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Network‑based integration 
of multi‑omics data for clinical 
outcome prediction 
in neuroblastoma
Conghao Wang, Wu Lue, Rama Kaalia, Parvin Kumar & Jagath C. Rajapakse*

Multi‑omics data are increasingly being gathered for investigations of complex diseases such as 
cancer. However, high dimensionality, small sample size, and heterogeneity of different omics types 
pose huge challenges to integrated analysis. In this paper, we evaluate two network‑based approaches 
for integration of multi‑omics data in an application of clinical outcome prediction of neuroblastoma. 
We derive Patient Similarity Networks (PSN) as the first step for individual omics data by computing 
distances among patients from omics features. The fusion of different omics can be investigated in 
two ways: the network‑level fusion is achieved using Similarity Network Fusion algorithm for fusing 
the PSNs derived for individual omics types; and the feature‑level fusion is achieved by fusing the 
network features obtained from individual PSNs. We demonstrate our methods on two high‑risk 
neuroblastoma datasets from SEQC project and TARGET project. We propose Deep Neural Network 
and Machine Learning methods with Recursive Feature Elimination as the predictor of survival status 
of neuroblastoma patients. Our results indicate that network‑level fusion outperformed feature‑
level fusion for integration of different omics data whereas feature‑level fusion is more suitable 
incorporating different feature types derived from same omics type. We conclude that the network‑
based methods are capable of handling heterogeneity and high dimensionality well in the integration 
of multi‑omics.

Omics refers to the measurements of different molecular entities (e.g., transcriptomics, proteomics, epigenom-
ics, etc.), corresponding to various molecular mechanisms (e.g., genetic, epigenetics, etc.) of a single organism 
or tissue  sample1. High throughput ‘omics’ technologies are increasingly being used to decipher underlying 
molecular mechanisms and invent novel therapeutic strategies for complex diseases such as  cancer2. Cancer is 
a microevolutionary process which is contingent upon the localised tissue environment within  subjects3. The 
benefits of a personalised medicine approach to the treatment of cancer are increasingly apparent and in turn 
been adopted by more healthcare  practitioners4. Initiatives such as ‘The Cancer Genome Atlas (TCGA)’ have 
curated expansive amounts of multi-omics data from thousands of human  subjects5. The technological race for 
high throughput biology has led to a quantum increase in multi-omics data of high dimensions, which requires 
novel strategies for data analysis. High dimensionality and heterogeneity pose incredible challenges for integra-
tion and analysis of multi-omics.

Techniques for multi-omics data analysis can be broadly classified into supervised and unsupervised tech-
niques. Recently proposed supervised techniques include multivariate  techniques6, group-regularized ridge 
 regression7, network-smoothed t-statistic Support Vector Machines (SVM)8, generalized elastic  net9, and deep 
neural  networks10,11. However, such approaches require initial filtering and feature selection to reduce data 
dimensionality or use simple feature integration techniques such as concatenation. They fail to consider inter-
actions among multiple molecular layers measured by different omics technologies. DIABLO, a multi-omics 
method extending generalized canonical correlation analysis that explicitly takes correlations among different 
datasets, has been proposed in the supervised  framework12.

Unsupervised techniques for multi-omics data integration can be broadly classified into joint dimensionality 
reduction (JDR) techniques and network-based approaches. JDR techniques include sparse Multi-block Partial 
Least  Squares13, joint Non-negative Matrix  Factorization14, Joint and Individual Variation Explained (JIVE)15, 
Multi-omics Factor Analysis (MOFA)16, Regularized Generalized Canonical Correlation Analysis (RGCCA)17, 
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and tensorial Independent Component Analysis (tICA)18. These techniques convert multiple omics datasets 
jointly into a latent space of lower dimension, capturing biological and technical sources of common variability 
and disentangling heterogeneities across different omics types. Latent features or factors learned by JDR tech-
niques can be used for a variety of downstream applications such as identification of disease subtypes and patient 
subgroups, or prediction of clinical outcomes and end points.

Network-based methods infer relationships between samples/patients or omics features and rely on the 
networks built using those relations. Examples of networks derived from omics data include Patient Similar-
ity Networks (PSN)1,19 or molecular networks such as gene or protein networks. Multiple molecular or patient 
networks are combined using network integration techniques such as Similarity Network  Fusion20. Features of 
integrated networks are then used as inputs to machine learning models for downstream clustering or predic-
tion tasks. The network-based methods rely on network features that are of much lower dimensions than those 
of omics data and transform heterogeneous omics types into homogeneous networks. The aim of this study is to 
demonstrate and evaluate two fusion strategies for network-based approaches to multi-omics data integration. 
Our methods are illustrated in Figure 1. We demonstrate our methods on multi-omics data on an application 
of clinical outcome prediction in neuroblastoma. This work is an extension of our earlier work for clinical out-
come prediction in neuroblastoma by using Support Vector Machines (SVM) and Random  Forests1, and DNN 
for single omics  data21.

