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P E R S P E C T I V E

Application of quantitative systems pharmacology to guide 
the optimal dosing of COVID- 19 vaccines

Optimal use and distribution of coronavirus disease 
2019 (COVID- 19) vaccines involves adjustments of dos-
ing. Due to the rapidly evolving pandemic, such adjust-
ments often need to be introduced before full efficacy 
data are available. As demonstrated in other areas of 
drug development, quantitative systems pharmacology 
(QSP) is well placed to guide such extrapolation in a 
rational and timely manner. Here, we propose for the 
first time how QSP can be applied in the context of 
COVID- 19 vaccine development.

The severe acute respiratory syndrome- coronavirus 
2 (SARS- CoV- 2) pandemic has catalyzed a remarkable 
mobilization in vaccine development. The virus genome 
was sequenced almost instantly after the first cases were 
identified and new vaccines entered clinical trials within 
a couple of months, followed by regulatory approval and 
rollout of national vaccination programs within a year. 
Most of these vaccines use platform modalities, some like 
mRNA vaccines approved for the first time, which will en-
able even more rapid updates following the discovery of 
new variants.

In the initial stages of COVID- 19 vaccine development, 
there was little time for extensive optimization of treat-
ment regimen (i.e., dose amount, number of doses, and 
dosing intervals). To date, most vaccines have progressed 
successfully from first- in- human studies to demonstra-
tion of efficacy in the wider population within months. 
However, often only after regulatory approval and roll- out 
in the real world does the critical importance of optimi-
zation of dosing regimens become apparent, mainly due 
to the challenges of balancing limited supply with near- 
universal demand in the context of epidemiological and 
health- economical outcomes at local and international 
levels. For example, the United Kingdom Joint Committee 
on Vaccination and Immunisation (UK JCVI) recom-
mended to extend the interval between the primary and 
booster doses from the originally approved 3 or 4 weeks to 
12 weeks (which at the time of the recommendation had 
not been tested), thus allowing single dose vaccination of 

twice the number of people in the first phase of the roll-
out.1 Another potential example of a possible area for dose 
optimization, both in terms of efficacy and supply chain 
management, is the increased response reported for an 
arm of an AZD1222 trial where half of the primary dose, 
followed by a booster dose was tested.2 In addition, there 
is growing realization that different vaccines may have to 
be combined, but it will not be possible to test all possible 
combinations in actual clinical trials in a timely manner.3

We anticipate that the requirement for dose optimiza-
tion will remain when the focus will shift to sustaining 
long- term COVID- 19 vaccination programs in the light 
of emerging new strains for the virus. In addition, due to 
the wide- spread roll- out of vaccination programs and ex-
pected drop in COVID- 19 incidence, it will become more 
difficult to run clinical trials in a timely manner. Recently, 
we described how quantitative systems pharmacology 
(QSP) is being used in immuno- oncology (IO) drug de-
velopment to address similar challenges (i.e., decreasing 
access to sufficient number of clinical trial participants 
and the inability to explore all possible combination 
therapies and dosing regimens), in a timely manner.4 We 
now propose that QSP can be used in a similar manner 
in COVID- 19 vaccine development and present the first 
results demonstrating proof- of- principle.

QSP focusses on supporting drug development with 
mechanistic modeling and simulation of underlying biol-
ogy. A typical QSP model consists of a pharmacokinetic 
module, describing absorption, distribution, and elimi-
nation of the drug, connected to a systems biology model 
quantitatively describing biology of the disease and mech-
anisms of drug action. The model (usually expressed as 
a set of Ordinary Differential Equations), is first parame-
terized with diverse literature and preclinical data usually 
available before the start of a drug development project. 
The model then extrapolates from these data and produces 
a first hypothesis about efficacious dosing regimens, often 
before clinical data are available. When a stage of clinical 
trial is completed, the model is validated, refined, and then 
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applied for extrapolation, thus informing the next stage of 
the program. Recently, an increasing number of models 
have reached the maturity required to inform regulatory 
submission,5 with most applications in combination with 
dose selection in IO.4 In terms of regulatory acceptance, 
QSP follows the trajectory of physiologically- based phar-
macokinetics (PBPKs), where system- wide mechanistic 
models of physiology underlying pharmacokinetics are 
now routinely used in lieu of clinical trials on drug- drug 
interactions and other fields. In an analogous manner, 
QSP models informed by a fast- expanding volume of pre-
clinical and clinical data on COVID- 19 immunology and 
vaccination may be useful for optimization of COVID- 19 
vaccine dosing regimens, especially in the context of in-
creasing challenge of clinical subject recruitment and 
confounding factors. We further discuss QSP and other 
approaches in the Supplementary Material.

