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Abstract
Background Edaravone was approved as a new treatment for amyotrophic lateral sclerosis (ALS), although there are different 
opinions on its effectiveness. Magnetic resonance (MRI) measures appear promising as diagnostic and prognostic indicators 
of disease. However, published studies on MRI using to monitor treatment efficacy in ALS are lacking.
Purpose The objective of this study was to investigate changes in brain MRI measures in patients treated with edaravone.
Methods Thirteen ALS patients assuming edaravone (ALS-EDA) underwent MRI at baseline (T0) and after 6 months (T6) 
to measure cortical thickness (CT) and fractional anisotropy (FA) of white matter (WM) tracts. MRI data of ALS-EDA 
were compared at T0 with those of 12 control subjects (CS), and at T6 with those of 11 ALS patients assuming only riluzole 
(ALS-RIL), extracted from our ALS cohort using a propensity-score-matching. A longitudinal MRI analysis was performed 
in ALS-EDA between T6 and T0.
Results At T0, ALS-EDA showed a cortical widespread thinning in both hemispheres, particularly in the bilateral precentral 
gyrus, and a reduction of FA in bilateral corticospinal tracts, in comparison to CS. Thinning in bilateral precentral cortex 
and significant widespread reduction of FA in several WM tracts were observed in ALS-EDA at T6 compared to T0. At T6, 
no significant differences in MRI measures of ALS-EDA versus ALS-RIL were found.
Conclusions Patients treated with edaravone showed progression of damage in the motor cortex and several WM tracts, at a 
six-month follow-up. Moreover, this study showed no evidence of a difference between edaravone and riluzole.

Keywords ALS · MRI · Edaravone · Cortical thickness · Fractional anisotropy · Longitudinal study

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 
disease causing weakness and wasting of voluntary muscle, 
associated in about 50% of cases with cognitive impairment 
[1]. Although the pathogenic mechanism is not yet under-
stood, oxidative stress caused by free radicals seems to be an 

essential factor involved in motor neuron degeneration and 
in the progression of the disease [2].

Edaravone is a free-radical scavenger of peroxyl radi-
cal that could potentially reduce the postulated oxidative 
stress in ALS. For this reason, edaravone has been proposed, 
approved and licensed as the first new treatment for ALS 
after riluzole. The first phase 3 study did not show signifi-
cant differences in the ALSFRS-r score between patients 
receiving edaravone and placebo; however, post hoc analy-
ses identified a subpopulation in which edaravone showed 
efficacy [3, 4]. To date, there are several reports on the 
clinical efficacy and safety of edaravone, with promising 
but discordant results [5–8]. More recently, no differences 
in ALS patients treated and not treated with edaravone in 
terms of disease progression and respiratory function has 
been reported in a multicenter Italian real-life study [9].

Magnetic resonance imaging (MRI) plays a role in the 
diagnostic work-up of ALS and currently, its importance is 
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further growing up by the advent of neuroimaging putative 
biomarkers [10]. Newer MRI techniques appear promising as 
diagnostic and prognostic indicators of disease. In particu-
lar, surface-based cortical thickness measures, voxel-based 
morphometry for regional grey matter volume variations and 
diffusion tensor imaging (DTI) metrics of white matter tracts 
have gained wide consensus [11]. To our knowledge, there 
are no published studies on MRI measures as an indicator 
of the effectiveness of drugs in ALS.

The objective of this study was to investigate changes 
in brain MRI measures in patients treated with edaravone.

Materials and methods

Population

Three groups of subjects were studied: (a) ALS patients 
taking edaravone in addition to riluzole (13 patients; ALS-
EDA); (b) control subjects (12 subjects; CS); (c) ALS 
patients taking only riluzole (11 patients; ALS-RIL). All 
subjects included in the study underwent MRI. ALS patients 
were recruited at the tertiary center of motor neuron diseases 
of our Department.