Neuroblastoma is a malignancy in developing sympathetic nervous system, which is often accompanied with 
fatal metastatic disease, resulting in survival rates less than one in  two22. Treatment of cancer patients depends 
upon clinical variables like patient’s risk of disease progression or death by disease. Therefore, it is extremely 
important to predict clinical outcomes of neuroblastoma patients for deciding due course of treatment. By using 
two multi-omics datasets of neuroblastoma from Therapeutically Applicable Research to Generate Effective 
Treatment (TARGET)  project22 and Sequencing Quality Control (SEQC)  project23, we compare two network-
based approaches for integration of multi-omics: network-level fusion and feature-level fusion. For featue-level 
fusion, multiple network features are extracted from individual PSN and then features from differnt networks 
are fused; and for network-level fusion, different omics networks are integrated using Similarity Network Fusion 
(SNF) and then features from the integrated network are used for prediction. Extracted features from PSNs are 
of much lower dimension to dimensionality of omics features or the sample size.

The features extracted by fusing with omics data are then used as inputs to Deep Neural Network (DNN) 
 classifiers24; and Machine Learning classifiers with Recursive Feature Elimination (RFE)25. We demonstrate that 
network-level fusion of multi-omics data outperforms commonly used feature-level fusion on multi-omics data-
sets and the DNN relevance propagation identifies salient network features better than RFE. In this research, we 
compare DNN method with four linear classifiers, i.e. SVM (with linear kernel), Random Forests (RF), Logistic 
Regression (LR), and Decision Trees (DT) as estimators of RFE.

Materials and methods
Datasets. We used neuroblastoma multi-omics datasets from the TARGET  project22 and the SEQC  project23 
to demonstrate applications of our methods. We confirm that all methods were performed in accordance with 
the relevant guidelines and regulations. Each dataset consists of samples gathered from two omics data types.

• SEQC dataset: SEQC  cohort26 had a total of 498 neuroblastoma samples, including 176 high-risk and 322 
low- and intermediate-risk samples. Microarray and RNA-seq datasets for 498 neuroblastoma patients from 
SEQC project were downloaded from NCBI GEO database (https:// www. ncbi. nlm. nih. gov/ gds) with acces-
sion numbers GSE49710 and GSE62564, respectively. They both measure gene expression levels but by using 
different omics technologies.

• TARGET dataset: Target  cohort22 comprised of 157 high-risk neuroblastoma samples, including gene expres-
sion data and DNA methylation data. RNA-seq expression dataset from TARGET project was downloaded 
from project website (https:// ocg. cancer. gov/ progr ams/ target/ proje cts/ neuro blast oma). And DNA methyla-

Figure 1.  Illustration of our methods for fusion of multi-omics data. Feature-level fusion combines features of 
patient similarity networks (PSN) and network-level fusion combines PSN derived from individual omics data.

https://www.ncbi.nlm.nih.gov/gds
https://ocg.cancer.gov/programs/target/projects/neuroblastoma
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tion dataset was downloaded from NIH GDC portal (https:// portal. gdc. cancer. gov/ proje cts/ TARGET- NBL). 
Gene expression data quantifies the transcriptome in neuroblastoma patients while DNA methylation data 
(adding methyl groups to genes) signifies epigenomic variations in those patients.

Patient similarity networks (PSN). PSN is a graph that represents patients as nodes and similarities 
between patients as edges and is denoted by Gm = (V ,Am) where V denotes the set of subjects and Am =

(

amuv
)

 
denotes the affinity matrix (the similarity matrix) where amuv denotes the similarity of measurements of omics 
type m between subjects u ∈ V  and v ∈ V  . If φm

v  denotes omics m type measurement of subject v, then

where sim is a similarity measure.
The similarity between features of individual omics datasets was determined by the Pearson’s correlation 

coefficient between the patients:

where N denotes the total feature number and i refers to the ith feature in the dataset of omics m.
These correlation values were normalized and rescaled to represent positive edge weights by using the 

Weighted Correlation Network Analysis (WGCNA)  algorithm27. WGCNA enforces scale-freeness of the PSN 
by making its nodal degree distribution follow a power law, or at least asymptotically, and thereby our analysis 
becomes robust to noises and errors.

Network features. From a PSN, we computed two types of features: centrality features and modularity 
features. The centrality identifies features giving high scores for most important nodes of the  network28. We com-
puted 12 centrality features for nodes: weighted degree, closeness centrality, current-flow closeness centrality, 
current-flow betweenness centrality, eigen vector  centrality29, Katz  centrality30, hits  centrality31 (authority values 
and hub values), page-rank  centrality32, load  centrality33, local clustering coefficient, iterative weighted degree 
and iterative local clustering coefficient.

Modularity features were extracted by extracting the network modules by clustering the nodal features. We 
used spectral  clustering34 and Stochastic Block Model (SBM)  clustering35 to find network modules and the most 
optimal number of modules were determined by the silhouette score. Modular memberships of each node to 
modules were represented by one-hot vectors and the sum of these vectors for all the modules was taken as the 
modular feature vector for a given node. The centrality features and modular features were concatenated to obtain 
the network features that were used as the inputs to the classifiers.

Feature‑level fusion. For each PSN obtained from omics dataset m, we extracted n feature vector xm for 
each node or a subject. Using feature-level fusion, we combined individual omics datasets to obtain multi-omics 
features:

Feature-level fusion was achieved by concatenating the modularity features and computing the mean of centrality 
features from individual datasets.