Since 2017, the Immunogenicity QSP Consortium6 
has focused on modeling the formation of anti- drug anti-
bodies (ADAs), an unwanted immunological response to 
therapeutic protein drugs. We used the seminal model of 
Chen, Hickling, and Vicini7 as a starting point and cre-
ated a platform model, which has now been validated with 
~ 20 clinical compounds. In the wake of the SARS- CoV- 2 

pandemic, we repurposed this model to COVID- 19 vac-
cines. Because the basic biology of the humoral immune 
response is the same regardless of whether we simulate 
an unwanted ADA response to therapeutic proteins or 
desired immunogenicity to a vaccine antigen, we could 
quickly repurpose and expand the model by developing 
a vaccine administration module (See Supplementary 
Material for more detail). This illustrates an important 
and at times underestimated feature of QSP— mechanistic 
platform models can be quickly applied across seemingly 
unrelated therapeutic areas, which share the same under-
lying fundamental biology. Likewise, preclinical and clin-
ical data collected in seemingly unrelated projects can be 
integrated within a single QSP platform and contribute to 
confidence in its application.

Figure  1 illustrates possible application of the 
new QSP model to dose regimen selection in mRNA 
COVID- 19 vaccines. Our example focusses on extrapo-
lation of longitudinal antibody response from phase I/II 
clinical trial data to dosing intervals, dose amounts, and 
long- term vaccination, which have not yet been tested in 
actual clinical trials. We use the virtual population meth-
odology8 to generate ensembles of parameter sets (typ-
ically referred to as virtual patients), which fall within 

F I G U R E  1  Example application of a quantitative systems pharmacology vaccine model to extrapolate from phase I/II data to different 
dosing regimens and long- term vaccination. Plots a and b show ratio of anti- receptor binding domain (RBD) IgG to the geometric mean 
of convalescent serum concentrations, plotted by red horizontal line. (a) Calibration with mRNA- 1273 data and extrapolation to annual 
vaccination. Black lines show simulation results for 85 virtual patients. Colored lines show clinical data available for first 120 days. A 100 
ug dose was given at days 0, 28, and 365. (b) Extrapolation to different intervals between primary and booster dose. The model calibrated for 
mRNA- 1273 vaccine was used to predict antibody response for 100 ug dose administered at intervals of 1– 9 and 12 weeks. We plot median 
IgG ratio of 85 virtual subjects. Administration of second dose leads to burst of antibody production, with the maximum ratio of anti- RBD 
IgG to the geometric mean of convalescent serum concentrations following a bell- shaped curve. (c, d) Extrapolation from phase I/II data on 
BNT162b2 vaccine to different dose amount in younger (c) and older (d) adults. Two doses were given with 21- day intervals and amounts of 
10, 30, and 100 μg. The 246 and 121 virtual patients were simulated in older and younger age groups. Plots show percent of virtual patients 
with the anti- RBD antibody amounts above median convalescent serum concentrations at each time point. Response durability depends on 
the dose. The 10 μg dose results in a substantially lower antibody response in older individuals
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the range of observed patient variability in 120 days long 
anti- receptor binding domain (RBD) IgG titer profiles 
collected by Widge et al.,9 for individual subjects treated 
with two 100 μg doses of mRNA- 1273 vaccine adminis-
tered with an interval of 28 days. Figure 1a shows both 
the calibration result and a virtual trial showing extrap-
olation beyond 120 days to examine response durability, 
as well as the predicted effect of a second 100 μg dose on 
antibody levels. Importantly, we can quantitatively pre-
dict the magnitude of the booster effect produced by vac-
cination after 11 months and the durability of antibody 
response in the following year. The calibrated model can 
then be used to examine different intervals between the 
first and second dose (Figure  1b). In agreement with 
the expectation of many immunology experts,1 and pre-
liminary evidence from a subset of the AZD1222 phase 
III trial,2 expansion of the dosing interval is predicted 
to increase antibody responses. Our model predicts a 
bell- shaped response, with an optimum between 7 and 
8 weeks (Figure 1b). The 12 weeks interval proposed by 
UK JCVI is predicted to lead to lower immune response 
than this predicted optimum, but the expected response 
is still higher than with the original 28  days interval. 
Importantly, in the model, the second dose given after 
12 weeks still acts as a booster rather than as a new pri-
mary dose. A potential downside of extending the time 
of the dosing interval is that subjects may be left unpro-
tected due to antibodies dropping to low levels before 
the booster dose is administered. To explore this issue 
in a quantitative manner, we used convalescent serum 
concentration as an acceptable level for protection 
(Figure 1a,b). Although the question of whether IgG lev-
els are a correlate of protection remains subject to debate 
and investigation, we note that the median convalescent 
IgG level is very close to the level observed in COVID- 19 