Thirteen patients, who met the criteria of the Italian 
Drug Agency for edaravone administration, were enrolled 
in the first group (ALS-EDA). Inclusion criteria were clini-
cally “probable” or “definite” ALS according to revised El 
Escorial Criteria [12], age > 18 years, disease duration less 
than 2 years, forced vital capacity (FVC) ≥ 80% predicted 
normal value for gender-height-age in a seated position at 
the screening visit, a subscore ≥ 2 in all items of ALSFRS-r 
score and a decrease in the ALSFRS-r score of 1–4 during 
a 12-week observation period between the screening and 
the baseline. Exclusion criteria were concomitant signifi-
cant neurological or neurodegenerative diseases, concomi-
tant significant diseases in other systems or organs, creatine 
clearance lower than 50 mL/min, pregnant or breastfeed-
ing women, and patients who do not understand or provide 
informed consent. At inclusion, all patients had to take 
riluzole 100 mg/day for at least one month. These patients 
underwent clinical evaluations by a neurologist of the ALS 
team and MRI investigations at baseline (T0, in 13 patients) 
and after 6 months (T6, in 11 patients). The following clini-
cal data were collected: site of onset (bulbar or spinal), sex, 
age, disease duration from symptoms onset, ALSFRS-r, pro-
gression rate [13]. Furthermore, each patient has been evalu-
ated for a degree of UMN burden, using Penn Upper Motor 
Neuron score [14], stratifying the study population using 
50% of the total score as cut-off. At follow-up, two patients 
dropped out, one due to death and one because of inability to 
perform magnetic resonance imaging for severe orthopnea.

Controls (CS) were age and sex-matched subjects to 
edaravone group, and consisted of 12 subjects not affected 
by neurodegenerative diseases, family history of ALS, and 
with normal brain MRI, that was performed in the diagnostic 
work-up of their disease.

The third group included 11 definite or probable ALS 
patients, extracted from a cohort of 40 patients of our Apulia 
ALS registry, all treated with riluzole (ALS-RIL), who 
underwent the same MRI protocol of ALS-EDA group. The 
comparative MRI findings at T6 of ALS-EDA versus ALS-
RIL was assessed in propensity score-matched groups. The 
aforementioned clinical data were collected for ALS-RIL 
patients.

All ALS patients underwent physiotherapy from the 
diagnosis of the disease at our tertiary centre; however, the 
considering the lack of a standardized protocol for this treat-
ment, this latter was not included as variable influencing 
MRI outcome.

Written informed consent was obtained from each partici-
pant according to the Declaration of Helsinki and the study 
was approved by the Interregional Independent Ethical Com-
mittee of “Azienda Ospedaliero- Universitaria” of Bari-Italy.

MRI acquisitions

All participants underwent MRI on a Philips MR system 
1.5 T scanner. CS and ALS-RIL groups underwent the same 
brain MRI protocol once, while ALS-EDA patients twice, 
at T0 and T6.

Routine T1, T2 weighted sequences and fluid-attenuated 
inversion recovery (FLAIR) were performed to exclude 
unrelated abnormalities. 3D-structural MRI was acquired 
using a T1-weighted MP-RAGE (magnetization-prepared 
rapid acquisition with gradient echo) sequence (TR/TE/
flip angle: 25.00 ms/4.60 ms/30.00 degree; Field Of View 
[FOV]:240 mm; matrix 256 × 256, voxel size 0.93 × 0.93x1.0 
 mm3). For Diffusion Tensor Imaging (DTI) analyses, we 
used a spin echo DTI sequence: 1.75 × 1.75 × 2.5  mm3 
acquiring voxel size, reconstructed matrix 128 × 128; 60 
slices; TE/TR 77.791/3461 ms; flip angle 90°; a DTI diffu-
sion scheme was used, and a total of 16 diffusion sampling 
directions were acquired. The b value was 800 s/mm2. The 
in-plane resolution was 1.75 mm. The slice thickness was 
2.5 mm.

Cortical thickness (CT) analysis

FreeSurfer software v.7.1 was employed to assess CT. Pro-
cessing steps included correction for magnetic field inho-
mogeneity, alignment to a specific atlas [15], skull removal 
and segmentation of voxels into grey matter (GM), white 
matter (WM), and cerebrospinal fluid (CSF). CT was then 
calculated based on the shortest distance of two surfaces: 
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the interface between GM and WM and the pial surface. A 
Gaussian filter of 10 mm full width at half maximum was 
used for smoothing in all analyses.

We employed the longitudinal FreeSurfer pipeline to 
evaluate 6-month CT changes. The software co-registers 
the two-time points scan for each subject using a robust and 
inverse consistent registration algorithm to create an unbi-
ased subject-specific template [16, 17]. Then, several steps 
in the longitudinal processing stream are initialised from a 
subject-specific template. This approach has been shown to 
increase reliability and statistical power [18].

