitivity analyses on host-pathogen models, the most important parameters can be identified and
experiments can be designed to reduce the uncertainty surrounding that particular parameter [151].
For example, for vaccination strategies, important parameters may be vaccine efficacy, the duration of
vaccine-derived immunity, and optimal timing of doses or the need for boosters [145,152,153]. Iterative
decisions can be evaluated using an Adaptive Management framework to distinguish among potential
hypotheses [154].

2.4. Effective Communication

Effective communication across disciplines is critical for bringing together different data streams
and different perspectives on wildlife-livestock diseases, which enhances our understanding of the
processes that lead to the emergence of disease and the ways to mitigate the effects of disease. Data
sharing, along with consistent methodologies and protocols that allow comparisons among data sets,
development and use of a common lexicon, and incentivization of transdisciplinary collaborations
are necessary for effective communication to occur. Data sharing is an essential aspect of fostering
research that crosses the boundaries of traditional disciplines. In order to share data, standards of
data management must be adopted by practitioners and researchers [155], and data analysts and
technicians with the skills to manage data properly and proactively (rather than after the data have
been collected) should be included when planning any data collection activity. Hindrances to data
sharing include fears that data will be misused or not properly credited. In some cases, there may be
privacy or confidentiality issues that may need to be managed through data sharing agreements. The
ability and willingness of researchers to share data in a responsible fashion could be included as part
of funding decisions [155] to incentivize the practice; a number of funding agencies and publication
outlets require data sharing in public, electronic repositories.

In addition to data management practices, standard protocols for the collection of pathogen
and disease data, and quality control procedures, such as proficiency testing, sending samples to
different laboratories to be tested [156], and using recognized reference laboratories, should all be
regular practices, particularly in the early stages of an outbreak when the identification and diagnosis
of new diseases are critical. A registry of validated tests for animal diseases is available from the
World Organization for Animal Health (http://www.oie.int/our-scientific-expertise/certification-of-
diagnostic-tests/the-register-of-diagnostic-tests/) and standards and guidelines for diagnostic tests
are provided (http://www.oie.int/international-standard-setting/terrestrial-manual/access-online/).
Adherence to these guidelines should be encouraged, and perhaps required, for publication, to make
comparisons among studies possible. At the same time, these tests are typically only fully validated
in livestock; a consensus among collaborators regarding which diagnostic techniques and metrics
will be used in studies involving wildlife disease should be formed in the initial stages of a project to
encourage the deepest level of understanding about the disease system.

In addition to standard protocols, the establishment of a common lexicon for describing disease
promotes and enhances effective communication among disciplines. For example, case definitions
(such as that for Batrachochytrium salamandrivorans) [157] ensure that criteria for a definitive diagnosis
are consistent between studies and assure that terms are used consistently. As important, but perhaps
more difficult than determining criteria for diagnosis, is the establishment of a common lexicon for
the meaning of fundamental words about disease systems, such as “outbreak”, “exposure”, “risk”,
and “health”. Patyk et al. [158], for example, describe how the definitions of health may vary between

http://www.oie.int/our-scientific-expertise/certification-of-diagnostic-tests/the-register-of-diagnostic-tests/
http://www.oie.int/our-scientific-expertise/certification-of-diagnostic-tests/the-register-of-diagnostic-tests/
http://www.oie.int/international-standard-setting/terrestrial-manual/access-online/
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veterinarians and wildlife biologists for the polar bear (Ursus maritimus) and how the establishment of
a distinct definition of health can improve the management for this species. Practices such as those
outlined in Patyk et al. [158] will lead to improved communication among disciplines by providing
definitions of abstract concepts that practitioners can agree upon.

Finally, although there is general agreement that transdisciplinary collaboration is necessary to
improve our understanding of diseases at the wildlife-livestock interface, several impediments to true
transdisciplinarity have been identified. These impediments include a lack of funding for research
among disciplines [159], a lack of cross-referencing of publications between journals in different
disciplines [29], and skepticism toward the credibility of others and their work outside of one’s own
discipline [160]. The incentivization of transdisciplinary work can occur through the promotion and
maintenance of programs that support such work, including the NIMBioS workshop that fostered our
initial discussion (http://www.nimbios.org/), as well as other organizations that promote and fund
work that draws multiple disciplines together for disease research (Marie Skłodowska-Curie Actions,
https://ec.europa.eu/research/mariecurieactions/; National Science Foundation, EEID program,
https://www.nsf.gov/). Participation in collaborative work, especially when a researcher may be
one of many collaborators across an array of disciplines, is gaining increasing recognition by—and
inclusion in—promotion and tenure processes in academia [161]. In summary, effective communication
is key to overcoming the challenges to modeling diseases at the wildlife-livestock interface that
we have highlighted. To move forward together, and to learn the most about interface disease
systems, will necessarily require improved data sharing, standardization of protocols and data
management practices, and, perhaps most importantly, overcoming misperceptions about work that
spans multiple disciplines.

3. Conclusions

Modeling diseases across the wildlife-livestock interface involves many challenges. We have
identified four key components necessary for effectively modeling disease at the wildlife-livestock
interface: (1) host and pathogen distributions and movement patterns, (2) transmission rates and
pathways, (3) estimates of disease effects, and (4) effective communication, and we have summarized
the challenges associated with describing these components for wildlife-livestock diseases (Table 1).
Management of diseases at the wildlife-livestock interface requires input from both the domestic
animal and wildlife sectors, and it necessitates that management activities be carried out among
livestock/poultry populations, among wildlife, and at the interfaces between them.

The development of a model to describe how the system works, whether conceptual or
mathematical, is a crucial step for managing shared diseases. Models can help with predicting
long-term outcomes of disease, informing trade-offs between different management strategies,
estimating the potential effects of mitigation, and identifying key parameters in the system where
further research is necessary. Management of diseases at the interface should make considerations
for evaluating long-term success, impacts to stakeholders, cost, species and conservation impacts,
and ecological consequences [162,163]. Models provide a framework for addressing all of the
above [164] when making decisions regarding disease management and we recommend the
development of models as a critical step for fully understanding disease processes. We also suggest
that efforts that focus on resolving uncertainty in key parameters of the disease system under study
that we have highlighted here (i.e., host and pathogen distributions, movement and contact networks,
and transmission dynamics) will garner significant benefit to the management of wildlife-livestock
interface disease problems. Furthermore, substantial gains can be made by integrating both the
modeler and field-based practitioner in a collaborative, iterative research framework [165].

Communication among disciplines is key to successfully modelling diseases at the
wildlife-livestock interface. Ecologists, veterinarians, economists, computer programmers,
policy advisers, disease specialists (e.g., virologists, microbiologists, mycologists, vector biologists),
agricultural specialists, wildlife managers, emergency planners, social scientists, modelers, statisticians,

http://www.nimbios.org/
https://ec.europa.eu/research/mariecurieactions/
https://www.nsf.gov/
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and mathematicians, among others, will all have valuable perspectives to contribute and their
perspectives should be engaged in the earliest stages of disease emergence. Incentives for collaborative
work, increased opportunities for professionals to develop working relationships with those in other
fields, recognition of the scientific advancements that a transdisciplinary approach can provide, and the
intrinsic value of working as part of a team will all be necessary for the successful management of
these diseases.
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