vaccine phase III trials between days 10 and 14, the ear-
liest timepoints where placebo and vaccine incidence 
curves separate10 (detailed discussion in Supplementary 
Material). The prolonged exposure of the virus to rela-
tively low level of antibodies may also increase concerns 
related to the selection of vaccine- escaping mutant 
strains,1 although the modeling of in vivo virus muta-
tion rates over 12 weeks would be needed before drawing 
conclusions.

Figure 1c,d illustrate an application of the QSP model 
to examine the effects of varying dose amounts in dif-
ferent age groups. Whereas QSP is in principle applica-
ble toward mechanistically modeling the aging immune 
system, we adopted a more phenomenological approach 
here and created two virtual populations calibrated by 
the clinical data of Walsh et al.,11 collected separately 
for younger (18– 55 years) and older (65– 85 years) adults. 
Using median convalescent serum concentration as a 
threshold, we calculated the percent of responding sub-
jects at different time points (Figure  1c,d). Our results 
show that the antibody response is similar across age 
groups for 30 and 100 μg doses, consistent with observed 
high efficacy in older adults. However, lowering the dose 
to 10 μg is predicted to have a larger negative impact in 
older adults (Figure 1d).

Another important application of large- scale mecha-
nistic models is to generate virtual trials that enable the 
investigation of biomarkers, which were not measured 
in the actual clinical trials. For example, Figure 2 shows 
the time profiles of plasma memory B cells and mem-
ory CD4 T- cells simulated by the model calibrated with 
mRNA- 1273 data (Figure 1a). These results can be used 
in two ways. First, the model can be subject to additional 
calibration by other biomarkers than IgG, thus increas-
ing confidence in results. Second, the model validated for 

F I G U R E  2  Example application of a quantitative systems pharmacology (QSP) model calibrated by phase I/II data for the investigation 
of biomarkers, which were not observed in the clinic. The QSP model was calibrated by clinical data for anti- receptor binding domain 
(RBD) IgG titers following the administration of 100 μg mRNA- 1273 vaccines to younger adults at day 0 and 28. Calibrated mechanistic 
model simulates not only antibodies, but also other biomarkers of interest. Here, we plot (a) memory B- cells and (b) memory CD4 T- cells in 
the plasma compartment. Plots show ratios of the number of cells in plasma compartment, to the median number of cells at day 28, before 
the booster dose was administered. Administration of booster dose increases both B and T cell memory. The model predicts considerable 
variability of individual responses, especially for T- cells
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biomarker prediction can be used to guide the selection of 
the most informative biomarkers for clinical investigation.

In summary, we believe that dose regimen optimization 
will become increasingly important in ongoing and future 
development of COVID- 19 vaccines. Is seems clear that the 
old “trial and error” vaccine development paradigm is inade-
quate to meet the worlds urgent needs. We therefore propose 
that, similar to other areas of drug development like IO,4 
running virtual trials ahead of and in parallel with actual 
clinical trials using QSP models, like the one presented here, 
should become standard practice in vaccine development.
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