Cerebral WM analysis

The DTI datasets were processed with the FMRIB Soft-
ware Library v6.0 (FSL) software package. Pre-processing 
included denoising, removing Gibb’s ringing artefacts, eddy 
currents, and motion correction. Afterwards, a diffusion ten-
sor model was fitted at each voxel, generating maps of frac-
tional anisotropy (FA), performed with the tract based spa-
tial statistics (TBSS) algorithm, as described elsewhere [19]. 
Our longitudinal TBSS pipeline follows the steps proposed 
by Menke et al. [20]. FA maps of each patient in native space 
were linearly registered into halfway space and averaged. 
To accomplish that, both images were linearly registered to 
each other, and then the transformation matrix into halfway 
space was calculated. This transformation was applied in 
both images, thus resulting in an average image. Afterwards, 
we ran the standard TBSS protocol.

Statistical analysis

In descriptive clinical analyses, continuous variables were 
summarised as mean ± SD as median and range, and cat-
egorical variables were expressed as relative frequencies. 
Mann–Whitney and Fisher’s exact test were assessed for 
comparisons demographic and clinical features between 
ALS-EDA at T0 and CS groups, between ALS-EDA at T6 
and ALS-RIL groups.

(a) The first step of the study included a cross-sectional 
analysis of MRI findings in ALS-EDA at T0 versus CS. 
Furthermore to define the effect of edaravone as addition 
therapy to riluzole on MRI patterns, ALS-EDA at T6 were 
compared to ALS-RIL, this latter including patients taking 
riluzole for the same duration of ALS-EDA. Then, to allow 
for an unbiased comparison, ALS-RIL were selected from a 
pool of 40 ALS patients using a propensity score-matched 
on a one-to-one basis, at the time of MRI concerning riluzole 
treatment duration. One-to-one matching was performed 
based on nearest neighbour matching within a calliper of a 
width of 0.2 standard deviations [21]. Site of onset (bulbar 
or spinal), sex, age, disease duration from symptoms onset, 
ALSFRS-r, progression rate [13], and predominant upper 

or lower motor neuron were used as covariates. Finally, 11 
ALS-RIL patients were retained for the comparison with 11 
ALS-EDA patients at T6.

(b) The second step of the study included a longitudinal 
analysis comparing paired MRI findings in ALS-EDA at 
T6 vs T0.

Cross‑sectional MRI analysis

The group differences of CT between ALS-EDA at T0 
and CS and between ALS-EDA at T6 and ALS-RIL were 
explored with two types of analysis: a vertex-based analysis 
and a region of interest (ROI)-based one. The whole-brain 
vertex-wise analysis is a point-by-point group comparison 
of thickness across the cortical surface, without any a priori 
hypothesis, starting with the average images of each group. 
This statistical analysis was performed using Qdec (Query, 
Design, Estimate and Contrast), a module of Freesurfer, 
developed to design and execute surface analysis using age 
and gender as covariates. To correct for multiple compari-
sons, we performed Monte-Carlo cluster-based simulation 
with 10.000 permutations and we searched for significant 
clusters with p value level 0.05[22]. Areas showing signifi-
cant cortical thinning were superimposed on the template. 
The vertex-analyses were supplemented by a ROI analysis, 
using the mean values of CT in the primary motor area 
(bilateral precentral gyrus).

WM analysis was employed on FA parameters using a 
two-sample t-test, with cluster-based correction for multiple 
comparisons (p value = 0.05) using Threshold Free Cluster-
Enhancement (TFCE) correction [23]. Johns Hopkins white 
matter DTI-based atlas (available in the FSL software) was 
employed to identify WM tracts with abnormal findings and 
to extract their FA mean values. Between groups comparison 
was assessed using the non-parametric Mann–Whitney U 
test.