Network‑level fusion. In the network-level fusion, the PSN for multi-omics data G is obtained by combin-
ing PSN, Gm , of individual omics data. We derive the similarity matrix of multi-omics PSN by fusion of those of 
single-omics PSN:

We achieved the network-level fusion of single-omics PSN using Similarity Network Fusion (SNF)  algorithm20.

Deep neural networks (DNN). Let us consider L+ 1 layer DNN (feedforward network) for prediction 
of clinical outcomes where layers l = 0, 1, . . . L with l = 0 and l = L denoting the input and output layers of the 
DNN. Let the output, weights, and biases for layer l be denoted as hl , Wl , and bl . The input layer receives features 
x from each subject, so h0 = x . For layers l = 1, . . . L− 1

f denotes the activation function of layer l.
The output y of the output softmax layer L give

The output class label k∗ is assigned the class k receiving maximum output activation:
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https://portal.gdc.cancer.gov/projects/TARGET-NBL
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The network parameters are learned by minimizing the cross-entropy loss by using gradient descent approach. 
In our experiments, we used an Adams optimizer to learn the weights and biases of the network.

Relevance propagation. In order to explore the utility of network features extracted from PSN and the 
interpretability of our DNN models, Relevance propagation was applied. Relevance propagation is an approach 
to studying the relevance or attribution of each input feature to a neural network. According to a unified frame-
work comparing existing approaches proposed by M. Ancona et al. (2018)36, relevance propagation methods 
can be classified into perturbation-based and gradient-based methods. Perturbation-based methods compute 
the relevance of an input feature by simply removing, masking or altering it and comparing the difference with 
the original output. While the theory of this kind of methods is straightforward, its drawbacks include: (1) slow 
running time especially with a huge input feature set; (2) unstable results when number of features removed 
in each iteration varies due to the non-linearity of DNN. On the contrary, gradient-based methods compute 
the relevance in a single forward and backward propagation through the DNN, which is stable and not time-
consuming. Therefore, we adopted a gradient-based method to analyze our DNN model.

Popular gradient-based methods include Gradient *  Input37, Integrated  Gradients38, Layer-wise Relevance 
propagation (LRP)39, and  DeepLIFT40. Notably, Integrated Gradients satisfies two desirable properties, i.e. sen-
sitivity and implementation invariance, while other methods break at least one of them. Sensitivity is satisfied if 
a feature is given a non-zero attribution when its input and baseline differ and generate different output values. 
Sensitivity can be readily violated by gradients, when the final prediction is irrelevant to an input and thus always 
generates a zero gradient regardless of any alterations of the input. Under such circumstances, irrelevant features 
might be assigned a prominent attribution, which is the condition we attempt to avoid. In addition, implementa-
tion invariance means the attributions should be identical to two networks, if their outputs are equal for all inputs, 
despite that the two networks have disparate implementations. Consequently, we applied Integrated Gradients 
rather than other approaches because it conforms with sensitivity and implementation invariance.

Specifically, the integrated gradients of the ith dimension of an input x and a baseline x′ can be formulated  as38

where F denotes the function of a DNN, and ∂F(x)
∂xi

 denotes the gradient of F(x) along the ith dimension.
Moreover, several studies have revealed that removing insignificant input features gives rise to performance 

 enhancement41. Thus, after computing the attributions of each input features, we recursively removed the features 
one at a time depending on their attribution ranks, and tracked how the performance changes.

Recursive feature elimination (RFE). In addition to DNN, we used Recursive feature elimination (RFE) 
with other classifier to compare with DNN. RFE is a feature selection method raised by I. Guyon et al. (2002)25 
designed for identifying salient genes in micro-array gene expression data. RFE utilizes an estimator to rank the 
features with certain criterion (e.g. linear coefficients), and recursively removes the feature with smallest ranking 
criterion until a desired feature subset is obtained. The iterative procedure of the RFE algorithm can be depicted 
as: 

1. Train the estimator with the current feature set
2. Rank all the features according to the ranking criterion
3. Remove the feature with the smallest criterion

In this research, we applied four Machine Learning classifiers, i.e. SVM (with linear kernel), Random Forests 
(RF), Logistic Regression (LR), and Decision Trees (DT) as estimators of RFE. The classifiers were iteratively 
trained on the network feature set with RFE algorithm to select the paramount features. Our network feature set 
consists of centrality features and modularity features. We hope that RFE will help discover the centrality features 
computed by the most suitable algorithms and modularity features representing the vital modules’ membership. 
Currently, RFE algorithm implemented by Scikit-learn42 only supports linear models as estimators.

Experiments
We analyzed two multi-omics neuroblastoma datasets: (i) microarray and RNA-seq expression datasets from 
498 neuroblastoma samples from SEQC  project26 and (ii) 157 neuroblastoma samples including with RNA-seq 
expression and DNA methylation datasets from TARGET  project22. The downloaded datasets were processed by 
removing any missing values or duplicate values using Pandas and Numpy libraries in Python.

The clinical descriptor used as the label for training DNN classifiers was the binary label ‘death from disease’. 
By excluding the samples with missing descriptors, we performed binary classification on both data sets: ‘death 
from disease’ or ‘not’. Both datasets were evaluated using nested 3-fold cross-validation due to relatively limited 
number of samples.