Longitudinal MRI analysis

The longitudinal analysis compared T6 vs T0 paired 
MRI findings in ALS-EDA patients. Because all subjects 
have the same number of time points, symmetrized per-
cent change (SPC), which is a dimensionless measure of 
change, was computed at each vertex for each participant 
to assess percent change [18]. SPC is defined accord-
ing to the subsequent formula: SPC = 100 × (V2 − V1) 
0.5 × (V1 + V2), where V1 is the vertex-wise brain meas-
ure at T0 and V2 is the measure at 6-month follow-up. 
SPC maps of CT were computed for each subject. Finally, 
one-sample group mean-test was performed to test if the 
symmetrized percent change in our sample is different 
from zero. Results were corrected for multiple compari-
sons with a two-tailed permutation simulation [24], using 
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a cluster-wise forming threshold of p < 0.05 and 10 000 
random permutations. Maps were visualized by overlay-
ing significant clusters on top of the cortical surface in the 
visualization tool Freeview. Longitudinal TBSS protocol 
was performed using a paired two-sample t-test with TFCE 
[23] correction (alpha = 0.05) and the results were pro-
jected to FA MNI 152 template. We then applied a mask 
on the results to extract bilateral corticospinal tract (CST) 
mean FA. Within group comparisons were performed 
using a Wilcoxon signed-rank test.

Sample size calculation

A minimum sample size was calculated to assess the effect 
of edaravone on CT of precentral gyrus and FA of CST. A 
free software available at http://hedwi g.mgh.harva rd.edu/
sampl e_size/size.html was used for sample size calcula-
tion. To detect a mean difference of 0.25 mm in CT of 
precentral gyrus, as previously indicated in literature 
[25], with a standard deviation of 0.13 [26], a total of 12 
patients had to be entered in this two treatment parallel-
design study, considering a power of 80%, a type I error 
rate of 0.05 and two-sided analyses. Regarding the effect 
of edaravone on FA of CST, to our knowledge, there are 
not cross-sectional studies evaluating the minimal detect-
able change of FA of CST in two compared groups of ALS 
patients. Considering that the propensity score-matching 
method limited our analysis to 22 MRI examination, the 
minimal difference in FA of CST detectable by our study 
was 0.038, with a 0.03 standard deviation of CST [27], a 
power of 80%, a type I error rate of 0.05 and two-sided 
analyses.

Results

Clinical and demographic features of ALS-EDA at T0, CS, 
ALS-EDA at T6 and matched ALS-RIL are summarized in 
Table 1

Cross‑sectional MRI analysis

ALS-EDA at T0 showed a widespread cortical thinning in 
the left hemisphere, in particular in the precentral, perical-
carine and inferior-parietal cortex, and in the right hemi-
sphere, in the precentral and paracentral cortex compared 
to MRI findings of CS (Fig. 1). The ROI analysis revealed 
significant cortical thinning in right (p = 0.019) and left 
(p = 0.016) precentral gyrus. Similarly, TBSS analysis 
revealed in ALS-EDA a reduction FA of bilateral CST from 
the cortex to the cerebral peduncles, more relevant in the 
left hemisphere (Fig. 2). Probabilistic tractography analysis 
confirmed the significant reduction of FA in bilateral CST 
(right CST: p = 0.035, left CST p = 0.002) in comparison to 
CS (Table 2).

The comparison between ALS-EDA at T6 and ALS-RIL 
did not show differences in cortical thickness and FA of the 
CST bilaterally (Table 2).

Longitudinal MRI analysis

When compared to ALS-EDA at T6 vs T0, SPC of CT 
revealed one significant cluster in the bilateral precentral 
cortex with predominant impairment in the right hemi-
sphere (cluster size: left: 1659.46  mm2, right: 2774.77 
 mm2) (Fig. 3). WM analysis showed a significant widespread 

Table 1  Demographic and 
clinical features in study 
populations

Mann–Whitney U test: p = ns; Fisher’s exact test p = ns
ALS-EDA patients taking edaravone in add on to riluzole, ALS-RIL patients taking riluzole, CS control sub-
jects, MRI magnetic resonance imaging, UMN/LMN burden: patients with prevalent upper or lower motor 
neuron burden at the time of MRI using 50% of the total score of Penn Upper Motor Neuron Scale as cut-
off

ALS-EDA at T0
n. 13

CS
n. 12

ALS-EDA at T6
n.11

ALS-RIL
n.11

Age (mean ± SD)
(median; range) (years)

50.23 ± 7.32
49; 40–61

54.17 ± 8.55
53 ; 40–67

49.73  ± 7.04 
49; 40–61

55.64 ± 7.42
58; 45–66

Sex (male/female) 7/6 7/5 7/4 6/5
Site of symptom onset
(bulbar/spinal)

4/9 N/A 3/8 4/7

Disease onset in months at MRI
(mean ± SD)
(median; range)

13 ± 4
13; 8–23

N/A 19 ± 5
18; 12–28

16 ± 8
15; 5–32

Progression Rate at MRI 
(mean ± SD)
(median; range)

0.44 ± 0.21
0.44; 0.13–0.92

N/A 0.79 ± 0.37
0.73; 0.30–1.50

0.56 ± 0.36
0.54; 0.17–1.44

UMN/LMN burden 10/3 N/A 8/3 7/4

http://hedwig.mgh.harvard.edu/sample_size/size.html
http://hedwig.mgh.harvard.edu/sample_size/size.html
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reduction of FA in several white matter tracts, in particular, 
in anterior commissure, arcuate fasciculus, rostrum of cor-
pus callosum and bilateral corticospinal pathways (Fig. 4). 

After ROI analysis, a significant reduction of FA values was 
found bilaterally in the CST (left hemisphere, p = 0.033; and 
right hemisphere, p = 0.041).

Fig. 1  Vertex-wise analysis 
of CT in ALS-EDA patients 
related to CS. ALS-EDA 
revealed cortical thinning in the 
right precentral and paracen-
tral cortex (a) and in the left 
precentral, pericalcarine and 
inferior-parietal cortex (b). The 
coloured areas represented the 
significance maps after Monte 
Carlo cluster-wise correction

Fig. 2  TBSS analysis of ALS-EDA patients at T0 compared to CS. 
Areas with reduced FA are shown in yellow–red in bilateral CST 
from the cortex to the cerebral peduncle in ALS-EDA vs CS. Regions 

of significant differences are overlaid on axial (a), coronal (b) and 
sagittal (c) of the MNI152 1 mm template

Table 2  Cross sectional MRI measures in study populations

Mann–Whitney U test
ALS- EDA ALS patients taking edaravone in add on to riluzole, CS control subjects, ALS-RIL ALS patients taking riluzole, CT cortical thick-
ness, FA fractional anisotropy, CST corticospinal tract

ALS-EDA at T0
n.13

CS
n.12

p ALS_EDA at T6
n.11

ALS-RIL
n.11

p

ROI analysis
 CT of the right precentral gyrus (mean ± SD)
(median; range) (mm)

2.35 ± 0.18
2.35; 1.90–2.61

2.50 ± 0.15
2.51; 2.20–2.73

0.019 2.23 ± 0.24
2.22; 1.74–2.57

2.37 ± 0.16
2.41; 2.04–2.53

n.s

ROI analysis
 CT of the left precentral gyrus (mean ± SD)
(median; range) (mm)

2.34 ± 0.17
2.35; 2.04–2.62

2.52 ± 0.14
2.51; 2.28–2.80

0.016 2.23 ± 0.27
2.24; 1.78–2.64

2.36 ± 0.10
2.36; 2.16–2.55

n.s

 FA average Right CST
(mean ± SD)
(median; range)

0.47 ± 0.01
0.47; 0.44–0.49

0.49 ± 0.01
0.48; 0.47–0.51

0.035 0.46 ± 0.02
0.46; 0.43–0.50

0.44 ± 0.03
0.44; 0.41–0.49

n.s

 FA average Left CST
(mean ± SD)
(median; range)

0.47 ± 0.02
0.48; 0.44–0.50

0.5 ± 0.02
0.49; 0.46–0.53

 0.002 0.46 ± 0.03
0.46; 0.40–0.49

0.45 ± 0.02
0.46; 0.41–0.47

n.s



3312 Journal of Neurology (2021) 268:3307–3315

1 3

Discussion

MRI generated measures have been proposed as potential 
diagnostic, prognostic biomarkers of ALS, nevertheless, 
to date, there are no published studies on MRI measures as 
an indicator of the effectiveness of drugs used in the dis-
ease. In this pioneering study, we have tried to investigate 
baseline and six-month MRI changes in real life on newly 
diagnosed ALS patients treated with edaravone, using CT 
and DTI analysis.