Data preprocessing. The Wilcoxon signed-rank  test43,44 was performed on individual omics datasets to 
identify the most relevant features of the input features. Correction of multiple test based on Benjamini-Hoch-
berg45 was applied to control the false discovery rate, considering the high-dimensional input features. Then the 

(7)k∗ = argmax
k

(

y
)

(8)IntegratedGradsi(x):: = (xi − x′i)×

∫ 1

α=0

∂F(x′ + α × (x − x′))
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features that were most correlated with the clinical outcome were identified at a significance level (p-value) of 
0.001. This effectively reduced the input number of features for each omics datasets. Since gene expression or 
DNA methylation data include lots of noise and not all the genes/features may be relevant to the disease, Wil-
coxon Analysis allowed us to identify and eliminate irrelevant features early, making our models simpler and 
more accurate.

Building PSN and feature extraction. Distances between patients were obtained by computing Pear-
son’s correlation coefficients among omics features and thereby PSNs for each omics dataset were built. The 
correlation weights were normalized and rescaled to be positive by using WGCNA  algorithm27, making PSN 
to behave as scale-free networks. We used the smallest beta value for the algorithm, which achieved 90% of the 
truncated scale free index. WGCNA algorithm was implemented in house, using Python by applying its formula 
and rescaling the edges of PSN with the formula while trying different hyperparameters to test if the resultant 
edges successfully make the PSN scale-free. For network-level fusion, we combined PSNs derived from indi-
vidual omics datasets via the SNF  algorithm20, which was implemented using SNFtool library in R.

Network features of PSN were extracted utilizing NetworkX package on Python. Twelve centrality features and 
modular features were extracted as input features for classifiers. The number of modules detected for each omics 
dataset were different. In order to discover network modules, spectral clustering was applied using NetworkX and 
Stochastic Block Model (SBM) was applied using graph-tool package in Python. We extracted 204 modules for 
microarray and 16 modules for RNA-seq expressions of SEQC dataset, and 60 modules for RNA-seq expressions 
and 34 modules for DNA methylation of TARGET dataset. For combined networks generated by network-level 
fusion, 109 and 44 modules were extracted for SEQC and TARGET datasets, respectively. Before being fed into 
the neural network, the features extracted were normalized to have a zero mean and a unit variance. In order to 
achieve feature-level fusion, we computed means of centrality features extracted from PSNs of individual omics 
data, and concatenated the modularity features.

Training DNN and RFE models. We applied feed-forward DNN for predicting clinical outcomes with 
features extracted from multi-omics PSNs via Tensorflow V1 framework (https:// www. tenso rflow. org/ versi ons/ 
r1. 15/ api_ docs/ python/ tf). The weights and biases of DNN were trained by minimizing the cross-entropy loss 
function with an Adams  optimizer24. Notably, the SEQC dataset is extremely imbalanced, where around 77% 
of the samples belong to the majority class, which is “alive”, while the TARGET dataset does not suffer from 
imbalance issue. In order to handle data imbalance, we decided to apply weighted cross-entropy loss  function46 
on SEQC dataset, whereas since the data was balanced, we used general softmax cross-entropy loss function 
on TARGET dataset. The rationale of a weighted cross entropy function is that it assigns different weights to 
the majority and minority classes to compensate the unbalance naturally. The weightage for class i is defined as

where ni denotes the number of sample belonging to class i.
We used rectified linear unit (ReLU) activation function and dropouts function in the hidden layers. We 

experimented with batch size of 8 and 32. Early stopping criterion was implemented to determine the conver-
gence of learning in order to avoid overfitting.

Nested cross-validation (CV)47 was employed for tuning the hyper-parameters and model selection. Since the 
number of samples in our dataset is insufficient to create a standalone testing set, using typical cross-validation 
may lead to overfitting and data leakage, whereas nested CV is designed to address these issues. The algorithm 
of nested CV is illustrated in Algorithm 1.

The nested cross-validation procedure is composed of outer CV loop and inner CV loop. The training fold 
for the outer CV is further splitted into k-fold of inner CV. The inner CV loop is similar to the typical CV, which 
is used for tuning the hyper-parameters such as hidden sizes, learning rates, batch size, etc. The average score 
of each hyper-parameter set is calculated across all the inner CV folds to discover the best hyper-parameters. 
Then the outer CV loop is used for model selection, where each model with the best hyper-parameters decided 
by the inner CV will be tested and compared. This strategy ensures that the testing data for the final evaluation 
is excluded from the procedures of tuning hyper-parameters, which leads to a more robust evaluation.

(9)weighti =

max
i∈{0,1}

(ni)

ni

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf
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After tuning the parameters and evaluating models, we obtained the DNN model with best performance and 
then applied Integrated  Gradients38 on the model to compute saliency scores for input features. Implementation 
of Integrated Gradients is imported from DeepExplain  framework36 because DeepExplain supports Tensorflow 
V1 which we utilized to develop our DNN model. Then the input features were ranked by their saliency scores 
and removed one by one to seek for performance improvement.

Other than DNN, RFE was also explored for predicting clinical outcomes with PSN network features. We 
implemented RFE with four machine learning models (i.e. linear kernel SVM, Random Forests, Logistic Regres-
sion, and Decision Trees). Network features were evaluated and ranked on the training set, and only the salient 
features were selected for clinical outcome prediction on the testing set. The details of RFE procedure is explained 
in Algorithm 2.