At baseline, the comparison between ALS patients and 
control subjects showed the typical pattern of ALS pathol-
ogy in CT of both primary motor areas and in FA of both 
corticospinal. Almost all the studies carried out with CT 
analysis showed a predominant thinning of the precentral 
gyrus of ALS patients, confirming that the primary motor 
cortex is a distinctive site of microstructural alterations 
that characterizes the disease [28]. Likewise, DTI studies 
found alterations of the corticospinal tracts, which appears 
rapidly, already in the early stages of the disease, due to 
damage to the neurolemma or the myelin sheath [29]. The 
homogeneity of the results of the cross-sectional studies 

suggested the use of MRI as an optimal biomarker of ALS 
pathology [30].

Our objective was to evaluate the effect of edaravone 
on MRI measures and, for this purpose, MRI examination 
has been repeated after six months which, although short, a 
proportionate time considering the rapid course of the dis-
ease. Comparing baseline with follow-up MRI metrics, the 
most relevant results are that, at six months, CT analysis 
showed further cortical thinning in the motor areas. Simi-
larly, TBSS showed a greater involvement of corticospinal 
tracts, but also a widespread involvement of other strategi-
cal traits of the ALS pathology [31]. Differently from MRI 
cross-sectional literature data, longitudinal studies did not 
report univocal results [32–34]. It seems that the discrep-
ancy of the data reflect the heterogeneity of the progression 
of the disease [10]. To evaluate structural changes during 
the course of the disease, it is necessary to select clinically 
homogeneous groups. Our study group, although small, has 
the advantage of being representative of an early stage of 
disease, due to the restrictive criteria of the enrolment.

The widespread involvement of white matter tracts 
that we found at T6 includes the anterior commissure, the 
rostrum of the corpus callosum and the nearest frontal 

Fig. 3  Symmetrized percent 
change maps of ALS-EDA 
patients after 6 months of treat-
ment. Longitudinal analysis 
revealed cortical thinning in 
the bilateral precentral cortex 
in ALS-EDA after 6 months 
of treatment with edaravone in 
add on to riluzole. Coloured 
areas represented the signifi-
cance maps after cluster-wise 
correction with a two-tailed 
permutation simulation in right 
hemisphere (a), and in left 
hemisphere (b)

Fig. 4  Longitudinal TBSS analysis of ALS-EDA patients after 
6-months of follow-up. Areas with reduced FA are shown in yellow–
red in anterior commissure, arcuate fasciculus, rostrum of corpus cal-

losum and bilateral CST of ALS-EDA at T6. Regions of significant 
differences are overlaid on axial (a), coronal (b) and sagittal (c) of the 
MNI152 1 mm template
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tracts. This pattern could be a confirmation of the prion-
like hypothesis of disease progression, through the bi-
hemispheric connections [35]. In this regard, an important 
emphasis has been given to the role of the corpus callosum 
in ALS. Histopathological evidences and more recent DTI 
and voxel-based morphometry studies have all confirmed a 
degeneration of the corpus callosum in ALS [36–39].

In the planning phase of the study, we ran into the prob-
lem of defining the ALS group to compare with ALS-EDA, 
because, for ethical reasons, we could not avoid administer-
ing edaravone to patients who could benefit from it. To over-
come this obstacle, we used PSM to extract from our ALS 
database a group of matched patients taking only riluzole to 
compare with ALS-EDA group. To date, several studies used 
this method to obtain a matched sample with similar MRI 
measures [40–42]. Our results did not show evidence of a 
difference between edaravone and riluzole. This evidence is 
in agreement with clinical data by the Italian EDARAVALS 
Study Group, which reported no benefit of this drug in terms 
of disease progression and respiratory function [9].

One limit of our single centre real life study is the small 
sample size. However, as reported in sample size calculation 
section, the number of recruited patients is widely sufficient 
to detect difference in CT of precentral gyrus as previously 
reported in literature. To our knowledge, no data of a mini-
mal detectable change of the FA of CST are available in 
two compared cross-sectionally ALS groups of patients. One 
study conducted in stroke patients reported 0.015 as the min-
imal detectable change in FA of CST, using the probabilistic 
tract approach [43]. The minimal difference found in our 
study is still adequate in our opinion, considering that this 
value was obtained in a non-easily reproducible setting with 
a widespread disease.

Another possible limit is the short time of follow-up; 
however, we feel that these did not bias our results, indicat-
ing that patients treated with edaravone showed progression 
of damage in the motor cortex and several WM tracts.

In our opinion, this study might provide a methodical 
approach that could be applied in other pharmacological 
clinical studies in ALS disease.
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