Comparing with existing methods. To further demonstrate the utility of our approach to integrating 
multi-omics data and extracting network features, we compared our developed models with several popular 
approaches, i.e. RGCCA 17,  MOFA16, and  DIABLO12. In our method, the high dimensional and heterogeneous 
multi-omics data are converted into Patient Similarity Networks (PSN). Then topological features are extracted 
from the networks, where dimensionality reduction was achieved. And two techniques, i.e. feature-level fusion 
and network-level fusion, are proposed to integrate PSN or topological features from various omics data. Thus, 
we compared our method with other approaches that handle feature reduction and multi-omics integration in 
different ways. RGCCA and MOFA are unsupervised JDR techniques to discovering latent salient factors in 
omics features that can be readily fed into a downstream analysis. DIABLO is a supervised extension of sparse 
RGCCA that can be solely applied in a classification task.

Results. Results of this research consists of DNN performances, Relevance Propagation, Recursive Feature 
Elimination on Machine Learning classifiers, and comparison with existing multi-omics integration techniques.

DNN performances. Survival status predictions with DNN were conducted on SEQC and TARGET datasets. 
The results are shown in Tables 1 and 2, respectively. Since accuracy fails to measure the performance fairly when 
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the dataset distribution is imbalanced, we also recorded F1 score and ROC-AUC score which works better on ill-
distributed datasets. The results are shown in the format of mean ± standard deviations obtained over different 
random splitting for cross-validation.

Firstly, we performed single omics analyses on both datasets to contrast the model performance after multi-
omics integration. Then for multi-omics approaches, we recorded results of both feature-level and network-level 
fusion. For network-level fusion, PSNs of individual omics datasets were fused in accordance with SNF algorithm, 
and for feature-level fusion, the features of single omics PSNs were averaged or concatenated and fed into DNN. 
To study the contribution of centrality and modularity features, we also separated the two kinds of network 
features from the whole feature set, and fed them into DNN models individually. The results are also shown in 
Tables 1 and 2 when the feature type is centrality or modularity.

Moreover, relevance propagation was applied on optimum models trained on all the datasets to compute the 
saliency scores of input features. Thereafter, the input features were removed one by one to track the performance 
variation, and best performances achieved by the abridged feature set are recorded in Tables 1 and 2 together 
with the feature dimensionality.

In SEQC dataset, over 80% of the samples belong to “alive” class rendering the data distribution extremely 
imbalanced, while in TARGET dataset, the “alive” and “death” class each takes up around 50% samples. Under 
such circumstances, we decided to give priority to F1 score while analysing the results regarding SEQC dataset, 
and focus on accuracy for TARGET dataset, since F1 score balances precision and recall on the positive class 
and measures imbalanced dataset better.

Table 1.  Results of DNN on SEQC dataset. Significant values are in bold.

Dataset Feature type ACC (%) F1 score ROC AUC Feature dim

RNA-Seq (GSE49710)

Centrality 74.3 ± 2.4 0.52 ± 0.04 0.79 ± 0.04 13

Modularity 77.7 ± 8.2 0.56 ± 0.05 0.79 ± 0.05 16

Both 77.3 ± 5.0 0.55 ± 0.05 0.82 ± 0.03 29

Abridged 79.8 ± 1.1 0.59 ± 0.03 0.77 ± 0.02 4

Microarray (GSE62564)

Centrality 69.7 ± 12.4 0.19 ± 0.11 0.54 ± 0.04 13

Modularity 58.9 ± 5.0 0.37 ± 0.08 0.60 ± 0.03 204

Both 60.1 ± 5.3 0.38 ± 0.06 0.61 ± 0.03 217

Abridged 62.8 ± 3.9 0.43 ± 0.09 0.66 ± 0.07 133

Network-level fusion

Centrality 68.6 ± 4.8 0.23 ± 0.08 0.54 ± 0.06 13

Modularity 61.1 ± 4.0 0.37 ± 0.08 0.61 ± 0.02 109

Both 63.9 ± 4.3 0.36 ± 0.08 0.60 ± 0.03 122

Abridged 71.3 ± 2.1 0.33 ± 0.06 0.64 ± 0.04 98

Feature-level fusion

Centrality 73.3 ± 2.9 0.49 ± 0.10 0.74 ± 0.03 13

Modularity 75.1 ± 3.1 0.55 ± 0.06 0.78 ± 0.03 220

Both 79.7 ± 3.2 0.54 ± 0.09 0.76 ± 0.04 223

Abridged 78.9 ± 4.5 0.57 ± 0.11 0.82 ± 0.04 12

Table 2.  Results of DNN on TARGET dataset. Significant values are in bold.

Dataset Feature type ACC (%) F1 score ROC AUC Feature dim

RNA-Seq

Centrality 59.4 ± 6.3 0.69 ± 0.05 0.62 ± 0.07 13

Modularity 61.6 ± 6.8 0.67 ± 0.09 0.62 ± 0.07 64

Both 60.7 ± 3.5 0.64 ± 0.09 0.64 ± 0.04 77

Abridged 61.5 ± 4.6 0.66 ± 0.1 0.66 ± 0.05 38

Methylation

Centrality 57.1 ± 6.5 0.36 ± 0.25 0.54 ± 0.09 13

Modularity 54.1 ± 4.2 0.49 ± 0.19 0.51 ± 0.03 22

Both 54.6 ± 1.6 0.31 ± 0.11 0.52 ± 0.06 35

Abridged 54.1 ± 0.1 0.51 ± 0.13 0.53 ± 0.06 34

Network-level fusion

Centrality 57.2 ± 5.2 0.57 ± 0.07 0.62 ± 0.08 13

Modularity 64.8 ± 8.7 0.65 ± 0.17 0.69 ± 0.07 44

Both 65.1 ± 4.7 0.68 ± 0.04 0.71 ± 0.06 57

Abridged 64.0 ± 5.0 0.69 ± 0.05 0.77 ± 0.07 11

Feature-level fusion

Centrality 55.7 ± 3.0 0.45 ± 0.29 0.55 ± 0.02 13

Modularity 60.5 ± 7.9 0.67 ± 0.05 0.61 ± 0.10 55

Both 61.1 ± 8.0 0.58 ± 0.12 0.61 ± 0.07 68

Abridged 56.8 ± 8.1 0.64 ± 0.12 0.60 ± 0.15 39
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To optimize the performance of DNN, we applied grid search on hyperparameters to discover the best results 
under specific configurations. Sizes of hidden layers, number of neurons in the layers, batch size, and learning 
rate were fixed by experimenting with the validation test. The highest F1 score (0.54±0.09) was achieved on SEQC 
dataset when the DNN architecture is [8, 64, 4, 8], learning rate is 0.01, and batch size is 8. And on TARGET 
dataset, best accuracy (65.1±4.7%) was gained with the structure [4, 4, 4], learning rate 0.01, and batch size 32.

As seen from Tables 1 and 2, the experiments of multi-omics dataset with fusion generally achieved higher 
F1 score or accuracy than prediction based on single omics datasets. On SEQC dataset, highest accurancy (about 
80%) and F1 score (around 0.54) were obtained with feature-level fusion technique. Although F1 score of RNA-
Sequencing prediction was slightly better, its accuracy is not as good as feature-level fusion. On TARGET dataset, 
best accuracy (around 65.1%) was achieved by network-level fusion which is better than other techniques. This 
demonstrates the potential of our approach to integrating multi-omics datasets.

However, it is shown that network-level and feature-level fusion behaved differently on SEQC and TARGET 
datasets. Notably, the two subsets used for fusion in SEQC dataset, i.e. RNA-Seq and microarray, both belong to 
the gene expression omics, but leverage different technologies to measure the gene expression profiling. However, 
in TARGET dataset, RNA-Seq and DNA Methylation data belong to transcriptomics and epigenomics, respec-
tively. It is observed that feature-level fusion is prefered in SEQC dataset, whereas network-level fusion performs 
better in TARGET dataset. The underlying reason could be that in the condition of homogeneous subsets in 
SEQC dataset, their features might be redundant rendering the constructed PSNs incompatible to be integrated 
by SNF algorithm. Therefore, combining the extracted topological features from individual PSNs by averaging 
the centrality features and concatenating the modularity features is more suitable than network-level fusion. 
Thereafter, we can leverage the machine learning algorithms to select the features by learning proper weights 
for them. On the contrary, network-level fusion with SNF is outstanding on multi-omics subsets in TARGET 
dataset. Consequently, we claim that network-level fusion is generally inclined to better integrate multi-omics 
datasets, while feature-level fusion is more suitable for combining two homogeneous datasets.

Moreover, on both SEQC and TARGET datasets, models with only modularity features outperformed models 
with centrality features. This illustrates that a sample’s membership of the modules clustered in the PSN contrib-
uted more than a sample’s importance in the whole PSN to the clinical outcome prediction. Nevertheless, a better 
performance is obtained when both centrality and modularity features are involved in most cases.

Relevance propagation results. We applied Integrated Gradients implemented by DeepExplain for computing 
attributions of input features because DeepExplain can be readily conducted on Tensorflow V1 models. An 
attribution vector were generated for each sample, thus forming an attribution matrix of size (nsample , nfeature) . 
In order to generalize the saliency score for each input feature, we calculated the magnitude of the attribution 
vector across all the samples. Then the input features were removed one at a time according to their ranks of 
saliency.

In Tables 1 and 2, the Abridged Feature type rows show the performance of DNN after eliminating insignifi-
cant features. We found that in the process of removing the input features one by one, the DNN performances 
did not drop until most features were eliminated. Specifically, for the case of Feture-level fusion on SEQC dataset, 
when only 12 out of 233 features were preserved, the performance almost maintained the same with the original 
models. As for Network-level fusion on TARGET dataset, the performance maintained until 11 out of 57 features 
were left. From the perspective of F1 score, eliminating the irrelevant features even enhanced the performances 
slightly on both datasets.

Then we investigated about these remained features. The indices of the remained features in SEQC dataset are 
[25, 171, 125, 202, 51, 211, 118, 87, 14, 13, 15, 18], all of which represent memberships of modules clustered by 
the spectral or SBM algorithms. In TARGET dataset, the indices are [35, 22, 31, 12, 46, 47, 33, 44, 5, 27, 14]. Two 
of the remained features belong to centrality features, representing load centrality and iterative local clustering 
coefficient, and the rest 9 features belong to modularity features.

RFE performances. In addition to DNN, we also explored some machine learning techniques’ capabilities of 
classification with the network features. In the previous section, we compared the performance of DNN models 
with original input feature set and reduced feature set. In this section, similarly, we would like to compare the 
performances of several classical classifiers with their performances after Recursive Feature Elimination (RFE). 
RFE is a technique for feature selection in linear classifiers and is explained in Algorithm 2. The extracted feature 
set after proposed network-level or feature-level fusion is used for fitting the linear classifiers, and the results 
with or without RFE feature selection are presented in Table 3 and 4.

Table 3 shows the results on SEQC dataset. From the perspective of F1 score, it is apparent that feature-level 
fusion outperformed network-level fusion to a great extent. The highest F1 scores, achieved by Logistic Regres-
sion estimator, are approximate to DNN’s results at around 0.71, when 43 out of 234 features are selected. In 
Table 4 presenting results on TARGET dataset, we found that the accuracy of network-level fusion is superior to 
feature-level fusion, which is in accordance with the results of DNN models. The best accuracy is also achieved 
by Logistic Regression classifier, which is around 70.1%.

As shown in Tables 3 and 4, RFE did not enhance the accuracy and F1 score all the time. In most cases, RFE 
generated comparable results with the baseline models after removing redundant features, while sometimes it 
even lowered the performances significantly (e.g. the Logistic Regression case of network-level fusion on TAR-
GET dataset). Therefore, we demonstrate that the feature saliency ranks given by the linear classifiers are not so 
reasonable as the ones given by relevance propagation of DNN models.
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Moreover, it is shown that the performance of Linear classifiers sometimes surpassed DNN’s performance. 
Best accuracy of Logistic Regression on the TARGET dataset is about 70.1%, while DNN’s accuracy reaches 65.1% 
at the utmost. However, on SEQC dataset, DNN still outperformed Linear models with RFE slightly.

Existing methods. Table 5 displays the comparison of performances obtained by our best model and other pop-
ular approaches on SEQC dataset. The three approaches, i.e. RGCCA, MOFA, DIABLO, all aim at reducing the 
feature dimensionality, discovering the latent factors, and also integrating multi-omics data. Notably, RGCCA 
and MOFA are unsupervised methods, so we implemented a simple Logistic Regression model for the down-
stream classification analysis. DIABLO is a supervised method that provides their own function for evaluating 
performances. As shown, RGCCA is inclined to predict that all the samples belong to an arbitrary label, which 
leads to unstable prediction with high standard deviation and a low F1 score. A potential reason of its poor 
performance could be that the selected components are tough to decide when the input feature dimensionality 
is enormous. MOFA achieves a higher F1 score than our method, but its accuracy is over ten percent lower than 
ours. DIABLO also yields an inferior accuracy than ours, and unfortunately, DIABLO does not offer any evalu-
ation using metrics of F1 score, which renders it difficult to evaluate its performance on an imbalanced dataset. 
Generally, our method outperformed the other currently popular approaches on SEQC dataset.

Table 6 shows the comparison of results on TARGET dataset. The best performance of our method given by 
Logistic Regression model significantly outperformed the other three existing approaches, from both accuracy’s 
and F1 score’s perspectives. Therefore, we demonstrate that our method is effective in distilling the paramount 
features for clinical outcome prediction in neuroblastoma.

Table 3.  Results of linear classifiers on SEQC dataset. Significant values are in bold.

Fusion strategy Classifiers

With all features With RFE feature selection

ACC (%) F1 score ROC AUC ACC (%) F1 score ROC AUC 

Network-level fusion

SVM 61.0 ± 3.2 0.32 ± 0.01 0.49 ± 0.04 78.5 ± 0.3 0.00 ± 0.00 0.55 ± 0.01

Decision tree 65.5 ± 2.8 0.23 ± 0.04 0.54 ± 0.03 67.0 ± 1.5 0.22 ± 0.04 0.52 ± 0.00

Random forest 76.7 ± 0.3 0.05 ± 0.04 0.50 ± 0.01 77.5 ± 0.6 0.03 ± 0.04 0.50 ± 0.01

Logistic regression 63.1 ± 4.2 0.33 ± 0.02 0.47 ± 0.04 78.3 ± 0.0 0.00 ± 0.00 0.57 ± 0.02

Feature-level fusion

SVM 74.7 ± 4.4 0.46 ± 0.08 0.48 ± 0.03 69.9 ± 11.5 0.51 ± 0.02 0.76 ± 0.03

Decision tree 73.9 ± 2.5 0.39 ± 0.07 0.47 ± 0.02 74.7 ± 2.1 0.37 ± 0.07 0.62 ± 0.05

Random forest 75.6 ± 0.8 0.25 ± 0.04 0.48 ± 0.01 77.9 ± 2.8 0.31 ± 0.08 0.58 ± 0.05

Logistic regression 73.5 ± 1.3 0.51 ± 0.01 0.53 ± 0.02 75.3 ± 3.4 0.52 ± 0.06 0.71 ± 0.05

Table 4.  Results of linear classifiers on TARGET dataset. Significant values are in bold.

Fusion strategy Classifiers

With all features With RFE feature selection

ACC (%) F1 score ROC AUC ACC (%) F1 score ROC AUC 

Network-level fusion

SVM 68.2 ± 3.1 0.69 ± 0.03 0.53 ± 0.01 60.5 ± 4.9 0.56 ± 0.10 0.60 ± 0.09

Decision tree 54.2 ± 4.0 0.51 ± 0.08 0.45 ± 0.03 48.4 ± 1.9 0.47 ± 0.05 0.59 ± 0.07

Random forest 51.7 ± 4.8 0.42 ± 0.03 0.46 ± 0.05 54.1 ± 6.6 0.51 ± 0.06 0.44 ± 0.05

Logistic regression 70.1 ± 1.6 0.71 ± 0.01 0.52 ± 0.06 61.2 ± 6.1 0.54 ± 0.18 0.68 ± 0.02

Feature-level fusion

SVM 58.0 ± 4.1 0.58 ± 0.01 0.53 ± 0.05 57.3 ± 2.7 0.60 ± 0.03 0.60 ± 0.06

Decision tree 48.3 ± 3.0 0.50 ± 0.08 0.51 ± 0.05 57.3 ± 3.6 0.60 ± 0.06 0.48 ± 0.03

Random forest 54.1 ± 5.8 0.55 ± 0.04 0.52 ± 0.05 56.7 ± 0.8 0.53 ± 0.05 0.57 ± 0.02

Logistic regression 56.7 ± 1.7 0.58 ± 0.04 0.50 ± 0.05 56.7 ± 2.0 0.58 ± 0.02 0.54 ± 0.01

Table 5.  Comparison of results on SEQC dataset.

Method ACC (%) F1 score

RGCCA 58.6 ± 5.9 0.43 ± 0.34

MOFA 67.7 ± 4.5 0.79 ± 0.03

DIABLO 71.1 ± 8.5 –

Ours 78.9 ± 4.5 0.57 ± 0.11
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Discussion and conclusion
We addressed two challenges, heterogeneity and high dimensionality of multi-omics data, for their integration 
and analyses by using network-based methods. The multi-omics data were used for building PSNs where nodes 
represented patients and nodal features of PSNs were used to represent patients’ features. This enables a huge 
reduction in feature dimensionality - from tens of thousands to tens. Multi-omics data are heterogeneous but 
the PSNs built with different omics data are homogeneous and can be readily combined since they have similar 
configurations. Building PSN from multi-omics data allows for both dimensionality reduction and conversion 
from different omics types to homogeneous networks. Currently, one limitation of this research might be there 
are only two available omics types in our datasets. In the future, we plan to experiment our approach on datasets 
with more types of omics data and evaluate the performance of their integration.

We achieved about 79% and 70% accuracies on SEQC and TARGET datasets, respectively, for clinical end 
point prediction for neuroblastoma, which were significant improvements over the accuracies obtained only 
with one omics data type. These have important implications practically as the survival rates of neuroblastoma 
is about 50%. In our experiments, we used only two omics types in the datasets and our methods are generaliz-
able for any number of omics datasets. Our experiments showed that network-level fusion where integration 
of multi-omics datasets is achieved by fusing homogeneous networks performed better than simply combining 
features of different PSNs. We used SNF for combining PSNs but one may use other techniques such as tensor 
based integration. However, when the two subsets both belong to the same omics, e.g. RNA-Seq and microarray 
in the SEQC dataset, feature-level fusion is prone to generate better results, where the centrality features are 
averaged and modularity features are concatenated.

The aim for designing DNN relevance propagation and RFE experiments is to identify the paramount network 
features in the input set. For centrality features, we discovered the most suitable algorithm used for representing 
a node’s importance in the network. And for modularity features, we identified the essential modules that plays 
key roles in the clinical outcome prediction. Comparing the baseline feature set with the abridged feature set on 
DNN, even though the performance is comparative, we realized the majority of the extracted features are insig-
nificant to clinical outcome prediction in neuroblastoma, while only a fraction of the network features is highly 
related to the task. In the future, we shall investigate more about how these salient features can be extracted and 
identified in one shot, and how they serve to predict clinical endpoints.

However, scrutinizing the RFE results, we found that RFE strategy failed to enhance the performance, and 
the selected features varied dramatically in different cases of random splitting, disallowing us to further explore 
the selected features in a generalized way. Consequently, we believe that relevance propagation in DNN models 
is more rational than RFE to delve into the networks features extracted from PSN.

As collection of multi-omics data becomes more affordable, novel approaches to omics data integration and 
analysis are of necessity. By comparing our approach with several existing methods, we demonstrate the poten-
tials of network-based approaches with an application to neuroblastoma clinical outcome prediction. One can 
further explore our methods on other cancers or complex diseases.

Data availability
The datasets used and analysed during the current study are from SEQC and TARGET projects. SEQC project 
data is available in NCBI GEO database (https:// www. ncbi. nlm. nih. gov/ gds) with accession number GSE49710 
and GSE62564, and TARGET project data is available in NIH GDC data portal (https:// portal. gdc. cancer. gov/ 
proje cts/ TARGET- NBL). The implementation of proposed approaches is now released to our GitHub repository 
(https:// github. com/ nomor esome thing wentw rong/ PSN_ Fusion).
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